Energy-Aware Computing

Lecture 2: CMOS technology

UoE/Informatics

Basic components

- Transistors

 Two types: NMOS, PMOS
- Gate
 Drain

 Source
 Drain

 Josephine
 Drain

 Gate
 Distribution

 Gate
 Distribution

 Josephine
 Substrate

 DoE/Informatics
 Energy-avage computing

• Wires (interconnect)

Transistors as switches

PMOS: When G is @ logic 0 (under a threshold), the switch is on S, D are connected, electric current flows

Logic gates (static)

Capacitances

- Input capacitance is due to:
 - Transistor gate capacitance (NMOS and PMOS)
- Output capacitance is due to:
 - Fanout; number of other gates driven by this one
 - Interconnect (wires)
 - Diffusion capacitance (transistor drain terminals)

UoE/Informatics

Energy in electronic circuits

• Power: P = I * V

- I current drawn from supply
- V the supply voltage
- Energy: E = P * t
- Energy is expended when current flows
- CMOS circuits only draw current when they switch
 - If no input changes, only *leakage current* flows; more later

Short-circuit current

- Signal transition slopes are finite
 - Both NMOS and PMOS conduct for a while
 - Short-circuit!
- About 15% of total dynamic power
 - Not much to do except design for steep slopes

UoE/Informatics

Leakage currents

- The transistor is not a perfect switch
 - Gate leakage
 - Sub-threshold current
 - Drain junction leakage

More on leakage in a future lecture

Energy/output transition $C_L \cdot V_{DD}^2 \cdot P_{0 \rightarrow 1}$

Power (rate of energy consumption) $C_{L} \cdot V_{DD}^{2} \cdot P_{0 \rightarrow 1} \cdot f$

UoE/Informatics

Dynamic power

Capacitance Purely circuit design territory

Clock frequency

Upper limit set by circuit Affects performance

$P = \dot{C}_L \cdot V_{DD}^2 \cdot P_{0 \to 1} \cdot f$

Supply voltage

Upper/lower limits set by tech Affects circuit switching time

Activity factor (<=1)

Circuit style dependent Data dependent "Algorithm" dependent

Energy

- Unit: Joules
- Measured over time
 - E.g. run-time of a benchmark
- Time is important!
- Often referred to as the power-delay product
- Energy is a good metric for
 - Battery life
 - Energy bills
- Proportional to total CV²

Power

- Power: work done per time unit
- Units: Watts (= Joules / sec)
- Average and peak are of interest
- Good for
 - Predicting heat dissipation (avg power)
 - Setting the specs for the power delivery system (peak power)

- Which method (blue/red) is better?
- Compare both energy (area under the curve) and run-time
- Need metrics that combine time with energy and/or power

Energy - delay product

• EDP = E * t = P_{avg} * t²

- t is run-time

- Lower is better
- For systems expending equal energy, the fastest one has better EDP
 Similar for evetome with equal run times

Similar for systems with equal run-times

There is a catch though!

Et²

- EDP is misleading when circuits allow voltage scaling
- Assume systems A, B with $-E_A = 2E_B, t_A = t_B/2$
- If supply voltage of A can drop by half:
 - $-E_{A}' = E_{A} / 4, \quad t_{A}' = 2 t_{A}$
- Therefore, A is better:
 - $-E_{A}' = E_{B} / 2$, $t_{A}' = t_{B}$
 - Assuming B cannot have voltage scaling

More metrics

What does MIPS/W represent?

The reciprocal of joules/instruction
Larger is better!
Essentially an energy metric

What would be the EDP equivalent?

MIPS²/W
Reciprocal! Larger is better

Technology progress

- Currently chips using 45nm, 32nm are being produced
- For comparison (src Intel fact sheet):
 - Rhinovirus = 20nm
 - Silicon atom = 0.24nm

Future trends/problems

Variability

- Very hard to control certain key parameters such threshold voltage
- In the same chip, neighbouring transistors of the same size and orientation will operate differently
- Reliability
 - Some transistors will fail or will be so slow that appear faulty

Future trends/problems

- Leakage power is increasing
- Long interconnect is slower
 - Delay due to interconnect used to be negligible
 - Now most of the delay comes from interconnect and this is set to continue

Summary

- Transistors, wires
- Capacitances and what they depend on
- Transistor threshold voltage
- Dynamic, static power/energy
- Dynamic energy expended when switching occurs
- $P = C_L \cdot V_{DD}^2 \cdot P_{0 \to 1} \cdot f$
- Metrics
- Future trends:
 - Leakage, variability, interconnect, (un)reliability