Distributed Systems

Clocks, Ordering of events

Rik Sarkar
Edinburgh Spring 2018
Logical clocks

• Why do we need clocks?
 – To know when something happened
 – To determine when one thing happened before another

• Can we determine that without using a “clock” at all?
 – Then we don’t need to worry about synchronization, millisecond errors etc..
Happened before

• \(a \rightarrow b \): \(a \) happened before \(b \)
 – If \(a \) and \(b \) are successive events in same process then \(a \rightarrow b \)
 – Send before receive
 • If \(a \): “send” event of message \(m \)
 • And \(b \): “receive” event of message \(m \)
 • Then \(a \rightarrow b \)
 – Transitive: \(a \rightarrow b \) and \(b \rightarrow c \) \(\implies \) \(a \rightarrow c \)
Events

• “Happened before” can be defined between events

• Examples of event:
 – Sent message
 – Received message
 – Started/finished computation
 – Received input
 – .. Etc..
 – We can decide which events are important to us

• Events in a process are ordered by time/causality
States

• “Happened before” can be defined between states
• A “state” can be seen as the values in all memory and registers of a computer
 – Changes all the time
• More useful: State changes when something important to us has happened
• E.g. an event we care about.
• States in a process are also ordered by time/ causality
Ordering among events in different processes

• There is a directed path:
• Events without a happened before relation are “concurrent”
• $e_1 \rightarrow e_2$, $e_3 \rightarrow e_4$, $e_1 \rightarrow e_5$, $e_5 || e_2$
• Events without a happened before relation are “concurrent”
• Happened before is a partial ordering
Happened before & causal order

• Happened before == could have caused/influenced
• Preserves causal relations
• Implies a partial order
 – Implies time ordering between certain pairs of events
 – Does not imply anything about ordering between concurrent events
Logical clocks

• Idea: Use a counter at each process
• Increment after each event
• Can also increment when there are no events
 – Eg. A clock
• An actual clock can be thought of as such an event counter
• It counts the states/events of the process
• Each event has an associated time: The count of the state when the event happened
Lamport clocks

• Keep a logical clock (counter)
• Send it with every message
• On receiving a message, set own clock to $\max(\{\text{own counter, message counter}\}) + 1$
• For any event e, write $c(e)$ for the logical time
• Property:
 – If $a \rightarrow b$, then $c(a) < c(b)$
 – If $a \parallel b$, then no guarantees
Lamport clocks: example

- State
- Event

Diagram:

- p1
- p2
- p3

Events:
- e1
- e3
- e4
- e5
- e6

States:
- 1
- 2
- 3
- 4
- 5
- 6
- 9
- 10
Concurrency and lamport clocks

• If $e_1 \rightarrow e_2$
 – Then no Lamport clock C exists with $C(e_1) = C(e_2)$
Concurrency and lamport clocks

• If $e_1 \rightarrow e_2$
 – Then no Lamport clock C exists with $C(e_1) = C(e_2)$

• If $e_1 \parallel e_2$, then there exists a Lamport clock C such that $C(e_1) = C(e_2)$
The purpose of Lamport clocks
The purpose of Lamport clocks

• If $a \rightarrow b$, then $c(a) < c(b)$
• If we order all events by their Lamport clock times
 – We get a partial order, since some events have same time
 – The partial order satisfies “causal relations”
The purpose of Lamport clocks

• Suppose there are events in different machines
 – Transactions, money in/out, file read, write, copy

• An ordering of events that guarantees preserving causality
Total order from lamport clocks

• If event e occurs in process j at time C(e)
 – Give it a time (C(e), j)
 – Order events by (C, process id)
 – For events e1 in process i, e2 in process j:
 • If C(e1)<C(e2), then e1<e2
 • Else if C(e1)==C(e2) and i<j, then e1<e2

• Leslie Lamport. Time, clocks and ordering of events in a distributed system.
Logical clocks

• Formally, a map:
• C:S -> N
 – That satisfy happened before relation
 – Where S is set of states, N is natural numbers
 – Essentially, Assign a “number” to each state
 – Other sets (like Integers Z) work equally well. As long as the set has a total order.

• Problem:
 – Ordering preserves happened-before
 – But does not imply happened-before
 – There is no way to tell from logical clock if there can be causality.
 • The relation is not an if and only if
Vector clocks

• We want a clock such that:
 – If $a \rightarrow b$, then $c(a) < c(b)$
 – AND
 – If $c(a) < c(b)$, then $a \rightarrow b$

 – Ref: Coulouris et al., V. Garg
Vector clocks

- $V: S -> \mathbb{N}^n$
 - Where n is the number of processes
- And:
 - For states x and y
 - $V_x \leq V_y$ iff for each i in $\{1,2,...,n\}$, $V_x[i] \leq V_y[i]$
 - The strict inequality is defined as:
 - $V_x < V_y$ iff for each i in $\{1,2,...,n\}$, $V_x[i] \leq V_y[i]$
 - And there is a j such that $V_x[j] < V_y[j]$

- That satisfy that
 - $V_x < V_y$ iff $x \rightarrow y$
Vector clock algorithm

• Each process i maintains a vector \(V_i \)
• \(V_i \) has n elements
 – keeps clock \(V_i[j] \) for every other process j
 – On every local event: \(V_i[i] = V_i[i]+1 \)
 – On sending a message, i sends entire \(V_i \)
 – On receiving a message at process j:
 • Takes max element by element
 • \(V_j[k] = \max(V_j[k], V_i[k]) \), for \(k = 1,2,...,n \)
 • And adds 1 to \(V_j[j] \)
Comparing timestamps

- $V = V'$ iff $V[i] == V'[i]$ for $i=1,2,...,n$
- $V \leq V'$ iff $V[i] \leq V'[i]$ for $i=1,2,...,n$
- $V < V'$ iff $V[i] \leq V'[i]$ for $i=1,2,...,n$
 - And there is an i such that $V[i] < V'[i]$
Comparing timestamps

• $V = V'$ iff $V[i] == V'[i]$ for $i=1,2,...,n$
• $V < V'$ iff $V[i] < V'[i]$ for $i=1,2,...,n$

• For events a, b and vector clock V
 – $a \rightarrow b$ iff $V_a < V_b$

• Is this a total order?
Comparing timestamps

- $V = V'$ iff $V[i] = V'[i]$ for $i=1,2,...,n$
- $V \leq V'$ iff $V[i] \leq V'[i]$ for $i=1,2,...,n$

- For events a, b and vector clock V
 - $a \rightarrow b$ iff $V_a < V_b$

- Two events are concurrent if
 - Neither $V_a < V(b)$ nor $V_b < V_a$
Vector clock examples

• \((1,2,1) \leq (3,2,1)\) but \((1,2,1) \not< (3,1,2)\)

• Also \((3,1,2) \not< (1,2,1)\)

• No ordering exists
Vector clocks

• What are the drawbacks?

• What is the communication complexity?
Vector clocks

• What are the drawbacks?
 – Entire vector is sent with message
 – All vector elements (n) have to be checked on every message

• What is the communication complexity?
 – $\Omega(n)$ per message
Logical and vector clocks

• There is no way to have perfect knowledge on ordering of events
 – A “true” ordering may not exist..
 – Logical and vector clocks give us a way to have ordering consistent with causality