Gossip Algorithms
• In a gossip algorithm, each node in the network *periodically* exchanges information with a subset of nodes.

• This subset is usually *the set of neighbors of each node*.

Every node only has a local view of the network.

• **Objective**: each node receives some desired *global information*, through a certain number of periodically update of the nodes.
Rumor spreading

Problem

Design an algorithm so that all the nodes receive the rumor as fast as possible.

Solution 1 Initial node sends the rumor to one of its neighbours, and every informed node forwards it to all its neighbours.

• Downside 1: every node needs to interact with all its neighbours.
• Downside 2: every node receives its degree copies of the rumor.

Solution 2 Construct a spanning tree, and transfer the rumor only along the edges of the tree.

• Downside: Failure of links in the tree breaks rumor spreading process.

We need a simple, local, distributed, fast, and robust algorithm for information spreading.
Push protocol of rumor spreading

Protocol (Synchronous model)

- There is a rumor *initially* located at a node of a network;
- The protocol proceeds by *rounds*, in which each node only *contacts one of its neighbours*.
Push protocol of rumor spreading

PUSH

Nodes with rumor sends to a random neighbour

Algorithm Description

1. \(t=0 \)
2. while \(t<T \) do
3. every informed node sends the rumor to its random neighbour.
4. \(t=t+1 \)

Properties:

- Nodes only contact with their neighbours; network’s global structure is unknown to each node.
- **Robust**: Failure of transmission among a few nodes won’t affect the algorithm’s performance.
- The algorithm **efficiently** sends a rumor to all nodes in the network.

Randomisation is the key to ensure robustness and efficiency!
Bad instance for the Push protocol

Homework: It takes $O(n \cdot \log n)$ rounds for all nodes to receive the rumor w.h.p.
Push-Pull Protocol

PUSH

Nodes with rumor sends to a random neighbour

PULL

Nodes without rumor asks a random neighbour

Bad instance for PUSH

Bad instance for PULL
Push-Pull Protocol

Algorithm Description

1. $t=0$
2. while $t<T$ do
3. 1. every informed node sends the rumor to its random neighbour.
3. 2. *every uninformed node calls a random neighbour, and gets the rumor if the neighbour has one.*
4. $t=t+1$
5. end
Analysis of the Push protocol

Question

How many rounds are needed before every node gets the rumor w.h.p.?

Properties:

- $\Omega(\text{Diam}(G))$ rounds are needed before every node gets the rumor.
- $\Omega(\log n)$ rounds are needed before every node gets the rumor.

Since the number of informed vertices at most doubles after each round.

Theorem

Let G be a complete graph with n nodes. Then, with high probability, every node gets the rumor after $\log n + \ln n + o(\log n)$ rounds.
Algorithm Description

1. Initial node v sets $ID_v = 0$.
2. $t=0$
3. while $t<T$ do
 4-1. every node v with ID sends (ID_v, t) to its random neighbour.
 4-2. if a node u without ID receives (ID_v, t) from its neighbour, then
 $ID_u = 2^{t-1} + ID_v$

 Note: if node u receives msg from multiple neighbours, u chooses a random one to perform the operation above.

 4. $t=t+1$
5. end

Homework: Prove that every node receives a unique ID.
Leader election
Initial state (all not-elected)

Final state

leader
Why study rings?

- Simple starting point, easy to analyze

- Lower bounds and impossibility results for ring topology also apply to arbitrary topologies
LE algorithms in rings depend on...

Anonymous Rings
Non-anonymous Rings

Size of the network n is known (non-unif.)
Size of the network n is not known (unif.)

Synchronous Algorithms
Asynchronous Algorithms
Impossibility for Anonymous Rings

Theorem

There is no leader election algorithm for anonymous rings, even if
- the algorithm knows the ring size (non-uniform)
- in the synchronous model

Proof Sketch (for non-unif and sync rings):

- Every processor begins in same state (*not-elected*) with same outgoing msgs (since anonymous)
- Every processor receives same msgs, does same state transition, and sends same msgs in round 1
- And so on and so forth for rounds 2, 3, ...
- Eventually some processor is supposed to enter an elected state.
 But then they all would.
Since the theorem was proven for non-uniform and synchronous rings, the same result holds for *weaker* models:

- uniform
- asynchronous
Chang-Roberts algorithm: High-level Ideas

- Suppose the network is a ring
 - We assume that each node has 2 points to nodes it knows about
 - Next
 - Previous
 - (like a circular doubly linked list)
 - The actual network may not be a ring

- Every node send \(\max(\text{own ID}, \text{received ID}) \) to the next node
- If a processor receives its own ID, it is the leader
- It is \textit{uniform}: number of processors does not need to be known to the algorithm
Chang-Roberts algorithm: discussion

- Works in an asynchronous system
- Correctness: Elects processor with largest ID
 - *msg containing that ID passes through every processor.*

- Message complexity $O(n^2)$
 - When does it occur?
 - Worst case to arrange the IDs is in the decreasing order:
 - 2$^{\text{nd}}$ largest ID causes $n - 1$ messages
 - 3$^{\text{rd}}$ largest ID causes $n - 2$ messages
 - Etc.
 - Total messages $= n + (n - 1) + (n - 2) + \ldots + 1 = O(n^2)$
Hirschberg-Sinclair algorithm

• Assume all nodes want to know the leader

• k-neighborhood of node p

• How does p send a message to distance k?
 • Message has a “time to live variable”
 • Each node decrements m.TTL on receiving
 • If m.TTL=0, don’t forward any more
Hirschberg-Sinclair algorithm: Message complexity

Question

What is the message complexity?

- In phase i
 - At most one node initiates message in any sequence of 2^{i-1} nodes
 - So, $n/2^{i-1}$ candidates
 - Each sends 2 messages, going at most 2^i distance, and transfers

 $2 \times 2 \times 2^i$ messages in total
 - $O(n)$ messages in phase i, and there are $O(\log n)$ phases
 - Total of $O(n \log n)$ messages.
Distributed Consensus
$G = (V, E)$, undirected graph (bidirected edges)

- Synchronous model, n processes
- Each process has input 1 (attack) or 0 (don’t attack).
- Any subset of the messages can be lost.
- All should eventually set decision output variables to 0 or 1.

Correctness conditions:

- **Agreement**: No two processes decide differently.

- **Validity**:
 - If all start with 0, then 0 is the only allowed decision.
 - If all start with 1 and all messages are successfully delivered, then 1 is the only allowed decision.
• **Stronger validity condition:**

 – *If anyone starts with 0 then 0 is the only allowed decision.*

 – *If all start with 1 and all messages are successfully delivered, then 1 is the only allowed decision.*

• **Guidelines:**

 – For designing algorithms, try to use stronger correctness conditions (*better algorithm*).

 – For impossibility results, use weaker conditions (*better impossibility result*).
• Stopping failures (crashes) and Byzantine failures (arbitrary processor malfunction, possibly malicious)

• Agreement problem:
 – n-node connected, undirected graph, known to all processes.
 – Input v from a set V, in some state variable.
 – Output v from V, by setting decision $:= v$.
 – Bounded number $\leq f$ of processors may fail.

• Bounded number of failures:
 – A typical way of describing limited amounts of failure.
 – Alternatives: Bounded rate of failure; probabilistic.
Assume process may stop working at any point:
- Between rounds.
- While sending messages at a round; any subset of intended messages may be delivered.

Correctness conditions:
- **Agreement**: No two processes decide on different values.
 - “Uniform agreement”
- **Validity**: If all processes start with the same v, then v is the only allowable decision.
- **Termination**: All nonfaulty processes eventually decide.

Alternatively:
- **Stronger validity condition**: Every decision value must be some process’ initial value.
• “Byzantine Generals Problem”
 – Originally “Albanian Generals”
• Faulty processes may exhibit “arbitrary behavior”:
 – Can start in arbitrary states, send arbitrary messages, perform arbitrary transitions.
 – But can’t affect anyone else’s state or outgoing messages.
 – Often called “malicious” (but they aren’t necessarily).
• Correctness conditions:
 – **Agreement**: No two nonfaulty processes decide on different values.
 – **Validity**: If all nonfaulty processes start with the same v, then v is the only allowable decision for nonfaulty processes.
 – **Termination**: All nonfaulty processes eventually decide.
A Byzantine agreement algorithm doesn’t necessarily solve stopping agreement.

For stopping, all processes that decide, even ones that later fail, must agree (uniformity condition).

Too strong for Byzantine setting.
• **Time**: Number of rounds until all nonfaulty processes decide.

• **Communication**: Number of messages, or number of bits.

 – For Byzantine case, just count those sent by nonfaulty processes.
Assume complete n-node graph.

Idea:
- Processes keep sending all V values they’ve ever seen.
- Use simple decision rule at the end.

In more detail:
- Process i maintains $W \subseteq V$, initially containing just i’s initial value.
- Repeatedly: Broadcast W, and add received elements to W.
- After k rounds:
 - If $|W| = 1$ then decide on the unique value.
 - Else decide on default value $v_0 \in V$.

Question: How many rounds?
Complexity Bounds

- Time: \(f + 1 \) rounds
- Communication:
 - Messages: \(\leq (f + 1) n^2 \)
 - Message bits: Multiply by \(n b \)

- Can improve communication:
 - Messages: \(\leq 2 n^2 \)
 - Message bits: Multiply by \(b \)

Number of values sent in a message

A fixed bound on number of bits to represent a value in \(V \).
• Each process broadcasts its own value in round 1.

• May broadcast at one other round, just after it first hears of some value different from its own.

• In that case, it chooses just one such value to rebroadcast.

• After $f + 1$ rounds:
 – If $|\mathcal{W}| = 1$ then decide on the unique value.
 – Else decide on default value v_0.

Improved algorithm
A strategy for consensus algorithms, which works for Byzantine agreement as well as stopping agreement.

Based on EIG tree data structure.

EIG tree $T_{n,f}$, for n processes, f failures:
- $f + 2$ levels
- Paths from root to leaf correspond to strings of $f + 1$ distinct process names.

Example: $T_{4,2}$
Each process i uses the same EIG tree, $T_{n,f}$.

Decorates nodes of the tree with values in V, level by level.

Initially: Decorate root with i’s input value.

Round $r \geq 1$:

- Send all level $r - 1$ decorations for nodes to everyone.
 - Including yourself---simulate locally.
- Use received messages to decorate level r nodes---to determine label, append sender’s id at the end.
- If no message received, use \bot.

The decoration for node $(i_1, i_2, i_3, \ldots, i_k)$ in i’s tree is the value v such that $(i_k$ told $i)$ that $(i_{k-1}$ told $i_k)$ that ...that $(i_1$ told $i_2)$ that i_1’s initial value was v.

Decision rule for stopping case:

- Trivial
- Let W = set of all values decorating the local EIG tree.
- If $|W| = 1$ decide that value, else default v_0.

EIG Stopping Agreement Algorithm
Byzantine Agreement
EIG Algorithm for Byzantine Agreement

- Use EIG tree.
- Relay messages for $f + 1$ rounds.
- Decorate the EIG tree with values from V, replacing any garbage messages with default value v_0.
- Call the decorations $\text{val}(x)$, where x is any node label.
- Decision rule:
 - Redecorate the tree, defining $\text{newval}(x)$.
 - Proceed bottom-up.
 - Leaf: $\text{newval}(x) = \text{val}(x)$
 - Non-leaf: $\text{newval}(x)$ =
 - newval of strict majority of children in the tree, if majority exists,
 - v_0 otherwise.
 - Final decision: $\text{newval}(\lambda)$ (newval at root)
\begin{itemize}
 \item $n > 3f$ is necessary!
 \begin{itemize}
 \item Holds for any n-node (undirected) graph.
 \item For graphs with low connectivity, may need even more processors.
 \item Number of failures that can be tolerated for Byzantine agreement in an undirected graph G has been completely characterized, in terms of number of nodes and connectivity.
 \end{itemize}
 \item Theorem 1: 3 processes cannot solve BA with 1 possible failure.
 \item Theorem 2: n processes can’t solve BA, if $n \leq 3f$.
\end{itemize}