Distributed Systems

Minimum spanning trees
Rik Sarkar

University of Edinburgh
Fall 2018

Minimum spanning trees
Ref: Wiki
e Definition (in an undirected graph):

— A spanning tree that has the smallest possible
total weight of edges

Minimum spanning trees

 Useful in broadcast:

— Using a flood on the MST has the smallest possible
cost on the network

Minimum spanning trees

e Useful in point to point routing:

— Minimizes the max weight on the path between
any two nodes

Property: Cut optimality

* Every edge of the MIST
partitions the graph into
two disjoint sets (creates a
cut)

— Each set is individually
connected by MST edges

Property: Cut optimality

* Every edge of the MIST
partitions the graph into
two disjoint sets (creates a
cut)

— Each set is individually
connected by MST edges

* No edge across the cut can
have a smaller weight than
the MST edge

Property: Cut optimality

* Every edge of the MST partitions
the graph into two disjoint sets
(creates a cut)

— Each set is individually connected by
MST edges

 No edge across the cut can have a

smaller weight than the MST edge

* Proof: If there was such an edge,
then we can swap it for the current
edge and get a tree of smaller total
weight

Property: Cycle optimality

* Every non-MST edge
when added to MST set
creates a cycle

* |t must have max weight
in the cycle

MST: Not necessarily unique

* Why?

MST: Not necessarily unique

* Assume:
— All edge weights are unique

Prim’s Algorithm

e |nitialize P={x}; Q=E
— (x is any vertex in V)
e WhileP #V

— Select edge (u,v) in the cut (P, V\P)
* (at the boundary of P)
* With smallest weight

— AddvtoP

Prim’s Algorithm

* |f we search for the min weight edge each
time: O(n?)

Prim’s Algorithm

* |f we use heaps:
— O(m log n) [binary heap]
— O(m + n log n) [Fibonacci heap]

Prim’s Algorithm

e Can we have an efficient distributed
implementation?

Prim’s Algorithm

* |n every round, we need to find the lowest
weight boundary edge.

e Use a convergecast (aggregation tree based)
— In every round

— For n rounds

Prim’s Algorithm

* What is the running time?
 What is communication complexity?

Prim’s Algorithm

 The weakness:
* Does not use the distributed computation

* Tree spreads from one point, rest of network
is idle

Kruskal’s algorithm

Works with a forest: A collection of trees
Initially : each node is its own tree
Sort all edges by weight

For each tree,

— Find the least weight boundary edge

— Add it to the set of edges: merges two trees into
one

— Repeat until only 1 tree left

Kruskal’s algorithm

The problem step:
— “Find the least weight boundary edge”

How do you know which is the boundary edge?

Maintain id for each tree (store this at every
node)

Easy to check if end-point belong to different
trees

When merging trees, update the id of one of the
trees

— Expensive, since all nodes in the tree have to be
updated

Kruskal’s algorithm

* When merging trees, update the id of one of
the trees

— Expensive, since all nodes in the tree have to be
updated

e Solution: always update the id of the smaller
tree (the one with fewer nodes)

* The cost for all id updates is O(n log n)

Kruskal’s algorithm

e Claim: The cost for all id updates is O(n log n)

* Proof: (by induction on levels)

— Suppose the final list of n elements was obtained by
merging two lists of h elements and n-h elements in the
previous level

— Andh<n/2

— Then cost of creating final list is (for some const p):

e Cost for creating two lists < ph Ig h + p(n-h)lg (n-h)

Cost for updating labels < ph

Total < ph Ig h + p(n-h)lg (n-h) + ph

Total < ph (Ig (n/2) + 1) + p(n-h)Ig (n-h)

<pnlgn

* Note: Kruskal also needs time to sort the edges initially

GHS Distributed MST Algorithm

Ref: NL
* By Gallagher, Humblet and Spira

 Each node knows its own edges and weights

GHS Distributed MST Algorithm

Works in levels
In level O each node is its own tree

Each tree has a leader (leader id == tree id)
At each level k:

— All Leaders execute a convergecast to find the min
weight boundary edge in its tree

— |t then broadcasts this in its tree so that the node that
has the edge knows

— This node informs the node on the other side, which
informs its own leader

GHS Distributed MST Algorithm

e QObservation 1:
— We are possibly merging more than two trees at the same time
— Problem: who is the leader of the new tree?

* Observation 2:
— The merged tree is a tree of trees: it cannot have a cycle

— We can assign a direction to each edge and each node (tree) has
an outgoing edge

— There must be a pair of nodes (trees) that select each-other
(otherwise the merged tree is infinite)

— We select the edge used to merge these two trees
* Select the node with higher ID to be leader

— The leader then broadcasts a message updating leader id at all
nodes.

GHS Distributed MST Algorithm

Complexity:

The number of nodes at each level k tree is at
least 2k

Since starting at size 1, the number of nodes
in the smallest tree at least doubles every
level

Therefore, there are at most O(log n) levels

GHS Distributed MST Algorithm

Complexity:

At each level, at each tree, we use constant
number of broadcasts and convergecasts

Each level costs O(n) time
Total costs : O(n log n) time

GHS Distributed MST Algorithm

Complexity:

At each level, at each tree, we use constant
number of broadcasts and convergecasts

Each level costs O(n) messages
Total costs : O(n log n + |E|) messages

Distributed MST Algorithm

 Non-unique edge weights
* |f edges have duplicate weights

 We make them unique:

— By ensuring that for any two edges e and €’

— Either wt(e) < wt(e’) or wt(e’)<wt(e)

— By using node ids

— Eg. If (u,v) and (u’,v’) have same weight, we define
* If u<u’ then wt(u,v) < wt(u’v’)
e Else if u==u’, and if vsv’ then wt(u,v) < wt(u’v’)

