
Distributed	Systems	
	

Minimum	spanning	trees	
Rik	Sarkar	

	
University	of	Edinburgh	

Fall	2018	

Minimum	spanning	trees	

•  DefiniBon	(in	an	undirected	graph):	
– A	spanning	tree	that	has	the	smallest	possible	
total	weight	of	edges	

Distributed	Systems,	Edinburgh,	2016	 2	

Ref:	Wiki	

Minimum	spanning	trees	

•  Useful	in	broadcast:	
– Using	a	flood	on	the	MST	has	the	smallest	possible	
cost	on	the	network	

Distributed	Systems,	Edinburgh,	2016	 3	

Minimum	spanning	trees	

•  Useful	in	point	to	point	rouBng:	
– Minimizes	the	max	weight	on	the	path	between	
any	two	nodes	

Distributed	Systems,	Edinburgh,	2016	 4	

Property:	Cut	opBmality	

•  Every	edge	of	the	MST	
parBBons	the	graph	into	
two	disjoint	sets	(creates	a	
cut)	
– Each	set	is	individually	
connected	by	MST	edges	

Distributed	Systems,	Edinburgh,	2016	 5	

Property:	Cut	opBmality	

•  Every	edge	of	the	MST	
parBBons	the	graph	into	
two	disjoint	sets	(creates	a	
cut)	
– Each	set	is	individually	
connected	by	MST	edges	

•  No	edge	across	the	cut	can	
have	a	smaller	weight	than	
the	MST	edge	

Distributed	Systems,	Edinburgh,	2016	 6	

Property:	Cut	opBmality	
•  Every	edge	of	the	MST	parBBons	

the	graph	into	two	disjoint	sets	
(creates	a	cut)	
–  Each	set	is	individually	connected	by	
MST	edges	

•  No	edge	across	the	cut	can	have	a	
smaller	weight	than	the	MST	edge	

•  Proof:	If	there	was	such	an	edge,	
then	we	can	swap	it	for	the	current	
edge	and	get	a	tree	of	smaller	total	
weight	

Distributed	Systems,	Edinburgh,	2016	 7	

Property:	Cycle	opBmality	

•  Every	non-MST	edge	
when	added	to	MST	set	
creates	a	cycle	

•  It	must	have	max	weight	
in	the	cycle	

Distributed	Systems,	Edinburgh,	2016	 8	

MST:	Not	necessarily	unique	

•  Why?	

Distributed	Systems,	Edinburgh,	2016	 9	

MST:	Not	necessarily	unique	

•  Assume:	
– All	edge	weights	are	unique	

Distributed	Systems,	Edinburgh,	2016	 10	

Prim’s	Algorithm	

•  IniBalize	P	=	{x};	Q	=	E	
–  (x	is	any	vertex	in	V)	

•  While	P	≠	V	
– Select	edge	(u,v)	in	the	cut	(P,	V\P)	
•  (at	the	boundary	of	P)	
• With	smallest	weight	

– Add	v	to	P	

Distributed	Systems,	Edinburgh,	2016	 11	

Prim’s	Algorithm	

•  If	we	search	for	the	min	weight	edge	each	
Bme:	O(n2)	

Distributed	Systems,	Edinburgh,	2016	 12	

Prim’s	Algorithm	

•  If	we	use	heaps:	
– O(m	log	n)			[binary	heap]	
– O(m	+	n	log	n)	[Fibonacci	heap]	

Distributed	Systems,	Edinburgh,	2016	 13	

Prim’s	Algorithm	

•  Can	we	have	an	efficient	distributed	
implementaBon?	

Distributed	Systems,	Edinburgh,	2016	 14	

	Prim’s	Algorithm	

•  In	every	round,	we	need	to	find	the	lowest	
weight	boundary	edge.	

•  Use	a	convergecast	(aggregaBon	tree	based)	
–  In	every	round	
– For	n	rounds	

Distributed	Systems,	Edinburgh,	2016	 15	

Prim’s	Algorithm	

•  What	is	the	running	Bme?	
•  What	is	communicaBon	complexity?	

Distributed	Systems,	Edinburgh,	2016	 16	

Prim’s	Algorithm	

•  The	weakness:	
•  Does	not	use	the	distributed	computaBon		
•  Tree	spreads	from	one	point,	rest	of	network	
is	idle	

Distributed	Systems,	Edinburgh,	2016	 17	

Kruskal’s	algorithm	

•  Works	with	a	forest:	A	collecBon	of	trees	
•  IniBally	:	each	node	is	its	own	tree	
•  Sort	all	edges	by	weight	
•  For	each	tree,		
– Find	the	least	weight	boundary	edge	
– Add	it	to	the	set	of	edges:	merges	two	trees	into	
one	

– Repeat	unBl	only	1	tree	lem	

Distributed	Systems,	Edinburgh,	2016	 18	

Kruskal’s	algorithm	
•  The	problem	step:	
–  “Find	the	least	weight	boundary	edge”	

•  How	do	you	know	which	is	the	boundary	edge?	
•  Maintain	id	for	each	tree	(store	this	at	every	
node)	

•  Easy	to	check	if	end-point	belong	to	different	
trees	

•  When	merging	trees,	update	the	id	of	one	of	the	
trees		
–  Expensive,	since	all	nodes	in	the	tree	have	to	be	
updated	

Distributed	Systems,	Edinburgh,	2016	 19	

Kruskal’s	algorithm	

•  When	merging	trees,	update	the	id	of	one	of	
the	trees		
– Expensive,	since	all	nodes	in	the	tree	have	to	be	
updated	

•  SoluBon:	always	update	the	id	of	the	smaller	
tree	(the	one	with	fewer	nodes)	

•  The	cost	for	all	id	updates	is	O(n	log	n)	

Distributed	Systems,	Edinburgh,	2016	 20	

Kruskal’s	algorithm	
•  Claim:	The	cost	for	all	id	updates	is	O(n	log	n)	
•  Proof:	(by	inducBon	on	levels)	
–  Suppose	the	final	list	of	n	elements	was	obtained	by	
merging	two	lists	of	h	elements	and	n-h	elements	in	the	
previous	level	

–  And	h	≤	n/2	
–  Then	cost	of	creaBng	final	list	is	(for	some	const	p):	

•  Cost	for	creaBng	two	lists	≤	ph	lg	h	+	p(n-h)lg	(n-h)	
•  Cost	for	updaBng	labels	≤	ph	
•  Total	≤	ph	lg	h	+	p(n-h)lg	(n-h)	+	ph	
•  Total	≤	ph	(lg	(n/2)	+	1)	+	p(n-h)lg	(n-h)	
•  ≤pn	lg	n	

•  Note:	Kruskal	also	needs	Bme	to	sort	the	edges	iniBally	

Distributed	Systems,	Edinburgh,	2016	 21	

GHS	Distributed	MST	Algorithm	

•  By	Gallagher,	Humblet	and	Spira	
•  Each	node	knows	its	own	edges	and	weights	

Distributed	Systems,	Edinburgh,	2016	 22	

Ref:	NL	

GHS	Distributed	MST	Algorithm	

•  Works	in	levels	
•  In	level	0	each	node	is	its	own	tree	
•  Each	tree	has	a	leader	(leader	id	==	tree	id)	
•  At	each	level	k:	
– All	Leaders	execute	a	convergecast	to	find	the	min	
weight	boundary	edge	in	its	tree	

–  It	then	broadcasts	this	in	its	tree	so	that	the	node	that	
has	the	edge	knows	

–  This	node	informs	the	node	on	the	other	side,	which	
informs	its	own	leader	

Distributed	Systems,	Edinburgh,	2016	 23	

GHS	Distributed	MST	Algorithm	
•  ObservaBon	1:	

–  We	are	possibly	merging	more	than	two	trees	at	the	same	Bme	
–  Problem:	who	is	the	leader	of	the	new	tree?	

•  ObservaBon	2:		
–  The	merged	tree	is	a	tree	of	trees:	it	cannot	have	a	cycle	
–  We	can	assign	a	direcBon	to	each	edge	and	each	node	(tree)	has	
an	outgoing	edge	

–  There	must	be	a	pair	of	nodes	(trees)	that	select	each-other	
(otherwise	the	merged	tree	is	infinite)	

–  We	select	the	edge	used	to	merge	these	two	trees	
•  Select	the	node	with	higher	ID	to	be	leader	

–  The	leader	then	broadcasts	a	message	updaBng	leader	id	at	all	
nodes.	

Distributed	Systems,	Edinburgh,	2016	 24	

GHS	Distributed	MST	Algorithm	

•  Complexity:	
•  The	number	of	nodes	at	each	level	k	tree	is	at	
least	2k	

•  Since	starBng	at	size	1,	the	number	of	nodes	
in	the	smallest	tree	at	least	doubles	every	
level	

•  Therefore,	there	are	at	most	O(log	n)	levels	

Distributed	Systems,	Edinburgh,	2016	 25	

GHS	Distributed	MST	Algorithm	

•  Complexity:	
•  At	each	level,	at	each	tree,	we	use	constant	
number	of	broadcasts	and	convergecasts	

•  Each	level	costs	O(n)	Bme	
•  Total	costs	:	O(n	log	n)	Bme	

Distributed	Systems,	Edinburgh,	2016	 26	

GHS	Distributed	MST	Algorithm	

•  Complexity:	
•  At	each	level,	at	each	tree,	we	use	constant	
number	of	broadcasts	and	convergecasts	

•  Each	level	costs	O(n)	messages	
•  Total	costs	:	O(n	log	n	+	|E|)	messages	

Distributed	Systems,	Edinburgh,	2016	 27	

Distributed	MST	Algorithm	

•  Non-unique	edge	weights	
•  If	edges	have	duplicate	weights	
•  We	make	them	unique:	
– By	ensuring	that	for	any	two	edges	e	and	e’	
– Either	wt(e)	<	wt(e’)	or	wt(e’)<wt(e)	
– By	using	node	ids	
– Eg.	If	(u,v)	and	(u’,v’)	have	same	weight,	we	define	
•  If	u<u’	then	wt(u,v)	<	wt(u’v’)	
•  Else	if	u==u’,	and	if	v<v’	then	wt(u,v)	<	wt(u’v’)		

Distributed	Systems,	Edinburgh,	2016	 28	

