
Distributed	Consensus

He	Sun
School of Informatics
University of Edinburgh

Distributed Systems

• Fault-tolerant consensus in synchronous systems

• Link failures:

– The Two Generals Problem

• Process failures:

– Stopping and Byzantine failure models

– Algorithms for agreement with stopping and Byzantine failures

– Exponential information gathering

Outline

• Abstract	problem	of	reaching	agreement	among	processes	in	a	distributed	
system,	when	they	all	start	with	their	own	“opinions”.

• Complications:		Failures	(process,	link);	timing	uncertainties.

• Motivation:

– Database	transactions:		Commit	or	abort

– Aircraft	control:

• Agree	on	which	plane	should	go	up/down,	in	resolving	encounters	(TCAS)

– Resource	allocation:		Agree	on	who	gets	priority	for	obtaining	a	resource,	doing	
the	next	database	update,	etc.

• Fundamental	problem

• We’ll	revisit	it	several	times:

– With	link	failures,	processor	failures.

– Algorithms,	impossibility	results.

Distributed Consensus

• 𝐺	 = 	 (𝑉, 𝐸),	undirected	graph	(bidirected edges)

• Synchronous	model,	𝑛 processes

• Each	process	has	input	1 (attack)	or	0 (don’t	attack).

• Any	subset	of	the	messages	can	be	lost.

• All	should	eventually	set	decision	output	variables	to	0	or	1.

• Correctness	conditions:
– Agreement:		No	two	processes	decide	differently.

– Validity:

• If	all	start	with	0,	then	0	is	the	only	allowed	decision.

• If	all	start	with	1	and	allmessages	are	successfully	delivered,	then	1	is	the	
only	allowed	decision.

Formal Problem Statement

• Stronger	validity	condition:

– If	anyone	starts	with	0	then	0	is	the	only	allowed	decision.

– If	all	start	with	1	and	all	messages	are	successfully	delivered,	then	1	is	

the	only	allowed	decision.

• Guidelines:		

– For	designing	algorithms,	try	to	use	stronger	correctness	conditions	

(better	algorithm).

– For	impossibility	results,	use	weaker	conditions	(better	impossibility	

result).

Alternatively…

Proof:		By	contradiction.

– Suppose	we	have	a	solution---a	process	(states,	transitions)	for	
each	index	1,	2.

– Assume	WLOG	that	both	processes	send	messages	at	every	round.	
Could	add	dummy	messages.

– Proof	based	on	limitations	of	local	knowledge.

– Start	with	a,	the	execution	where	both	start	with	1	and	all	
messages	are	received.

• By	termination	condition,	both	eventually	decide.

• Say,	by	𝑟 rounds.

• By	validity,	both	decide	on	1.

Impossibility Result for 2-Vertex Graph

• a1:		Same	as	a,	but	lose	all	messages	after	
round	𝑟.
– Doesn’t	matter,	since	they’ve	already	decided	by	

round	𝑟.
– So,	both	decide	1	in	a1.

• a2 :		Same	as	a1,	but	lose	the	last	message	
from	process	1	to	process	2.
– Claim	a1	indistinguishable	from	a2	by	process	1,	

denoted	by	a1	~1a2.
– Formally,	1	sees	the	same	sequence	of	states,	

incoming	and	outgoing	messages.
– So	process	1	also	decides	1	in	a2.
– By	agreement,	process	2	decides	1	in	a2.

Process	1 Process	2

Rd	1

Rd	r-1

Rd	r

Rd	2

Rd	3

Impossibility Result for 2-Vertex Graph

• a3:		Same	as	a2,	but	lose	the	last	message	from	
process	2	to	process	1.
– Then		a2	~2a3.
– So	process	2	decides	1	in	a3.
– By	agreement,	process	1	decides	1	in	a3.

• a4 :		Same	as	a3,	but	lose	the	last	message	from	
process	1	to	process	2.
– Then	a3	~1a4.

– So	process	1	decides	1	in	a4.
– So	process	2	decides	1	in	a4.

• Keep	removing	edges,	get	to:

Continuing

Process	1 Process	2

Rd	1

Rd	r-1

Rd	r

Rd	2

Rd	3

• a2r+1 :	Both	start	with	1,	no	messages	received.
– Still	both	must	eventually	decide	1.

• a2r+2 :		process	1	starts	with	1,	process	2	starts	with	0,	no	
messages	received.
– Then	a2r+1	~1a2r+2.

– So	process	1	decides	1	in	a2r+2.
– So	process	2	decides	1	in	a2r+2.

• a2r+3 :	Both	start	with	0,	no	messages	received.	
– Then	a2r+2	~2a2r+3.

– So	process	2	decides	1	in	a2r+3.
– So	process	1	decides	1	in	a2r+3.

• But	a2r+3 contradicts	weak	validity!

The Contradiction

• Stopping failures (crashes) and Byzantine failures (arbitrary
processor malfunction, possibly malicious)

• Agreement problem:

– 𝑛-node connected, undirected graph, known to all processes.

– Input 𝑣 from a set 𝑉, in some state variable.

– Output 𝑣 from 𝑉, by setting decision ∶= 	𝑣.

– Bounded number £	𝑓 of processors may fail.

• Bounded number of failures:

– A typical way of describing limited amounts of failure.

– Alternatives: Bounded rate of failure; probabilistic.

Consensus with Process Failure

• Assume	process	may	stop	working	at	any	point:
– Between	rounds.
– While	sending	messages	at	a	round;	any	subset	of	intended	messages	

may	be	delivered.
• Correctness	conditions:

– Agreement:		No	two	processes	decide	on	different	values.
• “Uniform	agreement”

– Validity:		If	all	processes	start	with	the	same	𝑣,	then	𝑣 is	the	only	
allowable	decision.

– Termination:		All	nonfaulty processes	eventually	decide.
• Alternatively:

– Stronger	validity	condition:		Every	decision	value	must	be	some	process’	
initial	value.

Stopping Agreement

• “Byzantine	Generals	Problem”
– Originally	“Albanian	Generals”

• Faulty	processes	may	exhibit	“arbitrary	behavior”:
– Can	start	in	arbitrary	states,	send	arbitrary	messages,	perform	arbitrary	

transitions.

– But	can’t	affect	anyone	else’s	state	or	outgoing	messages.

– Often	called	“malicious”	(but	they	aren’t	necessarily).

• Correctness	conditions:
– Agreement:		No	two	nonfaulty processes	decide	on	different	values.

– Validity:		If	all	nonfaulty processes	start	with	the	same	𝑣,	then	𝑣 is	the	
only	allowable	decision	for	nonfaulty processes.

– Termination:		All	nonfaulty processes	eventually	decide.

Byzantine Agreement

• A	Byzantine	agreement	algorithm	doesn’t	necessarily	solve	

stopping	agreement.

• For	stopping,	all	processes	that	decide,	even	ones	that	later	

fail,	must	agree	(uniformity	condition).

• Too	strong	for	Byzantine	setting.

Technicality about stopping vs.
Byzantine agreement

• Time:		Number	of	rounds	until	all	nonfaulty processes	decide.

• Communication:		Number	of	messages,	or	number	of	bits.		

– For	Byzantine	case,	just	count	those	sent	by	nonfaulty

processes.

Complexity Measures

• Assume	complete	𝑛-node	graph.
• Idea:

– Processes	keep	sending	all	V values	they’ve	ever	seen.		
– Use	simple	decision	rule	at	the	end.

• In	more	detail:
– Process	𝑖 maintains	W ⊆ 𝑉,	initially	containing	just	𝑖’s	initial	
value.

– Repeatedly:		Broadcast	𝑊,	and	add	received	elements	to	𝑊.
– After	𝑘 rounds:	

• If	|𝑊| 	= 	1	then	decide	on	the	unique	value.
• Else	decide	on	default	value	𝑣7 ∈ 𝑉.

• Question: How	many	rounds?

Simple Algorithm for Stopping Agreement

• Depends	on	number	𝑓 of	failures	to	be	tolerated.
• 𝑓	 = 	0:		

– 𝑘	 = 	1	is	enough.
– All	get	same	𝑊.

• 𝑓	 = 	1:		
– 𝑘	 = 	1	doesn’t	work:

• Say	process	1	has	initial	value	𝑢,	others	have	initial	value	𝑣.		
• Process	1	fails	during	round	1,	sends	to	some	and	not	others.	
• So	some	have	𝑊	 = 	 {𝑣},	others	{𝑢, 𝑣},	may	decide	differently.	

– 𝑘	 = 	2 does	work:
• If	someone	fails	in	round	1,	then	no	one	does	in	round	2.

• General	𝑓:
• 𝑘	 = 	𝑓	 + 	1

How many rounds?

• Claim 1: Suppose 1	£	𝑟	£	𝑓 + 1	and no process fails during
round 𝑟. Let 𝑖 and 𝑗 be two processes that haven’t failed by
the end of round 𝑟. Then𝑊𝑖	 = 	𝑊𝑗		

right after round 𝑟.
• Proof: Each gets exactly the union of all the 𝑊’s of the non-

failed processes at the beginning of round 𝑟.
• “Clean round”---allows everyone to resolve their differences.

• Claim 2: Suppose 𝑊 sets are identical just after round 𝑟, for
all processes that are still non-failed. Then the same is true
for any 𝑟¢	 > 	𝑟.

• Proof: Obvious.

Correctness Proof (for 𝒌 = 𝒇 + 𝟏)

• Agreement:		
– $ round	𝑟,	1	£	𝑟	£	𝑓 + 1,	at	which	no	process	fails	(since	£ 𝑓 failures).

– Claim	1	says	all	that	haven’t	yet	failed	have	same	𝑊 after	round	𝑟.

– Claim	2	implies	that	all	have	same	𝑊 after	round	𝑓	 + 	1.

– So	nonfaulty processes	pick	the	same	value.

• Validity:
– If	everyone	starts	with	𝑣,	then	𝑣 is	the	only	value	that	anyone	ever	gets,	

so	|𝑊| 	= 	1	and	𝑣	will	be	chosen.

• Termination:
– Obvious	from	decision	rule.

Checking Correctness Conditions

• Time:		𝑓 + 1 rounds

• Communication:

– Messages:		£	(𝑓	 + 	1)	𝑛2

– Message	bits:		Multiply	by	𝑛	𝑏

• Can	improve	communication:

– Messages:		£ 2	𝑛2

– Message	bits:		Multiply	by	𝑏

Number of values
sent in a message

A fixed bound on
number of bits to
represent a value in V.

Complexity Bounds

• Each	process	broadcasts	its	own	value	in	round	1.

• May	broadcast	at	one	other	round,	just	after	it	first	hears	of	

some	value	different	from	its	own.		

• In	that	case,	it	chooses	just	one	such	value	to	rebroadcast.

• After	𝑓	 + 	1	rounds:		

– If	|𝑊| 	= 	1	then	decide	on	the	unique	value.

– Else	decide	on	default	value	𝑣0.

Improved algorithm (Opt)

• Relate	behavior	of	Opt	to	that	of	the	original	algorithm.
• Specifically,	relate	executions	of	both	algorithms	with	the	same	

inputs	and	same	failure	pattern.
• Let	𝑂 denote	the	𝑊 set	in	the	optimized	algorithm.
• Relation	between	states	of	the	two	algorithms:

– For	every	vertex	𝑖:
• 𝑂𝑖		Í	𝑊𝑖.
• If	|𝑊F| 	= 	1	then	𝑂𝑖	 = 	𝑊F.
• If	|𝑊F| 	> 	1	then	|𝑂F| 	> 	1.

• Relation	after	𝑓 + 1 rounds	implies	same	decisions.

Not necessarily the same set,
but both > 1.

Correctness

• Induction	on	number	of	rounds	
• Key	ideas:

– 𝑂𝑖		Í	𝑊𝑖	
• Obvious,	since	Opt	just	suppresses	sending	of	some	messages	from	Unopt.

– If	|𝑊F| 	= 	1	then	𝑂𝑖	 = 	𝑊F.
• Nothing	suppressed	in	this	case.
• Actually,	follows	from	the	first	property	and	the	fact	that	𝑂𝑖 is	always	
nonempty.

– If	|𝑊F| 	> 	1	then	|𝑂F| 	> 	1.
• Inductive	step,	for	some	round	𝑟:
• If	in	Unopt,	𝑖 receives	messages	only	from	processes	with		|𝑊| 	= 	1,	then	in	
Opt,	it	receives	the	same	sets.		So	after	round	𝑟,	𝑂𝑖	 = 	𝑊F

• Otherwise,	in	Unopt,	𝑖 receives	a	message	from	some	process	𝑗 with	|𝑊𝑗| 	>
	1.		Then	after	round	𝑟,		|𝑊F| 	> 	1	and	|𝑂F| 	> 	1.

Proof of Correctness

• A	strategy	for	consensus	algorithms,	which	works	for	Byzantine	
agreement	as	well	as	stopping	agreement.

• Based	on	EIG	tree	data	structure.
• EIG	tree	𝑇𝑛, 𝑓,	for	𝑛 processes,	𝑓 failures:

– 𝑓 + 2 levels
– Paths	from	root	to	leaf	correspond	to	strings	of	𝑓 + 1 distinct	process	

names.

• Example:		𝑇4,2

1 432

12 13 14 242321

123 124

31 32 34

132 etc.

l

Exponential Information Gathering (EIG)

• Each	process	𝑖 uses	the	same	EIG	tree,	𝑇𝑛, 𝑓.
• Decorates	nodes	of	the	tree	with	values	in	𝑉,	level	by	level.
• Initially:		Decorate	root	with	𝑖’s	input	value.
• Round	𝑟 ≥ 1:		

– Send	all	level	𝑟 − 1 decorations	for	nodes	to	everyone.
• Including	yourself---simulate	locally.

– Use	received	messages	to	decorate	level	𝑟 nodes---to	determine	label,	append	
sender’s	id	at	the	end.

– If	no	message	received,	use	^.
• The	decoration	for	node	(𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑘) in	𝑖’s	tree	is	the	value	𝑣 such	that	(ik

told	i)	that	(ik-1 told	ik)	that	…that	(i1 told	i2)	that	i1’s	initial	value	was	𝑣.
• Decision	rule	for	stopping	case:

– Trivial
– Let	𝑊 =	set	of	all	values	decorating	the	local	EIG	tree.		
– If	|𝑊| 	= 	1	decide	that	value,	else	default	𝑣0.

EIG Stopping Agreement Algorithm

• 3	processes,	1	failure
• Use	T3,1:

1 32

312112 2313 32

l

Process 1 Process 3Process 2

1 10

Initial values:

Example

• Process	2	is	faulty,	fails	
after	sending	to	process	
1	at	round	1.

• After	round	1:

1 32

312112 2313 32

l

Process 1 Process 3Process 2

1 10

1 0 1 1 1^

Example

• After	round	2:

1 32

312112 2313 32

l

Process 1 Process 3Process 2

1 10

1 0 1 1 1^

^ ^ ^^^ ^1 111 00

p3 discovers that p2’s value is 0 after round 2, by hearing it from p1.

Example

• Correctness	similar	to	previous	algorithms.
• Time:		𝑓 + 1	rounds,	as	before.
• Messages:	£	(𝑓	 + 	1)	𝑛2

• Bits:		Exponential	in	number	of	failures,	𝑂(𝑛MNO	𝑏)
• Can	improve	as	before	by	only	relaying	the	first	two	messages	

with	distinct	values.
• Extension:

– The	simple	EIG	stopping	algorithm,	and	its	optimized	variant,	can	be	used	
to	tolerate	worse	types	of	failures.

– Not	full	Byzantine	model---that	will	require	more	work…
– Rather,	a	restricted	version	of	the	Byzantine	model,	in	which	processes	

can	authenticate	messages.
– Removes	ability	of	process	to	relay	false	information	about	what	other	

processes	said.

Correctness and Complexity

