Distributed Systems

Distributed Consensus

He Sun School of Informatics University of Edinburgh

- Fault-tolerant consensus in synchronous systems
- Link failures:
 - The Two Generals Problem
- Process failures:
 - Stopping and Byzantine failure models
 - Algorithms for agreement with stopping and Byzantine failures
 - Exponential information gathering

Distributed Consensus

- Abstract problem of reaching agreement among processes in a distributed system, when they all start with their own "opinions".
- Complications: Failures (process, link); timing uncertainties.
- Motivation:
 - Database transactions: Commit or abort
 - Aircraft control:
 - Agree on which plane should go up/down, in resolving encounters (TCAS)
 - Resource allocation: Agree on who gets priority for obtaining a resource, doing the next database update, etc.
- Fundamental problem
- We'll revisit it several times:
 - With link failures, processor failures.
 - Algorithms, impossibility results.

- G = (V, E), undirected graph (bidirected edges)
- Synchronous model, *n* processes
- Each process has input 1 (attack) or 0 (don't attack).
- Any subset of the messages can be lost.
- All should eventually set decision output variables to 0 or 1.
- Correctness conditions:
 - **Agreement:** No two processes decide differently.
 - Validity:
 - If all start with 0, then 0 is the only allowed decision.
 - If all start with 1 and all messages are successfully delivered, then 1 is the only allowed decision.

Alternatively...

- Stronger validity condition:
 - If anyone starts with 0 then 0 is the only allowed decision.
 - If all start with 1 and all messages are successfully delivered, then 1 is the only allowed decision.
- Guidelines:
 - For designing algorithms, try to use stronger correctness conditions (*better algorithm*).
 - For impossibility results, use weaker conditions (*better impossibility result*).

Impossibility Result for 2-Vertex Graph

▲ ○

Proof: By contradiction.

- Suppose we have a solution---a process (states, transitions) for each index 1, 2.
- Assume WLOG that both processes send messages at every round.
 <u>Could add dummy messages.</u>
- Proof based on limitations of local knowledge.
- Start with α , the execution where both start with 1 and all messages are received.
 - By termination condition, both eventually decide.
 - Say, by *r* rounds.
 - By validity, both decide on 1.

Impossibility Result for 2-Vertex Graph

- α₁: Same as α, but lose all messages after Process 1 round r.
 - Doesn't matter, since they've already decided by round r.
 - So, both decide 1 in α_1 .
- α₂: Same as α₁, but lose the last message from process 1 to process 2.
 - Claim α_1 indistinguishable from α_2 by process 1, denoted by $\alpha_1 \sim^1 \alpha_2$.
 - Formally, 1 sees the same sequence of states, incoming and outgoing messages.
 - So process 1 also decides 1 in α_2 .
 - By agreement, process 2 decides 1 in α_2 .

Continuing

- α₃: Same as α₂, but lose the last message from process 2 to process 1.
 - Then $\alpha_2 \sim^2 \alpha_3$.
 - So process 2 decides 1 in α_3 .
 - By agreement, process 1 decides 1 in α_3 .
- α_4 : Same as α_3 , but lose the last message from process 1 to process 2.
 - Then $\alpha_3 \sim^1 \alpha_{4.}$
 - So process 1 decides 1 in α_4 .
 - So process 2 decides 1 in α_4 .
- Keep removing edges, get to:

The Contradiction

- α_{2r+1} : Both start with 1, no messages received.
 - Still both must eventually decide 1.
- α_{2r+2}: process 1 starts with 1, process 2 starts with 0, no messages received.
 - Then $\alpha_{2r+1} \sim^1 \alpha_{2r+2}$.
 - So process 1 decides 1 in α_{2r+2} .
 - So process 2 decides 1 in α_{2r+2} .
- α_{2r+3} : Both start with 0, no messages received.
 - Then $\alpha_{2r+2} \sim^2 \alpha_{2r+3}$.
 - So process 2 decides 1 in α_{2r+3} .
 - So process 1 decides 1 in α_{2r+3} .
- But α_{2r+3} contradicts weak validity!

Consensus with Process Failure

- Stopping failures (crashes) and Byzantine failures (arbitrary processor malfunction, possibly malicious)
- Agreement problem:
 - *n*-node connected, undirected graph, known to all processes.
 - Input v from a set V, in some state variable.
 - Output v from V, by setting decision := v.
 - Bounded number $\leq f$ of processors may fail.
- Bounded number of failures:
 - A typical way of describing limited amounts of failure.
 - Alternatives: Bounded rate of failure; probabilistic.

Stopping Agreement

- Assume process may stop working at any point:
 - Between rounds.
 - While sending messages at a round; any subset of intended messages may be delivered.
- Correctness conditions:
 - **Agreement**: No two processes decide on different values.
 - "Uniform agreement"
 - Validity: If all processes start with the same v, then v is the only allowable decision.
 - Termination: All nonfaulty processes eventually decide.
- Alternatively:
 - Stronger validity condition: Every decision value must be some process' initial value.

Byzantine Agreement

- "Byzantine Generals Problem"
 - Originally "Albanian Generals"
- Faulty processes may exhibit "arbitrary behavior":
 - Can start in arbitrary states, send arbitrary messages, perform arbitrary transitions.
 - But can't affect anyone else's state or outgoing messages.
 - Often called "malicious" (but they aren't necessarily).
- Correctness conditions:
 - Agreement: No two nonfaulty processes decide on different values.
 - Validity: If all nonfaulty processes start with the same v, then v is the only allowable decision for nonfaulty processes.
 - *Termination*: All nonfaulty processes eventually decide.

Technicality about stopping vs. Byzantine agreement

• A Byzantine agreement algorithm doesn't necessarily solve

stopping agreement.

• For stopping, all processes that decide, even ones that later

fail, must agree (uniformity condition).

• Too strong for Byzantine setting.

Complexity Measures

• **Time**: Number of rounds until all nonfaulty processes decide.

- **Communication**: Number of messages, or number of bits.
 - For Byzantine case, just count those sent by nonfaulty processes.

Simple Algorithm for Stopping Agreement

- Assume complete *n*-node graph.
- Idea:
 - Processes keep sending all V values they've ever seen.
 - Use simple decision rule at the end.
- In more detail:
 - Process *i* maintains W ⊆ V, initially containing just *i*'s initial value.
 - Repeatedly: Broadcast W, and add received elements to W.
 - After *k* rounds:
 - If |W| = 1 then decide on the unique value.
 - Else decide on default value $v_0 \in V$.
- **Question:** How many rounds?

How many rounds?

- Depends on number *f* of failures to be tolerated.
- f = 0:
 - -k = 1 is enough.
 - All get same W.
- f = 1:
 - -k = 1 doesn't work:
 - Say process 1 has initial value u, others have initial value v.
 - Process 1 fails during round 1, sends to some and not others.
 - So some have $W = \{v\}$, others $\{u, v\}$, may decide differently.
 - -k = 2 does work:
 - If someone fails in round 1, then no one does in round 2.
- General *f* :

• k = f + 1

Correctness Proof (for k = f + 1**)**

- Claim 1: Suppose $1 \le r \le f + 1$ and no process fails during round r. Let i and j be two processes that haven't failed by the end of round r. Then $W_i = W_j$ right after round r.
- Proof: Each gets exactly the union of all the *W*'s of the non-failed processes at the beginning of round *r*.
- "Clean round"---allows everyone to resolve their differences.

- Claim 2: Suppose W sets are identical just after round r, for all processes that are still non-failed. Then the same is true for any r' > r.
- Proof: Obvious.

Checking Correctness Conditions

• Agreement:

- − ∃ round r, $1 \le r \le f + 1$, at which no process fails (since $\le f$ failures).
- Claim 1 says all that haven't yet failed have same W after round r.
- Claim 2 implies that all have same W after round f + 1.
- So nonfaulty processes pick the same value.

• Validity:

- If everyone starts with v, then v is the only value that anyone ever gets, so |W| = 1 and v will be chosen.

• Termination:

- Obvious from decision rule.

Complexity Bounds

- Time: f + 1 rounds
- Communication:
 - Messages: $\leq (f + 1) n^2$
 - Message bits: Multiply by *n b*

- Can improve communication:
 - Messages: $\leq 2 n^2$
 - Message bits: Multiply by **b**

- Each process broadcasts its own value in round 1.
- May broadcast at one other round, just after it first hears of some value different from its own.
- In that case, it chooses just one such value to rebroadcast.
- After f + 1 rounds:

- If |W| = 1 then decide on the unique value.

– Else decide on default value v_0 .

Correctness

- Relate behavior of Opt to that of the original algorithm.
- Specifically, relate executions of both algorithms with the same inputs and same failure pattern.
- Let O denote the W set in the optimized algorithm.
- Relation between states of the two algorithms:
 - For every vertex *i*:
 - $O_i \subseteq W_i$.
 - If $|W_i| = 1$ then $O_i = W_i$.
 - If $|W_i| > 1$ then $|O_i| > 1$.

Not necessarily the same set, but both > 1.

• Relation after f + 1 rounds implies same decisions.

- Induction on number of rounds
- Key ideas:
 - $O_i \subseteq W_i$
 - Obvious, since Opt just suppresses sending of some messages from Unopt.
 - If $|W_i| = 1$ then $O_i = W_i$.
 - Nothing suppressed in this case.
 - Actually, follows from the first property and the fact that O_i is always nonempty.
 - If $|W_i| > 1$ then $|O_i| > 1$.
 - Inductive step, for some round *r*:
 - If in Unopt, *i* receives messages only from processes with |W| = 1, then in Opt, it receives the same sets. So after round r, $O_i = W_i$
 - Otherwise, in Unopt, *i* receives a message from some process *j* with $|W_j| > 1$. 1. Then after round *r*, $|W_i| > 1$ and $|O_i| > 1$.

Exponential Information Gathering (EIG)

- A strategy for consensus algorithms, which works for Byzantine agreement as well as stopping agreement.
- Based on EIG tree data structure.
- EIG tree $T_{n,f}$, for *n* processes, *f* failures:
 - f + 2 levels
 - Paths from root to leaf correspond to strings of f + 1 distinct process names.
- Example: T_{42}

EIG Stopping Agreement Algorithm

- Each process *i* uses the same EIG tree, $T_{n f}$.
- Decorates nodes of the tree with values in V, level by level.
- Initially: Decorate root with *i*'s input value.
- Round $r \geq 1$:
 - Send all level r 1 decorations for nodes to everyone.
 - Including yourself---simulate locally.
 - Use received messages to decorate level r nodes---to determine label, append sender's id at the end.
 - If no message received, use \perp .
- The decoration for node (*i*₁, *i*₂, *i*₃, ..., *i*_k) in *i*'s tree is the value *v* such that (*i*_k told i) that (*i*_{k-1} told *i*_k) that ...that (*i*₁ told *i*₂) that *i*₁'s initial value was *v*.
- Decision rule for stopping case:
 - Trivial
 - Let W = set of all values decorating the local EIG tree.
 - If |W| = 1 decide that value, else default v_0 .

Example

- 3 processes, 1 failure
- Use T_{3,1}:

Initial values:

Process 1

Process 2

Process 3

Example

- Process 2 is faulty, fails after sending to process 1 at round 1.
- After round 1:

Example

• After round 2:

Correctness and Complexity

- Correctness similar to previous algorithms.
- Time: f + 1 rounds, as before.
- Messages: $\leq (f + 1) n^2$
- Bits: Exponential in number of failures, $O(n^{f+1} b)$
- Can improve as before by only relaying the first two messages with distinct values.
- Extension:
 - The simple EIG stopping algorithm, and its optimized variant, can be used to tolerate worse types of failures.
 - Not full Byzantine model---that will require more work...
 - Rather, a restricted version of the Byzantine model, in which processes can authenticate messages.
 - Removes ability of process to relay false information about what other processes said.