
Distributed	Systems	
	

Tree	and	Flood	Algorithms	
Rik	Sarkar	

	
University	of	Edinburgh	

2016/2017	

Distributed	ComputaEon	

•  How	to	send	messages	to	all	nodes	efficiently	
•  How	to	compute	sums	of	values	at	all	nodes	
efficiently	

•  BroadcasEng	messages	
•  CompuEng	sums	in	a	tree	
•  CompuEng	trees	in	a	network	

Distributed	Systems,	Edinburgh,	2016	

Ref:	NL	

Network	as	a	graph	

•  Diameter	
–  The	maximum	distance	between	2	nodes	in	the	network	

•  Radius	
–  Half	the	diameter	

•  Spanning	tree	of	a	graph:	
–  A	subgraph	which	is	a	tree,	and	reaches	all	nodes	of	the	
graph	

–  If	network	has	n	nodes	
•  How	many	edges	does	a	spanning	tree	have?	

Distributed	Systems,	Edinburgh,	2016	

CompuEng	sums	in	a	tree	

•  Suppose	root	wants	to	know	sum	of	values	at	
all	nodes	

Distributed	Systems,	Edinburgh,	2016	

root	

CompuEng	sums	in	a	tree	
•  Suppose	root	wants	to	know	
sum	of	values	at	all	nodes	

•  It	sends	“compute”	message	to	
all	children	

•  They	forward	the	message	to	
all	their	children	(unless	it	is	a	
leaf	node)	

•  The	values	move	upward	from	
leaves	

•  Each	node	adds	values	from	all	
children	and	its	own	value	

•  Sends	it	to	its	parent	

Distributed	Systems,	Edinburgh,	2016	

root	

CompuEng	sums	in	a	tree	

•  What	can	you	compute	
other	than	sums?	

•  How	many	messages	does	
it	take?		

•  How	much	Eme	does	it	
take?	

Distributed	Systems,	Edinburgh,	2016	

root	

Global	Message	broadcast	
•  Message	must	reach	all	nodes	in	the	network	
– Different	from	broadcast	transmission	in	LAN	
– All	nodes	in	a	large	network	cannot	be	reached	
with	single	transmission	

Distributed	Systems,	Edinburgh,	2016	

Source	

Global	Message	broadcast	
•  Message	must	reach	all	nodes	in	the	network	
– Different	from	broadcast	transmission	in	LAN	
– All	nodes	in	a	large	network	cannot	be	reached	
with	single	transmissions	

Distributed	Systems,	Edinburgh,	2016	

Source	

Flooding	for	Broadcast	

•  The	source	sends	a	Flood	message	to	all	
neighbors	

•  The	message	has	
– Type	Flood	
– Unique	id:	(source	id,	message	seq)	
– Data	

Distributed	Systems,	Edinburgh,	2016	

Flooding	for	Broadcast	

•  The	source	sends	a	Flood	message,	with	a	
unique	message	id	to	all	neighbors	

•  Every	node	p	that	receives	a	flood	message	m,	
does	the	following:	
–  If	m.id	was	seen	before,	discard	m	
– Otherwise,	Add	m.id	to	list	of	previously	seen	
messages	and	send	m	to	all	neighbors	of	p	

Distributed	Systems,	Edinburgh,	2016	

Flooding	for	broadcast 		

•  Storage	
– Each	node	needs	to	store	a	list	of	flood	ids	seen	
before	

–  If	a	protocol	requires	x	floods,	then	each	node	
must	store	x	ids		
•  (there	is	a	way	to	reduce	this.	Think!)	

Distributed	Systems,	Edinburgh,	2016	

AssumpEons	

•  We	are	assuming:	
– Nodes	are	working	in	synchronous	communicaDon	
rounds	(e.g.	transmissions	occur	in	intervals	of	1	
second	exactly)	

– Messages	from	all	neighbors	arrive	at	the	same	
Eme,	and	processed	together	

–  In	each	round,	each	node	can	successfully	send	1	
message	to	each	neighbor	

– Any	necessary	computaEon	can	be	completed	
before	the	next	round		

Distributed	Systems,	Edinburgh,	2016	

CommunicaEon	complexity	

•  The	message/communicaEon	complexity	is:	

Distributed	Systems,	Edinburgh,	2016	

CommunicaEon	complexity	

•  The	the	message/communicaEon	complexity	
is:	
– O(|E|)	

Distributed	Systems,	Edinburgh,	2016	

CommunicaEon	complexity	

•  The	the	message/communicaEon	complexity	
is:	
– O(|E|)	
– Worst	case:	O(n2)	

Distributed	Systems,	Edinburgh,	2016	

Reducing	CommunicaEon		
complexity	(slightly)	

•  Node	p	need	not	send	message	m	to	any	node	
from	which	it	has	already	received	m	
– Needs	to	keep	track	of	which	nodes	have	sent	the	
message	

– Saves	some	messages	
– Does	not	change	asymptoEc	complexity	

Distributed	Systems,	Edinburgh,	2016	

Time	complexity	

•  The	number	of	rounds	needed	to	reach	all	
nodes:	diameter	of	G	

Distributed	Systems,	Edinburgh,	2016	

CompuEng	Tree	from	a	network	

•  BFS	tree	
– The	Breadth	first	search	tree	
– With	a	specified	root	node	

Distributed	Systems,	Edinburgh,	2016	

BFS	Tree	

•  Breadth	first	search	tree	
– Every	node	has	a	parent	pointer	
– And	zero	or	more	child	pointers	

– BFS	Tree	construcEon	algorithm	sets	these	
pointers	

Distributed	Systems,	Edinburgh,	2016	

BFS	Tree	ConstrucEon	algorithm	
•  Breadth	first	search	tree	
–  The	root(source)	node	decides	to	construct	a	tree	
– Uses	flooding	to	construct	a	tree	
–  Every	node	p	on	gebng	the	message	forwards	to	all	
neighbors	

– AddiEonally,	every	node	p	stores	parent	pointer:	node	
from	which	it	first	received	the	message	
•  If	mulEple	neighbors	had	first	sent	p	the	message	in	the	
same	round,	choose	parent	arbitrarily.	E.g.	node	with	
smallest	id	

–  p	informs	its	parent	of	the	selecEon	
•  Parent	creates	a	child	pointer	to	p	

Distributed	Systems,	Edinburgh,	2016	

BFS	Tree	

•  Property:	BFS	tree	is	a	shortest	path	tree	
– For	source	s	and	any	node	p	
– The	shortest	path	between	s	and	p	is	contained	in	
the	BFS	tree	

Distributed	Systems,	Edinburgh,	2016	

Time	&	message	complexity	

•  AsymptoEcally	Same	as	Flooding	

Distributed	Systems,	Edinburgh,	2016	

root	

Tree	based	broadcast	

•  Send	message	to	all	nodes	
using	tree	
– BFS	tree	is	a	spanning	tree:	
connects	all	nodes	

•  Flooding	on	the	tree	

•  Receive	message	from	
parent,	send	to	children	

Distributed	Systems,	Edinburgh,	2016	

root	

Tree	based	broadcast	

•  Simpler	than	flooding:	send	message	to	all	
children	

•  CommunicaEon:	Number	of	edges	in	spanning	
tree:	n-1	

Distributed	Systems,	Edinburgh,	2016	

AggregaEon:	Find	the	sum	of	values	at	
all	nodes	

•  With	BFS	tree	

•  Start	from	leaf	nodes	
– Nodes	without	children	
– Send	the	value	to	parent	

•  Every	other	node:	
– Wait	for	all	children	to	report	
– Sum	values	from	children	+	own	value	
– Send	to	parent	

Distributed	Systems,	Edinburgh,	2016	

AggregaEon	

•  Without	the	tree	
•  Flood	from	all	nodes:	
– O(|E|)	cost	per	node	
– O(n*|E|)	total	cost:	expensive	
– Each	node	needs	to	store	flood	ids	from	n	nodes	
•  Requires	Ω(n)	storage	at	each	node	

– Good	fault	tolerance	
•  If	a	few	nodes	fail	during	operaEon,	all	the	rest	sEll	get	
some	value	

Distributed	Systems,	Edinburgh,	2016	

AggregaEon	

•  With	Tree	

•  Also	called	Convergecast	

Distributed	Systems,	Edinburgh,	2016	

AggregaEon	
•  With	Tree	

•  Once	tree	is	built,	any	node	can	use	for	broadcast	
–  Just	flood	on	the	tree	

•  Any	node	can	use	for	convergecast	
–  First	flood	a	message	on	the	tree	requesEng	data	
– Nodes	store	parent	pointer	
–  Then	receive	data	

•  What	is	the	drawback	of	tree	based	aggregaEon?	

Distributed	Systems,	Edinburgh,	2016	

AggregaEon	
•  With	Tree	

•  Once	tree	is	built,	any	node	can	use	for	broadcast	
–  Just	flood	on	the	tree	

•  Any	node	can	use	for	convergecast	
–  First	flood	a	message	on	the	tree	requesEng	data	
–  Nodes	store	parent	pointer	
–  Then	receive	data	

•  Fault	tolerance	not	very	good	
–  If	a	node	fails,	the	messages	in	its	subtree	will	be	lost	
–  Will	need	to	rebuild	the	tree	for	future	operaEons	

Distributed	Systems,	Edinburgh,	2016	

CompuEng	Trees:	

•  What	if	the	edges	have	weights?		

Distributed	Systems,	Edinburgh,	2016	

AggregaEon	using	Trees:	

•  What	if	the	edges	have	weights?		
•  The	cost	may	not	be	O(n)	since	weights	can	be	
higher	

•  How	to	get	the	best	performance?	

Distributed	Systems,	Edinburgh,	2016	

Minimum	spanning	tree	is	

•  A	spanning	tree	(reaches	all	nodes)	
•  With	minimum	possible	total	weight	

•  How	can	we	compute	a	minimum	spanning	
tree	efficiently	in	a	distributed	system?	

•  (remember,	a	node	knows	only	its	neighbors	
and	edge	weights)	

Distributed	Systems,	Edinburgh,	2016	

