Distributed Systems

Ad hoc and sensor networks

Rik Sarkar

University of Edinburgh
Fall 2018
Mobile and Ubiquitous computing

• Devices (computers) are carried by people (mobile)
 – Laptops, phones, watches ...

• They are everywhere
 – Carried by people (mobile)
 – Embedded in the environment
 • Coffee machines, cameras, sensors for light control, elevators...
 – Produce large amounts of data
 • Usage, sensing...
Ubiquitous

• Advantages:
 – There are computers everywhere
 – Everything is “smart”
 – Potentially use computations on these to make them even smarter

• Challenges:
 – There are more things to go wrong
 – Not easy to make things work well coherently
 – Consistent platforms for managing ubiquitous devices do not exist (yet)
 – Devices do not interoperate easily
Mobile

• Advantages:
 – The same device is carried by the person – easy to give consistent service
 – Information whenever, wherever they need
 – Devices have sensors – potential for sensing the environment and adapting

• Disadvantages:
 – Connectivity is challenge: data is costly; network does not work the same way; mobility interferes with communication
 – Limited battery: can’t do too much communication
 – How to make use of sensors, not so well understood

Distributed Systems, Edinburgh, 2018
Context aware computing

• Adapt computations to the circumstances
 – Time of day
 – Is the user present?
 – Is the phone in hand or in pocket
 – Scan for wifi only when *indoors*
 – Turn off ring when in *cinema, meeting*...
 – Recognize activity and bring up relevant information
 – ...

Distributed Systems, Edinburgh, 2018
Context aware computing

• Adapt computations to the circumstances
• Basic contexts are easy to identify, but it is not always clear how to adapt
 – Turn down volume at night... but what if it is an important call?
• Many contexts are very hard to detect reliably
Other context detection examples

- Indoor/outdoor
- Use sound to detect user in a meeting
- Detect transport mode (walking, car, bus, tram..)
 - Using accelerometer
- Detect presence of other users nearby from wifi activity
Context detection

• Generally hard
• Concerns about privacy: you do not want to send context information to a server
• Perhaps distributed computation can help
 – Use data from many phones to detect context
 – But again, do not want to send all data to server
 – Do as much of it as possible on device – filter/process data at source
Networking in mobile systems

• Difficulty:
 – The network graph changes
 – A node is not always connected to the same router

• Example system: Mobile ad-hoc networks
 – Ad-hoc: Unplanned
 – Devices simply connect to nearby devices and route packets
 – Also applies to sensor networks
Routing in ad hoc wireless networks

- Find route between pairs of nodes wishing to communicate.
- **Proactive protocols**: maintain routing tables at each node that is updated as changes in the network topology are detected.
 - Heavy overhead with high network dynamics (caused by link/node failures or node movement).
 - Not practical for networks that change frequently
Routing in ad hoc wireless networks

- **Reactive protocols:** routes are constructed on demand. No global routing table is maintained.
- More appropriate for networks with high rate of changes
 - Ad hoc on demand distance vector routing (AODV)
 - Dynamic source routing (DSR)
Dynamic Source Routing (DSR)

• Node S wants to send a message to node D
• S initiates a route discovery
• S floods the network with route request (RREQ) message
• Each node appends its own id to the message
Route Discovery: RREQ

[Diagram of a network with nodes A to N, and connections between them. Node S is highlighted as the source.]
Route Discovery: RREQ

Broadcast transmission

[S]
Route Discovery: RREQ
Route Discovery: RREQ
Route Discovery: RREQ

Route Discovery: RREQ
Route Discovery in DSR

- Destination D on receiving the first RREQ sends a *route reply* (RREP)
- RREP is sent on a route obtained by reversing the route in received RREQ
Route Discovery: RREQ
Route Discovery: RREQ

When node S sends a data packet to D, the entire route is included in the packet header, hence the name source routing.
• When a link fails, an error message with the link name is sent back to S.
• S deletes any route using that link and starts discovery.
Route caching

• When a node receives or forwards a message, it learns routes to all nodes on the path

• Advantage:
 – S may not need to send RREQ
 – Intermediate node on receiving RREQ, can respond with complete route

• Disadvantage:
 – Caches may be stale: S tries many cached routes before starting a discovery. Or, intermediate nodes return outdated information.
DSR: Summary

Advantages:
• Routes computed only when needed – good for changing networks
• Caching can make things efficient
• Does not create loops

Disadvantages
• Entire route must be contained in message: can be long for large networks
• Flooding causes communication to many nodes
• Stale caches can be a problem
• Not suitable for networks where changes are too frequent
Ad hoc On-Demand Distance Vector Routing (AODV)

• Maintains routing tables at nodes so that the route need not be stored in the message
• No Caches: Only one route per destination
AODV Route Discovery

• Source floods the network

Distributed Systems, Edinburgh, 2018
AODV Route Discovery

- Other nodes create parent pointer
- A node forwards a RREQ only once
AODV Route Discovery

- Other nodes create parent pointer
- A node forwards a RREQ only once
AODV Route Discovery

• RREP is forwarded via reverse path
AODV Route Discovery

- RREP is forwarded via reverse path
- Creates a forward path
Route expiry

• A path expires if not used for a certain time.
• If a node sees that a routing table entry has not been used by this time, it removes this entry
• Even if the path itself is valid
• Good for networks with frequent changes
• Bad for static and stable networks
Can create loops

- Assume C->D link has failed, but A does not know because the ERR message was lost
- C is now trying to find path to D
- A responds since A thinks it has a path
- Creates loop: C-E-A-B-C
Sequence numbers in AODV

• If A has a route to D, A keeps a sequence number.
• A increments this number periodically: tells how old the information is
Using sequence numbers

- Rule: sequence number must increase along any route

X needs a route to D, RREQ carries 10.
Y has a route to D, Dest seq no. = 7.
D Seq. no. = 15.

Y does not reply, but forwards the RREQ.
Sequence number rule avoids loop

A does not reply, since its sequence no. is less than that of C

All seq no’s are for D (called destination seq. no.)
AODV

- Routing tables, message does not contain route
- Fresh routes preferred
- Old unused routes expire
- Stale routes less problematic
- Needs sequence numbers to prevent loops
- Better for more dynamic, changing environments
Routing in ad hoc networks

- **Reactive protocols**: routes are constructed on demand. No global routing table is maintained.
- More appropriate for networks with high rate of changes
 - Ad hoc on demand distance vector routing (AODV)
 - Dynamic source routing (DSR)
- **Need flooding**
 - Inefficient in large networks
Geographical routing: Using location

- Geographical routing uses a node’s location to discover path to that node.

Greedy Routing: Forward to the neighbor that is nearest to the destination.
Geographical routing

• Assumptions:
 – Nodes know their own geographical location
 – Nodes know their 1-hop neighbors
 – Routing destinations are specified geographically (a location, or a geographical region)
 – Each packet can hold a small amount of routing information.
Sensor network

- Sensors enabled with wireless
 - Can communicate with nearby sensors
 - Communication to server relatively costly

- Low power, but lots of data
 - Not worth sending everything to server

- Try use the data directly inside the network
 - In-network distributed computing
Problem: How to find the relevant data?

- A tourist in a park asks
- “Where is the elephant?”
- Out of all the sensors/cameras which one is close to an elephant?
Data centric routing

• Traditional networks try to route to an IP address
• Find path to the node with a particular ID
• But what if we try to find data, not specific nodes?
• After all, delivering data is the ultimate goal of routing and networks
• Data centric storage
 – Storage depends on the data (elephant, giraffe, song...)
• Data centric routing (search)
 – Route to the data
Distributed Database

• Information Producer
 – Can be anywhere in the network
 – May be mobile
 – Many producers may generate data of the same type

• User or Information Consumer
 – Can be anywhere
 – May be many
Distributed Database: Challenges

• Consumer does not know where the producer is, and vice versa
• Need to search: Must be fast, efficient

Basic methods (e.g. using floods):
• Push: Producer disseminates data
• Pull: Consumer looks for the data
• Push-pull: Both producer, consumer search for each-other
Distributed hash tables

- Use a hash on the data: $h(song1.mp3) = node#26$
- Anyone that has song1.mp3 informs node#26
- Anyone that needs Song1.mp3 checks with node#26
- Used in peer to peer systems like Chord, pastry etc
Geographic Hash Tables

• Content based hash gives coordinates:
 – $h(\text{lion}) = (12, 07)$

• Producer sends msg to (12, 07) by geographic routing and stores data

• Consumer sends msg to (12, 07) by geographic routing and gets data
GHT

• What if there is no sensor at (12, 07) ?

• Use the sensor nearest to it
Fault handling

• What if home node a dies?
• Replicas (nodes surrounding a hash location) have a timer that triggers a new check
• A new node becomes home
GHT

• Advantages
 – Simple
 – Handles load balancing and faults

• Disadvantages
 – Not distance sensitive: everyone has to go to hash node even if producer and consumer are close
 – If a data is queried or updated often, that node has a lot of traffic – bottleneck
Rumor Routing

• Producer: Send data along a curve or random walk, leave data or pointers on nodes

• Consumer: Route along another curve or random walk, hope to meet data or pointer
Rumor routing

• Each node maintains a list of events
• Adds events as they happen

• Agents: Packets that carry events in the network
 – Aggregate events of each node they pass through
• Agents move in random walk. From 1-hop neighbors select one that has not been visited recently
Mobile, Ad-hoc and Sensor network

• A difficult model – least infrastructure, low power nodes, communication/computation expensive
• Not entirely realistic
• However, it makes least number of assumptions
 – useful as a basis for developing distributed protocols/algorithms
 – Which can then be enhanced using available infrastructure in specific cases
Emerging technologies

• IoT: local computation and communication is important
 – Efficiency
 – Privacy
• Device to device communication
 – Coming in 5G
 – Ad-hoc networks to supplement cell networks