
Leader	election	&	Failure	detection

He	Sun
School of Informatics
University of Edinburgh

Distributed Systems



Leader	of	a	computation

• Many	distributed	computations	need	a	coordinator	of	server	processors

• E.g.,	Central	server	for	mutual	exclusion

• Initiating	a	distributed	computation

• Computing	the	sum/max	using	aggregation	tree

• We	may	need	to	elect	a	leader	at	the	start	of	computation

• In	every	admissible	execution,	exactly	one	processor	enters	an	elected	state.

• We	may	need	to	elect	a	new	leader	if	the	current	leader	of	the	computation	fails



Initial	state	(all	not-elected) Final	state

leader

Leader	election	in	ring	networks



Why	study	rings?

• Simple	starting	point,	easy	to	analyze

• Lower	bounds	and	impossibility	results	for	ring	topology	also	apply	to	

arbitrary	topologies



LE	algorithms	in	rings	depend	on…

Synchronous Algorithms

Asynchronous Algorithms

Anonymous Rings

Non-anonymous Rings

Size of the network n is known (non-unif.)

Size of the network n is not known (unif.)



LE	in	Anonymous	Rings

Every processor runs the same algorithm

Every processor does exactly the same execution



Impossibility	for	Anonymous	Rings

Proof Sketch (for non-unif and sync rings):

- Every processor begins in same state (not-elected) with same 

outgoing msgs (since anonymous)

- Every processor receives same msgs, does same state transition, and 

sends same msgs in round 1

- And so on and so forth for rounds 2, 3, …

- Eventually some processor is supposed to enter an elected state.  

But then they all would.

Theorem

There	is	no leader	election	algorithm	for	anonymous	rings,	even	if
- the	algorithm	knows	the	ring	size	(non-uniform)
- in	the	synchronous	model



Initial state
(all not-elected)

Final state

leader

If one node is elected a leader,
then every node is elected a leader



Impossibility	for	Anonymous	Rings

Since the theorem was proven for non-uniform and synchronous rings, 

the same result holds for weaker models:

- uniform

- asynchronous 



Rings	with	Identifies	(non-anonymous)

Assume each processor has a unique ID.

Do not confuse indices and IDs:

• indices are 0 to n-1: used only for analysis, not available to the 

processors

• IDs are arbitrary nonnegative integers: are available to the 

processors



Overview	of	LE	in	Rings	with	IDs

All bounds are asymptotically tight!

There	exists	algorithms	when	nodes	have	unique	IDs.	We	will	evaluate	them	

according	to	their	message	complexity.	

Best result:

• Asynchronous rings: Θ(𝑛log	𝑛) messages 

• Synchronous rings: Θ(𝑛) messages



Node	with	the	highest	identifier

• If	all	nodes	know	the	highest	ID	(say	𝑛),	we	do	not	need	an	election.

• Everyone	assumes	𝑛 is	the	leader

• 𝑛 starts	operating	as	the	leader

• But	what	if	𝑛 fails?	We	cannot	assume	𝑛 − 1 is	leader,	since	𝑛 − 1may	have	

failed	too!	

Our	Strategy
The	node	with	the	highest	ID	and	still	surviving	is	the	leader.

We	need	an	algorithm	that	finds	the	working	node	with	the	highest	ID.



One	strategy:	use	aggregation	tree

• Suppose	node	𝑟 detects	that	leader	has	failed,	
and	initiates	lead	election

• Node	𝑟 creates	a	BFS	tree.
• Asks	for	max	node	ID	to	be	computed	via	

aggregation
• Each	node	receives	ID	values	from	children
• Each	node	computes	max of	own	ID	and	

received	ID,	and	forwards	to	parents
• Needs	a	tree	construction
• If	𝑛 nodes	start	election,	we’ll	need	𝑛 trees

• 𝑂(𝑛-) communication
• 𝑂(𝑛) storage	per	node

2

5

8 3

2 8 3

5

7 6

𝑟 = 4

7 8

Can we do better?



Chang-Roberts	algorithm:	High-level	Ideas

• Suppose	the	network	is	a	ring

• We	assume	that	each	node	has	2	

points	to	nodes	it	knows	about

• Next

• Previous

• (like	a	circular	doubly	linked	list)

• The	actual	network	may	not	be	a	ring

• Every	node	send	max(own	ID,	received	ID)	to	the	next	node

• If	a	processor	receives	its	own	ID,	it	is	the	leader

• It	is	uniform:	number	of	processors	does	not	need	to	be	known	to	the	algorithm



Chang-Roberts	algorithm:	example

• Basic idea:

• Suppose 6 starts election

• Send “6” to 6.next, i.e. 2

• 2 takes max(2,6), sends to 2.next

• 8 takes max(8,6), sends to 8.next

• Etc

3

6

2

8

45 8



Chang-Roberts	algorithm:	example

• The value “8” goes around the ring and

comes back to 8

• Then 8 knows that “8” is the highest ID

• Since if there was a higher ID, that

would have stopped 8.

• 8 declares itself the leader: sends a

message around the ring.

3

6

2

8

45 8



Chang-Roberts	algorithm :	final	step

• If	node	𝑝 receives	election	message	𝑚 with	𝑚.ID=𝑝.ID

• 𝑃 declares	itself	leader

• Set	𝑝.leader=𝑝.ID

• Send	leader	message	with	𝑝.ID to	𝑝.NEXT

• Any	other	node	𝑞 receiving	the	leader	message

• Set	𝑞.leader=𝑝.ID

• Forwards	leader	message	to	𝑞.NEXT



Chang-Roberts	algorithm:	discussion

• Works	in	an	asynchronous	system

• Correctness:	Elects	processor	with	largest	ID

• msg containing that ID passes through every processor.

• Message	complexity	𝑂(𝑛-)

• When	does	it	occur?

• Worst	case	to	arrange	the	IDs	is	in	the	decreasing	order:

• 2nd largest	ID	causes	𝑛 − 1messages

• 3rd largest	ID	causes	𝑛 − 2messages

• Etc.

• Total	messages	=	𝑛 + 𝑛 − 1 + 𝑛 − 2 +	…+ 1 = 𝑂(𝑛-)



Average	case	analysis	of	Chang-Roberts	algorithm

Theorem
The	average	message	complexity	of	Chang-Roberts	algorithm	is	𝑂(𝑛log	𝑛)

Assume	that	all	rings	appear	with	equal	probability.

For	the	proof,	assume	IDs	are	1,2, … 	𝑛
i

Let	𝑃(𝑖, 𝑘) be	the	prob.	that	ID	𝒊makes	exactly	𝑘 steps.

𝑃 𝑖, 𝑘 = 	
;<=
><=
?<=
><=

@
𝑛 − 𝑖
𝑛 − 𝑘

Prob.	that	the	𝑘 − 1 neighbors	of	𝑖 are	<	𝑖	

Prob.	that	the	𝑘 neighbor	of	𝑖 is	>𝑖	

Hence,	expected	total	number	of	messages

=𝑛 + ∑ ∑ 𝑘 ⋅ 𝑃(𝑖, 𝑘);
>C= ≈ 0.69𝑛	log	𝑛 + 𝑂(1)?<=

;C=

𝑘 steps



Can	we	use	fewer	messages?

The	𝑂(𝑛-) algorithm	is	simple	and	works	in	both	synchronous	and	asynchronous	

model.

But	can	we	solve	the	problem	with	fewer	messages?

Idea: 

Try	to	have	msgs containing	larger	IDs	travel	smaller	distance	in	the	ring.



Hirschberg-Sinclair	algorithm

• Assume	all	nodes	want	to	know	the	leader

• 𝑘-neighborhood	of	node	𝑝

• How	does	𝑝 send	a	message	to	distance 𝑘?

• Message	has	a	“time	to	live	variable”

• Each	node	decrements	𝑚.TTL on	receiving	

• If	𝑚.TTL=0,	don’t	forward	any	more



Hirschberg-Sinclair	algorithm	(1)

• Algorithm	operates	in	phases

• In	phase	0,	node	𝑝 sends	election	message	𝑚 to	both	𝑝.NEXT and	𝑝.PREVIOUS

with	

• 𝑚.ID=𝑝.ID,	and	TTL=1

• Suppose	𝑞 receives	this	message

• Set	𝑚.TTL=0

• If	𝑞.ID>𝑚.ID,	do	nothing

• If	𝑞.ID<𝑚.ID,	return	message	to	𝑝

• If	𝑝 gets	back	both	messages,	it	declares	itself	leader	of	its	1-neighborhood,	

and	proceeds	to	next	phase



1
2

3
4

5

6

7

8

Phase	0:	send(id,	current	phase,	step	counter)		
to	1-neighborhood

1
8

2

6

47

3

5 8
1

5

3 7
4

6

2

Hirschberg-Sinclair	algorithm	(1)



If: received	ID>current	ID
Then: send	a	reply(OK)

1
2

3
4

5

6

7

8

Hirschberg-Sinclair	algorithm	(1)



If:						 a	node	receives	both	replies
Then: it	becomes	a	temporal	leader	&	proceed	to	next	phase

1
2

3
4

5

6

7

8

Hirschberg-Sinclair	algorithm	(1)



Hirschberg-Sinclair	algorithm	(2)

• Algorithm	operates	in	phases
• In	phase	𝑖,	node	𝑝 sends	election	message	𝑚 to	both	p.NEXT and	p.PREVIOUS

with	

• 𝑚.ID=𝑝.ID,	and	TTL=2;

• Suppose	𝑞 receives	this	message	(from	next/previous)
• If	𝑚.TTL=0	then	forward	suitably	to	previous/next
• Set	𝑚.TTL=𝑚.TTL-1
• If	𝑞.ID>𝑚.ID,	do	nothing	
• ELSE:

• If	𝑚.TTL=0	then	return	to	sending	process
• else	forward	to	suitably	to	previous/next

• If	𝑝 gets	back	both	messages,	it	is	the	leader	of	its	2; neighborhood,	and	
proceeds	to	phase	𝑖 + 1



Hirschberg-Sinclair	algorithm

• When	2; ≥ 𝑛/2,	only	1	processor	survives	&	Leader	found

• Number	of	phases:	𝑂(log	𝑛).

Question
What	is	the	message	complexity?



• In	phase	𝑖

• At	most	one	node	initiates	message	in	any	sequence	of	2;<= nodes

• So,	𝑛/2;<= candidates

• Each	sends	2	messages,	going	at	most	2; distance,	and	transfers	

2×2×2; messages	in	total

• 𝑂(𝑛)messages	in	phase	𝑖,	and	there	are	𝑂(log 𝑛) phases

• Total	of	𝑂(𝑛log	𝑛)messages.	

Question
What	is	the	message	complexity?

H&S	algorithm:	Message	complexity



Phase 1: 4
Phase 2: 8
…
Phase i:
…
Phase log n:

Max # messages per leader

12 +i

1log2 +n

Max # current leaders

n

2/n

12/ -in

1log2/ -nn

H&S	algorithm:	Message	complexity



Phase 1:  4
Phase 2: 8
…
Phase i:
…
Phase log n: 

Total messages:

´
´

´

´

n4=

)log( nnO ×

12 +i

1log2 +n

n

2/n

12/ -in

1log2/ -nn

n4=

n4=

n4=

Max # current leadersMax # messages per leader

H&S	algorithm:	Message	complexity



Can	we	go	better?

• The	𝑂(𝑛log	𝑛) algorithm	is	more	complicated	than	the	𝑂(𝑛-) algorithm	but	

uses	fewer	messages	in	worst	case.

• Works	in	both	asynchronous	case.

Can we reduce the number of messages even more? 

Not in the asynchronous model.

Theorem
Any	asynchronous	Leader	Election	algorithm	requires	Ω(𝑛log	𝑛)messages.

Theorem
O(𝑛)message	synchronous	algorithm	exists	for	non-uniform	ring.



Failures

Models	of	failure:

1. Assume	no	failures

2. Crash	failures:	Process	may	fail/crash

3. Message	failures:	Messages	may	get	dropped

4. Link	failures:	a	communication	stops	working

5. Some	combinations	of	2,3,4

6. Arbitrary	failures:	computation/communication	may	be	erroneous

Let’s	see	what	we	mean	by	failed

Question
How	do	we	know	that	something	has	failed?



Failure	detectors

• Detection	of	a	crashed	process

• A	major	challenge	in	distributed	systems.

• A	failure	detector	is	a	process	that	responds	to	questions	asking	whether	a	

given	processor	has	failed

• A	failure	detector	is	not	necessarily	accurate



Failure	detectors

• Reliable	failure	detectors	

• Replies	with	“working”	or	“failed”

• Difficulty:

• Detecting	something	is	working	is	easy:	if	they	respond	to	a	message,	

they	are	working

• Detecting	failure	is	harder:	if	they	don’t	respond	to	the	message,	the	

message	may	have	been	lost/delayed,	maybe	the	processor	is	busy,	etc.

• Unreliable	failure	detector

• Replies	with	“suspected	(failed)”	or	“unsuspected”

• That	is,	does	not	try	to	give	a	confirmed	answer

• We	would	ideally	like	reliable	detectors,	but	unreliable	ones	(that	say	give	

“maybe”	answers)	could	be	more	realistic



Simple	example

• Suppose	we	know	all	messages	are	delivered	within	𝐷 seconds

• Then	we	can	require	each	processor	to	send	a	message	every	𝑇 seconds	to	

the	failure	detector

• If	a	failure	detector	does	not	get	a	message	from	process	p in	𝑇 + 𝐷 seconds,	

it	marks	𝑝 as	“suspected”	or	“failed”



Synchronous	vs	asynchronous

• In	a	synchronous	system	there	is	a	bound	on	message	delivery	time	(and	

clock	drift)

• So	this	simple	method	gives	a	reliable	failure	detector

• In	fact,	it	is	possible	to	implement	this	simply	as	a	function

• Send	a	message	to	process	𝑝,	wait	for	2𝐷 + 𝜖 time

• A	dedicated	detector	process	is	not	necessary

• In	asynchronous	systems,	things	are	much	harder



Simple	failure	detector

• If	we	choose	𝑇 or	𝐷 too	large,	then	it	will	take	a	long	time	for	failure	to	be	

detected

• If	we	select	𝑇 too	small,	it	increases	communication	costs	and	puts	too	much	

burden	on	processes

• If	we	select	𝐷 too	small,	then	working	processes	may	get	labeled	as	

failed/suspected



Assumptions	and	real	world

• In	reality,	both	synchronous	and	asynchronous	are	too	rigid

• Real	systems	are	fast,	but	sometimes	messages	can	take	a	longer	time	than	

usual	(But	not	indefinitely	long)

• Messages	usually	get	delivered,	but	sometimes	not…


