Distributed Systems

Byzantine Agreement

He Sun
School of Informatics
University of Edinburgh

&9% THE UNIVERSITY
6N} of EDINBURGH

Outline

e Finish EIG algorithm for Byzantine agreement.

e Number-of-processors lower bound for Byzantine agreement.

e Connectivity bounds.

Exponential Information Gathering (EIG)

A strategy for consensus algorithms, which works for Byzantine
agreement as well as stopping agreement.

Based on EIG tree data structure.

EIG tree T}, 7, for n processes, f failures:
- [+ 2 levels

— Paths from root to leaf correspond to strings of f + 1 distinct process
names.

VAN /L\g /1\

IVIVIRIVIVIVIVIVITIPIVI

123 124 132 etc.

EIG Stopping Agreement Algorithm

Each process i uses the same EIG tree, T, ¢.

Decorates nodes of the tree with values in V, level by level.
Initially: Decorate root with i’s input value.
Roundr = 1:

— Send all level r — 1 decorations for nodes to everyone.
¢ Including yourself---simulate locally.

— Use received messages to decorate level 7 nodes---to determine label, append
sender’s id at the end.

— If no message received, use L.
The decoration for node (i, i,, i3, ..., [;) in I’s tree is the value v such that
that i,’s initial value was v.
Decision rule for stopping case:
— Trivial
— Let W =set of all values decorating the local EIG tree.
— If [W| = 1 decide that value, else default v,,.

e 3 processes, 1 failure A
e Use T, :
' 1 2 3

Initial values:

1 0 1

PR
m ELLELD

Process 1 Process 2 Process 3

e Process 2 is faulty, fails -
after sending to process
1 at round 1. 1 2 3
e After round 1: A A A
12 13 21 23 31 32

m mAAA

Process 1 Process 2 Process 3

Example

e After round 2: !
1 2 3
12 13 21 23 31 32
1 0 1
Process 1 Process 2 / Process 3

p3 discovers that p2’s value is 0 after round 2, by hearing it from p1.

Byzantine Agreement

e Recall correctness conditions:

— Agreement: No two nonfaulty processes decide on
different values.

— Validity: If all nonfaulty processes start with the same v,
then v is the only allowable decision for nonfaulty
processes.

— Termination: All nonfaulty processes eventually decide.

e Present EIG algorithm for Byzantine agreement,
using:
— Exponential communication (in f)
- f + 1 rounds
-n > 3f

EIG Algorithm for Byzantine Agreement

Use EIG tree.
Relay messages for f + 1 rounds.

Decorate the EIG tree with values from I/, replacing any garbage
messages with default value v,,.

Call the decorations val(x), where x is any node label.

Decision rule:

— Redecorate the tree, defining newval(x).
e Proceed bottom-up.
e Leaf: newval(x) = val(x)
e Non-leaf: newval(x) =

— newval of strict majority of children in the tree, if majority exists,

- v, otherwise.

— Final decision: newval(A) (newval at root)

Example:n=4,f=1

° T4’1; A
e Consider a possible \
execution in which p3 is
faulty. 1]) 3 4Q
e |nitial values1100
e Round1 4 I 1
e Round 2 12 1314 21 23 24 31 32 34 4142 43
Lies
1 1 0 0

1 014\06\00 1 014\16\00 1 014\16\00
N\ o

71011401 0110000101111 01100

Process 1 Process 2 (Process 3) Process 4

Example:n=4,f=1

e Now calculate newvals, bottom-up, choosing majority values,
vy, = 0if no majority.

1 %orrected by takinﬂy /\\
/l\/h A, /l\/h AN AN

104\\ 104\6\0 104\16\00
O O O
10110101 oogqoMonl1MM1101100

Process 1 Process 2 (Process 3) Process 4

@)
N1 1411011

Correctness Proof

e Lemma 1: If i,], k are nonfaulty, then val(x); =
val(x); for every node label x ending with k.

e |In example, such nodes are:

12 1314 21 23 24 31 32 34 41 42 43

e Proof: k sends same message toi and j and
they decorate accordingly.

Correctness Proof (cont.)

e Lemma 2: If x ends with nonfaulty process index then
dv € V such that val(x); = newval(x), = v for every nonfaulty .

e Proof: Induction on lengths of labels, bottom up.

— Basis: Leaf.
e Lemma 1 implies that all nonfaulty processes have same val(x).
e newval = val for each leaf.
— Inductive step: |x| =r < f (|x|] = f + 1 at leaves)
e Lemma 1 implies that all nonfaulty processes have same val(x), say v.
* We need newval(x) = v everywhere also.

Every nonfaulty process j broadcasts same v for x at round r + 1, so val(xj);
= v for every nonfaulty j and .

By inductive hypothesis, also newval(xj); = v for every nonfaulty j and i.

A majority of labels of x’s children end with nonfaulty process indices:
— Number of childrenof nodexis>n—f > 3f — f = 2f.
— At most f are faulty.

So, majority rule applied by i leads to newval(x); = v, for all nonfaulty i.

Main Correctness Conditions

e Validity:

— If all nonfaulty processes begin with v, then all nonfaulty
processes broadcast v at round 1, so val(j), = v for all
nonfaulty i, .

— By Lemma 2, also newval(j); = v for all nonfaulty i, j.
— Majority rule implies newval(A); = v for all nonfaulty .
— So all nonfaulty i decide v.

e Termination:

— Obvious.

e Agreement:

Agreement

e Path covering: Subset of
nodes containing at least
one node on each path
from root to leaf.

e Common node: One for which all nonfaulty processes have
the same newval.
— If label ends in nonfaulty process index, Lemma 2 implies
it’s common.

— Might be others too.

Agreement

e Lemma 3: There exists a path covering all of whose nodes are
common.

e Proof:

— Let C = nodes with labels of the form xj, j nonfaulty.
— By Lemma 2, all of these are common.
— Claim these form a path covering:

e There are at most f faulty processes.

e Each path contains f + 1 labels ending with f + 1 distinct indices.

e So at least one of these labels ends with a nonfaulty process index.

Agreement

Lemma 4: If there’s a common path covering of the subtree
rooted at any node x, then x is common

Proof:

— By induction, from the leaves up.

— “Common-ness” propagates upward.

Lemmas 3 and 4 together imply that the root is common.
So all nonfaulty processes get the same newval().

Yields Agreement.

Complexity Bounds

 As for EIG for stopping agreement:
— Time: f+1
— Communication: 0(n/*1)

* But now, also requires n > 3f processors

#Processors for Byzantine Agreement

e n > 3f is necessary!
— Holds for any n-node (undirected) graph.

— For graphs with low connectivity, may need even more
processors.

— Number of failures that can be tolerated for Byzantine
agreement in an undirected graph ¢ has been completely
characterized, in terms of number of nodes and connectivity.

e Theorem 1: 3 processes cannot solve BA with 1 possible failure.

Proof (3 vs. 1 BA)

e By contradiction. Suppose algorithm A,
consisting of procs 1, 2, 3, solves BA with 1
possible fault. A

e Construct new system S from 2 copies of A,

with initial values:
e Whatis S? @\
— A synchronous system of some kind.
— Not required to satisfy any particular
correctness conditions.
— Not necessarily a correct BA algorithm for the 6—\@

node ring.

— Just a synchronous system, which runs and does
something.

— We'll use it to get our contradiction.

Proof (3 vs. 1 BA)

Consider2and 3in S:

Looks to them like:

— They’re in A, with a faulty
process 1.

— 1 emulates 1’-2°-3’-1 from S.
In A, 2 and 3 must decide O

So by indistinguishability, they
decide 0 in § also.

~
~
<
~

Proof (3 vs. 1 BA)

0

e Now consider 1’ and 2’ in S.

e Looks to them like:

— They’re in A with a faulty process
3.

— 3 emulates 3’-1-2-3 from S.

e They must decide 1in A, so RE

decide 1in S also.

Proof (3 vs. 1 BA)

Finally, consider 3and 1" in S:

Looks to them like:

— They’re in A, with a faulty process 2.

— 2 emulates 2’-3’-1-2 from S.

In A, 3 and 1 must agree

So by indistinguishability, 3 and 1’ 1
agree in S also.

But we already know that process 1’
decides 1 and process 3 decides O,
in S.

Contradiction!

Impossibility for n = 3f

Theorem 2: n processes can’t solve BA, if n < 3f.

Proof:
— Similar construction, with f processes treated as a group.

— Or, can use a reduction:
e Show how to transform a solution for n < 3f to a solution for 3 vs. 1.
e Since 3 vs. 1isimpossible, we get a contradiction.

0 1

Considern = 2 as a special case:
Cn=2f =1 (—2)

— Each could be faulty, requiring the other to decide on its own value.
— Or both nonfaulty, which requires agreement, contradiction.

So from now on, assume 3 <n < 3f,
Assume a Byzantine Agreement algorithm A for (n, f).
Transform it to a BA algorithm B for (3,1).

Transforming Ato B

e Algorithm:
— Partition A-processes into groups 1, %,, €3, where 1 < |#4], |€,], |£3] <

f.
— Each B, process simulates the entire £; group. B, &
— B, initializes all processes in £; with B/’s initial value.
— At each round, B, simulates sending messages: B,

— If any simulated process decides, B; decides the same (use any). B;
e Show B satisfies correctness conditions:

— Consider any execution of B with at most 1 fault.

— Simulates an execution of A with at most f faults.

— Correctness conditions must hold in the simulated execution of A.
— Show these all carry over to B’s execution.

B’s correctness

e Jermination:
— If B, is nonfaulty in B, then it simulates only nonfaulty processes of A (at
least one).
— Those terminate, so B; does also.

o Agreement:
— If B;, Bj are nonfaulty processes of B, they simulate only nonfaulty
processes of A.
— Agreement in A implies all these agree.
— So B, Bj agree.
e Validity:
— If all nonfaulty processes of B start with v, then so do all nonfaulty
processes of A.

— Then validity of A implies that all nonfaulty A processes decide v, so the
same holds for B.

General Graphs and Connectivity Bounds

n > 3f isn’t the whole story:

— 4 processes, can’t tolerate 1 fault:

Theorem 3: BAis solvable in an n-node graph G, tolerating f
faults, if and only if both of the following hold:

- n > 3f,and

- conn(G) > 2f.

conn(G) = minimum number of nodes whose removal results in

either a disconnected graph or a 1-node graph.
o k E : i

conn = conn =3
conn =3

Proof: “If” Direction

e Theorem 3: BAis solvable in an n-node graph G, tolerating f
faults, ifand onlyifn > 3f and conn(G) > 2f.

e Proof (“if”):

Suppose both hold.

Key is to emulate reliable communication from any node i to any other
node J.

Rely on Menger’s Theorem, which says that a graph is c-connected (that
is, has conn > ¢) if and only if each pair of nodes is connected by > ¢
node-disjoint paths.

Since conn(G) > 2f + 1,we have >2f + 1 node-disjoint paths
between i andj.

To send message, send on all these paths (assumes graph is known).
Majority must be correct, so take majority message.

Proof: “Only If”’ Direction

e Theorem 3: BAis solvable in an n-node graph G, tolerating f
faults, ifand onlyifn > 3f and conn(G) > 2f.

e Proof (“only if”):
— We already showed n > 3f; remains to show conn(G) > 2f.
— Show key idea with simple case, conn = 2,f = 1.

— Canonical example:
e Disconnect 1 and 3 by removing 2 and 4 A

— Proof by contradiction.

— Assume some algorithm A that solves BA in this
canonical graph, tolerating 1 failure.

Proof (conn=2, 1 failure)

e Now construct S from two copies
of A.

e Consider1,2,and3in S:

— Looks to them like they’re in A,
with a faulty process 4.

— InA, 1, 2, and 3 must decide O
— So they decide 0 in S also.

e Similarly, 1’, 2, and 3’ decide 1 in
S.

Proof (conn=2, 1 failure)

e Finally, consider 3’,4’,and 1in S:

— Looks to them like they’re in A, with a
faulty process 2.

— In A, they must agree, so they also agree {
in S.

— But 3’ decides 0 and 1 decides 1in S,
contradiction.

e Therefore, we can’t solve BA in
canonical graph, with 1 failure.

e As before, can generalize to
conn(G) <2f, or use a reduction.

Byzantine Processor Bounds

The boundsn > 3f and conn > 2f are fundamental
for consensus-style problems with Byzantine failures.

Same bounds hold, in synchronous settings with
[Byzantine faulty processes, for:
— Byzantine Firing Squad synchronization problem

— Weak Byzantine Agreement

— Approximate agreement

Also, in timed (partially synchronous settings), for
maintaining clock synchronization.

Proofs used similar methods.

