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• Finish	EIG	algorithm	for	Byzantine	agreement.

• Number-of-processors	lower	bound	for	Byzantine	agreement.

• Connectivity	bounds.

Outline



• A	strategy	for	consensus	algorithms,	which	works	for	Byzantine	
agreement	as	well	as	stopping	agreement.

• Based	on	EIG	tree	data	structure.
• EIG	tree	𝑇",$,	for	𝑛 processes,	𝑓 failures:

– 𝑓 + 2 levels
– Paths	from	root	to	leaf	correspond	to	strings	of	𝑓 + 1 distinct	process	

names.

• Example:		𝑇+,,
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Exponential Information Gathering (EIG)



• Each	process	𝑖 uses	the	same	EIG	tree,	𝑇",$.
• Decorates	nodes	of	the	tree	with	values	in	𝑉,	level	by	level.
• Initially:		Decorate	root	with	𝑖’s	input	value.
• Round	𝑟 ≥ 1:		

– Send	all	level	𝑟 − 1 decorations	for	nodes	to	everyone.
• Including	yourself---simulate	locally.

– Use	received	messages	to	decorate	level	𝑟 nodes---to	determine	label,	append	
sender’s	id	at	the	end.

– If	no	message	received,	use	^.
• The	decoration	for	node	(𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑘) in	𝑖’s	tree	is	the	value	𝑣 such	that	(ik

told	i)	that	(ik-1 told	ik)	that	…that	(i1 told	i2)	that	i1’s	initial	value	was	𝑣.
• Decision	rule	for	stopping	case:

– Trivial
– Let	𝑊 =	set	of	all	values	decorating	the	local	EIG	tree.		
– If	|𝑊| 	= 	1	decide	that	value,	else	default	𝑣0.

EIG Stopping Agreement Algorithm



• 3	processes,	1	failure
• Use	T3,1:
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Example



• Process	2	is	faulty,	fails	
after	sending	to	process	
1	at	round	1.

• After	round	1:
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• After	round	2:
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p3 discovers that p2’s value is 0 after round 2, by hearing it from p1.

Example



• Recall	correctness	conditions:
– Agreement:		No	two	nonfaulty processes	decide	on	
different	values.

– Validity:		If	all	nonfaulty processes	start	with	the	same	𝑣,	
then	𝑣 is	the	only	allowable	decision	for	nonfaulty
processes.

– Termination:		All	nonfaulty processes	eventually	decide.

• Present	EIG	algorithm	for	Byzantine	agreement,	
using:
– Exponential	communication	(in	𝑓)
– 𝑓 + 1 rounds
– 𝑛	 > 	3𝑓

Byzantine Agreement



• Use	EIG	tree.
• Relay	messages	for	𝑓 + 1 rounds.
• Decorate	the	EIG	tree	with	values	from	𝑉,	replacing	any	garbage	

messages	with	default	value	𝑣0.
• Call	the	decorations	val(𝑥),	where	𝑥 is	any	node	label.
• Decision	rule:

– Redecorate	the	tree,	defining	newval(𝑥).
• Proceed	bottom-up.
• Leaf:		newval(𝑥)	=	val(𝑥)
• Non-leaf:		newval(𝑥)	=

– newval of	strict	majority	of	children	in	the	tree,	if	majority	exists,
– 𝑣0 otherwise.

– Final	decision:		newval(l) (newval at	root)

EIG Algorithm for Byzantine Agreement
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• 𝑇+,@:
• Consider	a	possible	

execution	in	which	𝑝B is	
faulty.

• Initial	values	1	1	0	0
• Round	1
• Round	2
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Lies

Example: 𝒏 = 𝟒, 𝒇 = 𝟏



0001111101 1 0 1001111111 1 00001111101 0 0

• Now	calculate	newvals,	bottom-up,	choosing	majority	values,	
𝑣0	 = 	0 if	no	majority.

Process 1 Process 2 Process 4(Process 3)
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Corrected by taking majority

Example: 𝒏 = 𝟒, 𝒇 = 𝟏



• Lemma	1:		If	𝑖, 𝑗, 𝑘	are	nonfaulty,	then	val(𝑥)𝑖 =	
val(𝑥)𝑗 for	every	node	label	𝑥 ending	with	𝑘.

• In	example,	such	nodes	are:

• Proof:		𝑘 sends	same	message	to	𝑖 and	𝑗 and	
they	decorate	accordingly.
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Correctness Proof



• Lemma	2:		If	𝑥 ends	with	nonfaulty process	index	then	
$𝑣	Î	𝑉	such	that	val(𝑥)𝑖 =	newval(𝑥)𝑖 =	𝑣 for	every	nonfaulty 𝑖.

• Proof:		Induction	on	lengths	of	labels,	bottom	up.
– Basis:		Leaf.

• Lemma	1	implies	that	all	nonfaulty processes	have	same	val(𝑥).
• newval =	val for	each	leaf.

– Inductive	step:	 𝑥 = 𝑟 ≤ 𝑓 ( 𝑥 = 𝑓 + 1 at	leaves)
• Lemma	1	implies	that	all	nonfaulty processes	have	same	val(𝑥),	say	𝑣.
• We	need	newval(𝑥)	=	𝑣 everywhere	also.
• Every	nonfaulty process	𝑗	broadcasts	same	𝑣 for	𝑥 at	round	𝑟 + 1,	so	val(𝑥𝑗)𝑖
=	𝑣 for	every	nonfaulty 𝑗 and	𝑖.

• By	inductive	hypothesis,	also	newval 𝑥𝑗 O =	𝑣 for	every	nonfaulty 𝑗 and	𝑖.
• A	majority	of	labels	of	𝑥’s	children	end	with	nonfaulty process	indices:

– Number	of	children	of	node	𝑥 is	≥ 𝑛 − 𝑓 > 3𝑓 − 𝑓 = 2𝑓.
– At	most 𝑓 are	faulty.

• So,	majority	rule	applied	by	𝑖 leads	to	newval(x)𝑖 =	𝑣,	for	all	nonfaulty 𝑖.

Correctness Proof (cont.)



• Validity:
– If	all	nonfaulty processes	begin	with	𝑣,	then	all	nonfaulty
processes	broadcast	𝑣 at	round	1,	so	val(𝑗)𝑖 =	𝑣 for	all	
nonfaulty 𝑖, 𝑗.

– By	Lemma	2,	also	newval(𝑗)𝑖 =	𝑣 for	all	nonfaulty 𝑖, 𝑗.
– Majority	rule	implies	newval(l)𝑖 =	𝑣 for	all	nonfaulty 𝑖.
– So	all	nonfaulty 𝑖 decide	𝑣.

• Termination:
– Obvious.

• Agreement:

Main Correctness Conditions



• Path	covering:		Subset	of	
nodes	containing	at	least	
one	node	on	each	path	
from	root	to	leaf.
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• Common	node:		One	for	which	all	nonfaulty processes	have	
the	same	newval.
– If	label	ends	in	nonfaulty process	index,	Lemma	2	implies	
it’s	common.

– Might	be	others	too.

Agreement



• Lemma	3:		There	exists	a	path	covering	all	of	whose	nodes	are	
common.

• Proof:		
– Let	𝐶 =	nodes	with	labels	of	the	form	𝑥𝑗,	𝑗 nonfaulty.
– By	Lemma	2,	all	of	these	are	common.
– Claim	these	form	a	path	covering:		

• There	are	at	most	𝑓 faulty	processes.
• Each	path	contains	𝑓 + 1 labels	ending	with	𝑓 + 1 distinct	indices.
• So	at	least	one	of	these	labels	ends	with	a	nonfaulty process	index.
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Agreement



• Lemma	4:		If	there’s	a	common	path	covering	of	the	subtree	
rooted	at	any	node	𝑥,	then	𝑥 is	common

• Proof:
– By	induction,	from	the	leaves	up.

– “Common-ness”	propagates	upward.

• Lemmas	3	and	4	together	imply	that	the	root	is	common.

• So	all	nonfaulty processes	get	the	same	newval(l).

• Yields	Agreement.

Agreement



• As for EIG for stopping agreement:
– Time:  𝑓 + 1
– Communication:  𝑂(𝑛$R@)

• But now, also requires 𝑛	 > 	3𝑓	processors

Complexity Bounds



• 𝑛	 > 	3𝑓	is	necessary!
– Holds	for	any	𝑛-node	(undirected)	graph.
– For	graphs	with	low	connectivity,	may	need	even	more	
processors.

– Number	of	failures	that	can	be	tolerated	for	Byzantine	
agreement	in	an	undirected	graph	𝐺 has	been	completely	
characterized,	in	terms	of	number	of	nodes	and	connectivity.

• Theorem	1:		3	processes	cannot	solve	BA	with	1	possible	failure.

#Processors for Byzantine Agreement



• By	contradiction.		Suppose	algorithm	A,	
consisting	of	procs	1,	2,	3,	solves	BA	with	1	
possible	fault.

• Construct	new	system	𝑆 from	2	copies	of	A,	
with	initial	values:

• What	is	𝑆?
– A	synchronous	system	of	some	kind.
– Not	required	to	satisfy	any	particular		

correctness	conditions.
– Not	necessarily	a	correct	BA	algorithm	for	the	6-

node	ring.	
– Just	a	synchronous	system,	which	runs	and	does	

something.
– We’ll	use	it	to	get	our	contradiction.
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• Consider	2	and	3	in	𝑆:

• Looks	to	them	like:
– They’re	in	A,	with	a	faulty	
process	1.

– 1	emulates	1’-2’-3’-1	from	S.

• In	A,	2	and	3	must	decide	0

• So	by	indistinguishability,	they	
decide	0	in	𝑆 also.
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• Now	consider	1’	and	2’	in	𝑆.

• Looks	to	them	like:
– They’re	in	A	with	a	faulty	process	
3.

– 3	emulates	3’-1-2-3	from	𝑆.

• They	must	decide	1	in	A,	so	
decide	1	in	𝑆 also.
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• Finally,	consider	3	and	1’	in	𝑆:
• Looks	to	them	like:

– They’re	in	A,	with	a	faulty	process	2.
– 2	emulates	2’-3’-1-2	from	S.

• In	A,	3	and	1	must	agree
• So	by	indistinguishability,	3	and	1’	

agree	in	𝑆 also.

• But	we	already	know	that	process	1’	
decides	1	and	process	3	decides	0,	
in	𝑆.

• Contradiction!
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• Theorem	2:		𝑛 processes	can’t	solve	BA,	if	𝑛	£	3𝑓.
• Proof:

– Similar	construction,	with	𝑓 processes	treated	as	a	group.
– Or,	can	use	a	reduction:

• Show	how	to	transform	a	solution	for	𝑛	£	3𝑓	to	a	solution	for	3	vs.	1.
• Since	3	vs.	1	is	impossible,	we	get	a	contradiction.

• Consider	𝑛	 = 	2	as	a	special	case:
– 𝑛	 = 	2, 𝑓	 = 	1	
– Each	could	be	faulty,	requiring	the	other	to	decide	on	its	own	value.
– Or	both	nonfaulty,	which	requires	agreement,	contradiction.

• So	from	now	on,	assume	3	£	𝑛	£	3𝑓.
• Assume	a	Byzantine	Agreement	algorithm	A	for	(𝑛, 𝑓).
• Transform	it	to	a	BA	algorithm	B	for	(3,1).

1 2
0 1

Impossibility for 𝒏 = 𝟑𝒇



• Algorithm:
– Partition	A-processes	into	groups	ℓ@, ℓ,, ℓB,	where	1 ≤ ℓ@ , ℓ, , 	 ℓB ≤
𝑓.

– Each	𝐵𝑖 process	simulates	the	entire	ℓO group.

– 𝐵𝑖	initializes	all	processes	in	ℓO with	𝐵𝑖’s initial	value.
– At	each	round,	𝐵𝑖 simulates	sending	messages:
– If	any	simulated	process	decides,	𝐵𝑖 decides	the	same	(use	any).

• Show	𝐵 satisfies	correctness	conditions:
– Consider	any	execution	of	𝐵 with	at	most	1 fault.
– Simulates	an	execution	of	𝐴 with	at	most	𝑓 faults.
– Correctness	conditions	must	hold	in	the	simulated	execution	of	𝐴.
– Show	these	all	carry	over	to	𝐵’s	execution.

B1

B3

B2

Transforming A to B



• Termination:
– If	𝐵𝑖 is	nonfaulty in 𝐵,	then	it	simulates	only	nonfaulty processes	of	𝐴 (at	

least	one).
– Those	terminate,	so	𝐵𝑖 does	also.

• Agreement:
– If	𝐵𝑖,	𝐵Y are	nonfaulty processes	of	𝐵,	they	simulate	only	nonfaulty

processes	of	𝐴.		
– Agreement	in	𝐴 implies	all	these	agree.		
– So	𝐵𝑖,	𝐵Y agree.	

• Validity:
– If	all	nonfaulty processes	of	𝐵 start	with	𝑣,	then	so	do	all	nonfaulty

processes	of	𝐴.		
– Then	validity	of	𝐴 implies	that	all	nonfaulty 𝐴 processes	decide	𝑣,	so	the	

same	holds	for	𝐵.

B’s correctness



• 𝑛	 > 	3𝑓	isn’t	the	whole	story:
– 4	processes,	can’t	tolerate	1	fault:

• Theorem	3:		BA	is	solvable	in	an	𝑛-node	graph	𝐺,	tolerating	𝑓
faults,	if	and	only	if	both	of	the	following	hold:
– 𝑛	 > 	3𝑓,	and
– conn(𝐺) 	> 	2𝑓.

• conn(𝐺)	=	minimum	number	of	nodes	whose	removal	results	in	
either	a	disconnected	graph	or	a	1-node	graph.

• Examples:

conn	=	1
conn	=	3

conn	=	3

General Graphs and Connectivity Bounds



• Theorem	3:		BA	is	solvable	in	an	𝑛-node	graph	𝐺,	tolerating	𝑓
faults,	if	and	only	if	𝑛	 > 	3𝑓	and	conn(𝐺) 	> 	2𝑓.

• Proof	(“if”):
– Suppose	both	hold.		
– Key	is	to	emulate	reliable	communication	from	any	node	𝑖 to	any	other	

node	𝑗.
– Rely	on	Menger’s Theorem,	which	says	that	a	graph	is	𝑐-connected	(that	

is,	has	conn	³ 𝑐)	if	and	only	if	each	pair	of	nodes	is	connected	by	³	𝑐
node-disjoint	paths.

– Since	conn(𝐺)	³	2𝑓	 + 	1,	we	have	³	2𝑓	 + 	1	node-disjoint	paths	
between	𝑖 and	𝑗.

– To	send	message,	send	on	all	these	paths	(assumes	graph	is	known).
– Majority	must	be	correct,	so	take	majority	message.

Proof: “If” Direction



• Theorem	3:		BA	is	solvable	in	an	𝑛-node	graph	𝐺,	tolerating	𝑓
faults,	if	and	only	if	𝑛	 > 	3𝑓	and	conn(𝐺) 	> 	2𝑓.

• Proof	(“only	if”):
– We	already	showed	𝑛	 > 	3𝑓;		remains	to	show	conn(𝐺) 	> 	2𝑓.
– Show	key	idea	with	simple	case, conn	 = 	2, 𝑓	 = 	1.
– Canonical	example:		

• Disconnect	1	and	3	by	removing	2	and	4
– Proof	by	contradiction.
– Assume	some	algorithm	A	that	solves	BA	in	this	

canonical	graph,	tolerating	1	failure.
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Proof: “Only If” Direction



• Now	construct	𝑆 from	two	copies	
of	A.

• Consider	1,	2,	and	3	in	𝑆:
– Looks	to	them	like	they’re	in	A,	
with	a	faulty	process	4.

– In	A,	1,	2,	and	3	must	decide	0
– So	they	decide	0	in	𝑆 also.

• Similarly,	1’,	2’,	and	3’	decide	1	in	
𝑆.
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Proof (conn=2, 1 failure)



• Finally,	consider	3’,	4’,	and	1	in	𝑆:
– Looks	to	them	like	they’re	in	A,	with	a	

faulty	process	2.
– In	A,	they	must	agree,	so	they	also	agree	

in	S.
– But	3’	decides	0	and	1	decides	1	in	𝑆,	

contradiction.

• Therefore,	we	can’t	solve	BA	in	
canonical	graph,	with	1	failure.

• As	before,	can	generalize	to	
𝑐𝑜𝑛𝑛(𝐺)	£	2𝑓,	or	use	a	reduction.
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• The	bounds	𝑛	 > 	3𝑓	and	conn	 > 	2𝑓	are	fundamental	
for	consensus-style	problems	with	Byzantine	failures.

• Same	bounds	hold,	in	synchronous	settings	with	
𝑓	Byzantine	faulty	processes,	for:
– Byzantine	Firing	Squad	synchronization	problem
– Weak	Byzantine	Agreement
– Approximate	agreement

• Also,	in	timed	(partially	synchronous	settings),	for	
maintaining	clock	synchronization.

• Proofs	used	similar	methods.

Byzantine Processor Bounds


