Byzantine Agreement

He Sun
School of Informatics
University of Edinburgh
• Finish EIG algorithm for Byzantine agreement.

• Number-of-processors lower bound for Byzantine agreement.

• Connectivity bounds.
A strategy for consensus algorithms, which works for Byzantine agreement as well as stopping agreement.

Based on EIG tree data structure.

EIG tree $T_{n,f}$, for n processes, f failures:
- $f + 2$ levels
- Paths from root to leaf correspond to strings of $f + 1$ distinct process names.

Example: $T_{4,2}$
EIG Stopping Agreement Algorithm

• Each process i uses the same EIG tree, $T_{n,f}$.
• Decorates nodes of the tree with values in V, level by level.
• Initially: Decorate root with i’s input value.
• Round $r \geq 1$:
 – Send all level $r - 1$ decorations for nodes to everyone.
 • Including yourself---simulate locally.
 – Use received messages to decorate level r nodes---to determine label, append sender’s id at the end.
 – If no message received, use \perp.
• The decoration for node $(i_1, i_2, i_3, \ldots, i_k)$ in i’s tree is the value v such that $(i_k$ told $i)$ that $(i_{k-1}$ told i_k) that ...that $(i_1$ told i_2) that i_1’s initial value was v.
• Decision rule for stopping case:
 – Trivial
 – Let W = set of all values decorating the local EIG tree.
 – If $|W| = 1$ decide that value, else default v_0.
• 3 processes, 1 failure
• Use $T_{3,1}$:

Initial values:

Process 1

Process 2

Process 3
• Process 2 is faulty, fails after sending to process 1 at round 1.
• After round 1:
• After round 2:

Example

p3 discovers that p2’s value is 0 after round 2, by hearing it from p1.
• Recall correctness conditions:
 – Agreement: No two nonfaulty processes decide on different values.
 – Validity: If all nonfaulty processes start with the same v, then v is the only allowable decision for nonfaulty processes.
 – Termination: All nonfaulty processes eventually decide.
• Present EIG algorithm for Byzantine agreement, using:
 – Exponential communication (in f)
 – $f + 1$ rounds
 – $n > 3f$
EIG Algorithm for Byzantine Agreement

- Use EIG tree.
- Relay messages for $f + 1$ rounds.
- Decorate the EIG tree with values from V, replacing any garbage messages with default value v_0.
- Call the decorations $\text{val}(x)$, where x is any node label.
- Decision rule:
 - Redecorate the tree, defining $\text{newval}(x)$.
 - Proceed bottom-up.
 - Leaf: $\text{newval}(x) = \text{val}(x)$
 - Non-leaf: $\text{newval}(x) =$
 - newval of strict majority of children in the tree, if majority exists,
 - v_0 otherwise.
 - Final decision: $\text{newval}(\lambda)$ (newval at root)
Example: \(n = 4, f = 1 \)

- \(T_{4,1} \):
- Consider a possible execution in which \(p_3 \) is faulty.
- Initial values 1 1 0 0
- Round 1
- Round 2

Lies
Example: \(n = 4, f = 1 \)

- Now calculate newvals, bottom-up, choosing majority values, \(\nu_0 = 0 \) if no majority.

\[
\begin{array}{c}
\text{Corrected by taking majority} \\
\end{array}
\]

- Process 1
- Process 2
- (Process 3)
- Process 4
• Lemma 1: If \(i, j, k \) are nonfaulty, then \(\text{val}(x)_i = \text{val}(x)_j \) for every node label \(x \) ending with \(k \).

• In example, such nodes are:

```
  4
 /\  \
3   5
 /\  \
2   6
 /\  \
1   7
```

• Proof: \(k \) sends same message to \(i \) and \(j \) and they decorate accordingly.
• Lemma 2: If x ends with nonfaulty process index then
 $\exists v \in V$ such that $\text{val}(x)_i = \text{newval}(x)_i = v$ for every nonfaulty i.

• Proof: Induction on lengths of labels, bottom up.
 – Basis: Leaf.
 • Lemma 1 implies that all nonfaulty processes have same $\text{val}(x)$.
 • $\text{newval} = \text{val}$ for each leaf.
 – Inductive step: $|x| = r \leq f$ ($|x| = f + 1$ at leaves)
 • Lemma 1 implies that all nonfaulty processes have same $\text{val}(x)$, say v.
 • We need $\text{newval}(x) = v$ everywhere also.
 • Every nonfaulty process j broadcasts same v for x at round $r + 1$, so $\text{val}(xj)_i = v$ for every nonfaulty j and i.
 • By inductive hypothesis, also $\text{newval}(xj)_i = v$ for every nonfaulty j and i.
 • A majority of labels of x’s children end with nonfaulty process indices:
 – Number of children of node x is $\geq n - f > 3f - f = 2f$.
 – At most f are faulty.
 • So, majority rule applied by i leads to $\text{newval}(x)_i = v$, for all nonfaulty i.

Correctness Proof (cont.)
Main Correctness Conditions

- **Validity:**
 - If all nonfaulty processes begin with v, then all nonfaulty processes broadcast v at round 1, so $\text{val}(j)_i = v$ for all nonfaulty i, j.
 - By Lemma 2, also $\text{newval}(j)_i = v$ for all nonfaulty i, j.
 - Majority rule implies $\text{newval}($l$)_i = v$ for all nonfaulty i.
 - So all nonfaulty i decide v.

- **Termination:**
 - Obvious.

- **Agreement:**
• **Path covering:** Subset of nodes containing at least one node on each path from root to leaf.

![Diagram of a tree structure with nodes 1, 2, 3, and 4, and sub-nodes labeled 12, 13, 14, 21, 23, 24, 31, 32, 34, 41, 42, 43.]

• **Common node:** One for which all nonfaulty processes have the same newval.
 – If label ends in nonfaulty process index, Lemma 2 implies it’s common.
 – Might be others too.
• Lemma 3: There exists a path covering all of whose nodes are common.

• Proof:
 – Let C = nodes with labels of the form xj, j nonfaulty.
 – By Lemma 2, all of these are common.
 – Claim these form a path covering:
 • There are at most f faulty processes.
 • Each path contains $f + 1$ labels ending with $f + 1$ distinct indices.
 • So at least one of these labels ends with a nonfaulty process index.
• Lemma 4: If there’s a common path covering of the subtree rooted at any node x, then x is common

• Proof:
 – By induction, from the leaves up.
 – “Common-ness” propagates upward.

• Lemmas 3 and 4 together imply that the root is common.
• So all nonfaulty processes get the same $\text{newval}(\lambda)$.
• Yields Agreement.
• As for EIG for stopping agreement:
 – Time: $f + 1$
 – Communication: $O(n^{f+1})$

• But now, also requires $n > 3f$ processors
• $n > 3f$ is necessary!
 – Holds for any n-node (undirected) graph.
 – For graphs with low connectivity, may need even more processors.
 – Number of failures that can be tolerated for Byzantine agreement in an undirected graph G has been completely characterized, in terms of number of nodes and connectivity.

• Theorem 1: 3 processes cannot solve BA with 1 possible failure.
• By contradiction. Suppose algorithm A, consisting of procs 1, 2, 3, solves BA with 1 possible fault.

• Construct new system S from 2 copies of A, with initial values:

• What is S?
 – A synchronous system of some kind.
 – Not required to satisfy any particular correctness conditions.
 – Not necessarily a correct BA algorithm for the 6-node ring.
 – Just a synchronous system, which runs and does something.
 – We’ll use it to get our contradiction.
• Consider 2 and 3 in S:
• Looks to them like:
 – They’re in A, with a faulty process 1.
 – 1 emulates 1’-2’-3’-1 from S.
• In A, 2 and 3 must decide 0
• So by indistinguishability, they decide 0 in S also.
• Now consider 1' and 2' in S.
• Looks to them like:
 – They’re in A with a faulty process 3.
 – 3 emulates 3’-1-2-3 from S.
• They must decide 1 in A, so decide 1 in S also.
Finally, consider 3 and 1’ in S:

- Looks to them like:
 - They’re in A, with a faulty process 2.
 - 2 emulates 2’-3’-1-2 from S.

- In A, 3 and 1 must agree
- So by indistinguishability, 3 and 1’ agree in S also.

- But we already know that process 1’ decides 1 and process 3 decides 0, in S.
- Contradiction!
Theorem 2: n processes can’t solve BA, if $n \leq 3f$.

Proof:
- Similar construction, with f processes treated as a group.
- Or, can use a reduction:
 - Show how to transform a solution for $n \leq 3f$ to a solution for 3 vs. 1.
 - Since 3 vs. 1 is impossible, we get a contradiction.

Consider $n = 2$ as a special case:
- $n = 2, f = 1$
 - Each could be faulty, requiring the other to decide on its own value.
 - Or both nonfaulty, which requires agreement, contradiction.

So from now on, assume $3 \leq n \leq 3f$.

Assume a Byzantine Agreement algorithm A for (n, f).

Transform it to a BA algorithm B for $(3, 1)$.
• Algorithm:
 – Partition A-processes into groups ℓ_1, ℓ_2, ℓ_3, where $1 \leq |\ell_1|, |\ell_2|, |\ell_3| \leq f$.
 – Each B_i process simulates the entire ℓ_i group.

 – B_i initializes all processes in ℓ_i with B_i’s initial value.
 – At each round, B_i simulates sending messages:
 – If any simulated process decides, B_i decides the same (use any).

• Show B satisfies correctness conditions:
 – Consider any execution of B with at most 1 fault.
 – Simulates an execution of A with at most f faults.
 – Correctness conditions must hold in the simulated execution of A.
 – Show these all carry over to B’s execution.
• **Termination:**
 – If B_i is nonfaulty in B, then it simulates only nonfaulty processes of A (at least one).
 – Those terminate, so B_i does also.

• **Agreement:**
 – If B_i, B_j are nonfaulty processes of B, they simulate only nonfaulty processes of A.
 – Agreement in A implies all these agree.
 – So B_i, B_j agree.

• **Validity:**
 – If all nonfaulty processes of B start with v, then so do all nonfaulty processes of A.
 – Then validity of A implies that all nonfaulty A processes decide v, so the same holds for B.
• $n > 3f$ isn’t the whole story:
 – 4 processes, can’t tolerate 1 fault:

• Theorem 3: BA is solvable in an n-node graph G, tolerating f faults, if and only if both of the following hold:
 – $n > 3f$, and
 – $\text{conn}(G) > 2f$.

• $\text{conn}(G)$ = minimum number of nodes whose removal results in either a disconnected graph or a 1-node graph.

• Examples:
Theorem 3: BA is solvable in an \(n \)-node graph \(G \), tolerating \(f \) faults, if and only if \(n > 3f \) and \(\text{conn}(G) > 2f \).

Proof ("if"):

- Suppose both hold.
- Key is to emulate reliable communication from any node \(i \) to any other node \(j \).
- Rely on Menger’s Theorem, which says that a graph is \(c \)-connected (that is, has \(\text{conn} \geq c \)) if and only if each pair of nodes is connected by \(\geq c \) node-disjoint paths.
- Since \(\text{conn}(G) \geq 2f + 1 \), we have \(\geq 2f + 1 \) node-disjoint paths between \(i \) and \(j \).
- To send message, send on all these paths (assumes graph is known).
- Majority must be correct, so take majority message.
Theorem 3: BA is solvable in an \(n \)-node graph \(G \), tolerating \(f \) faults, if and only if \(n > 3f \) and \(\text{conn}(G) > 2f \).

Proof (“only if”):
- We already showed \(n > 3f \); remains to show \(\text{conn}(G) > 2f \).
- Show key idea with simple case, \(\text{conn} = 2, f = 1 \).
- Canonical example:
 - Disconnect 1 and 3 by removing 2 and 4
- Proof by contradiction.
- Assume some algorithm A that solves BA in this canonical graph, tolerating 1 failure.
• Now construct S from two copies of A.

• Consider 1, 2, and 3 in S:
 – Looks to them like they’re in A, with a faulty process 4.
 – In A, 1, 2, and 3 must decide 0.
 – So they decide 0 in S also.

• Similarly, 1’, 2’, and 3’ decide 1 in S.

Proof (conn=2, 1 failure)
• Finally, consider 3’, 4’, and 1 in S:

 – Looks to them like they’re in A, with a faulty process 2.
 – In A, they must agree, so they also agree in S.
 – But 3’ decides 0 and 1 decides 1 in S, contradiction.

• Therefore, we can’t solve BA in canonical graph, with 1 failure.

• As before, can generalize to $\text{conn}(G) \leq 2f$, or use a reduction.
The bounds $n > 3f$ and $\text{conn} > 2f$ are fundamental for consensus-style problems with Byzantine failures.

Same bounds hold, in synchronous settings with f Byzantine faulty processes, for:
- Byzantine Firing Squad synchronization problem
- Weak Byzantine Agreement
- Approximate agreement

Also, in timed (partially synchronous settings), for maintaining clock synchronization.

Proofs used similar methods.