Distributed Systems

Minimum spanning trees

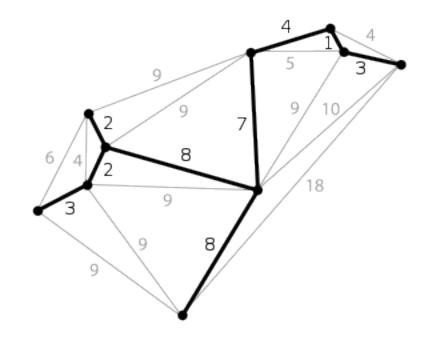
Rik Sarkar

University of Edinburgh Fall 2016

Minimum spanning trees

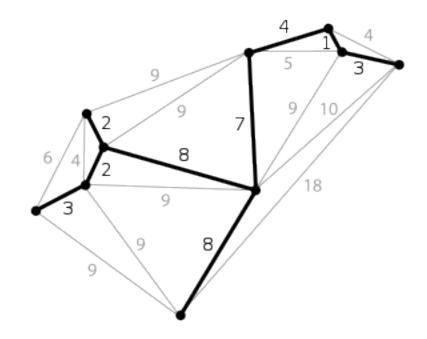
Ref: Wiki

- Definition (in an undirected graph):
 - A spanning tree that has the smallest possible total weight of edges



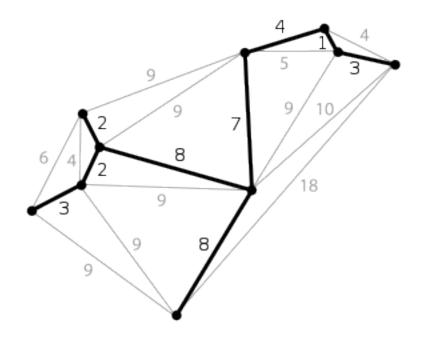
Minimum spanning trees

- Useful in broadcast:
 - Using a flood on the MST has the smallest possible cost on the network



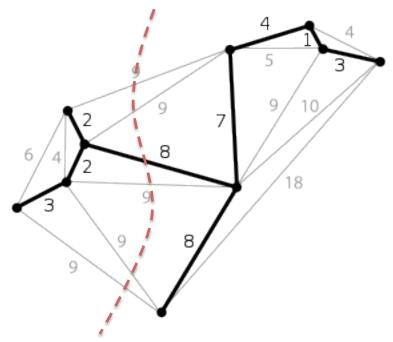
Minimum spanning trees

- Useful in point to point routing:
 - Minimizes the max weight on the path between any two nodes



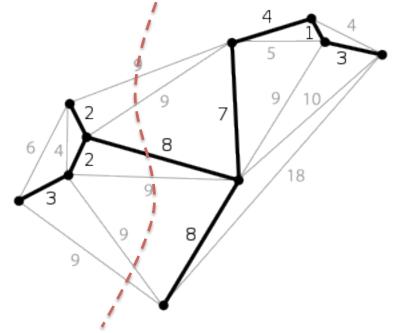
Property: Cut optimality

- Every edge of the MST partitions the graph into two disjoint sets (creates a cut)
 - Each set is individually connected by MST edges



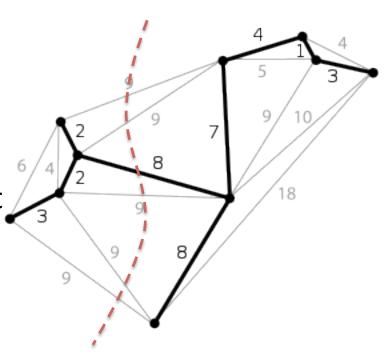
Property: Cut optimality

- Every edge of the MST partitions the graph into two disjoint sets (creates a cut)
 - Each set is individually connected by MST edges
- No edge across the cut can have a smaller weight than the MST edge



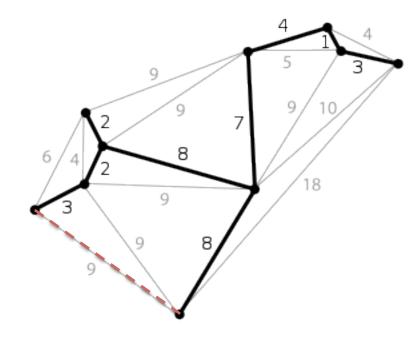
Property: Cut optimality

- Every edge of the MST partitions the graph into two disjoint sets (creates a cut)
 - Each set is individually connected by MST edges
- No edge across the cut can have a smaller weight than the MST edge
- Proof: If there was such an edge, then we can swap it for the current edge and get a tree of smaller total weight



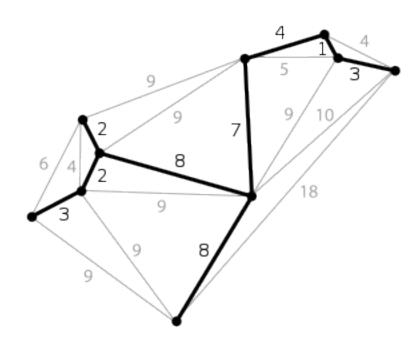
Property: Cycle optimality

- Every non-MST edge when added to MST set creates a cycle
- It must have max weight in the cycle



MST: Not necessarily unique

• Why?



MST: Not necessarily unique

- Assume:
 - All edge weights are unique

- Initialize P = {x}; Q = E
 - (x is any vertex in V)
- While P ≠ V
 - Select edge (u,v) in the cut $(P, V\P)$
 - (at the boundary of P)
 - With smallest weight
 - Add v to P

 If we search for the min weight edge each time: O(n²)

- If we use *heaps*:
 - O(m log n) [binary heap]
 - O(m + n log n) [Fibonacci heap]

Can we have an efficient distributed implementation?

- In every round, we need to find the lowest weight boundary edge.
- Use a convergecast (aggregation tree based)
 - In every round
 - For n rounds

- What is the running time?
- What is communication complexity?

- The weakness:
- Does not use the distributed computation
- Tree spreads from one point, rest of network is idle

- Works with a forest: A collection of trees
- Initially: each node is its own tree
- Sort all edges by weight
- For each tree,
 - Find the least weight boundary edge
 - Add it to the set of edges: merges two trees into one
 - Repeat until only 1 tree left

- The problem step:
 - "Find the least weight boundary edge"
- How do you know which is the boundary edge?
- Maintain id for each tree (store this at every node)
- Easy to check if end-point belong to different trees
- When merging trees, update the id of one of the trees
 - Expensive, since all nodes in the tree have to be updated

- When merging trees, update the id of one of the trees
 - Expensive, since all nodes in the tree have to be updated
- Solution: always update the id of the smaller tree (the one with fewer nodes)
- The cost for all id updates is O(n log n)

- Claim: The cost for all id updates is O(n log n)
- Proof: (by induction on levels)
 - Suppose the final list of n elements was obtained by merging two lists of h elements and n-h elements in the previous level
 - And h ≤ n/2
 - Then cost of creating final list is (for some const p):
 - Cost for creating two lists ≤ ph lg h + p(n-h)lg (n-h)
 - Cost for updating labels ≤ ph
 - Total ≤ ph lg h + p(n-h)lg (n-h) + ph
 - Total ≤ ph (lg (n/2) + 1) + p(n-h)lg (n-h)
 - ≤pn lg n
- Note: Kruskal also needs time to sort the edges initially

Ref: NL

- By Gallagher, Humblet and Spira
- Each node knows its own edges and weights

- Works in levels
- In level 0 each node is its own tree
- Each tree has a leader (leader id == tree id)
- At each level k:
 - All Leaders execute a convergecast to find the min weight boundary edge in its tree
 - It then broadcasts this in its tree so that the node that has the edge knows
 - This node informs the node on the other side, which informs its own leader

Observation 1:

- We are possibly merging more than two trees at the same time
- Problem: who is the leader of the new tree?

Observation 2:

- The merged tree is a tree of trees: it cannot have a cycle
- We can assign a direction to each edge and each node (tree) has an outgoing edge
- There must be a pair of nodes (trees) that select each-other (otherwise the merged tree is infinite)
- We select the edge used to merge these two trees
 - Select the node with higher ID to be leader
- The leader then broadcasts a message updating leader id at all nodes.

- Complexity:
- The number of nodes at each level k tree is at least 2^k
- Since starting at size 1, the number of nodes in the smallest tree at least doubles every level
- Therefore, there are at most O(log n) levels

- Complexity:
- At each level, at each tree, we use constant number of broadcasts and convergecasts
- Each level costs O(n) time
- Total costs : O(n log n) time

- Complexity:
- At each level, at each tree, we use constant number of broadcasts and convergecasts
- Each level costs O(n) messages
- Total costs : O(n log n + |E|) messages

- Non-unique edge weights
- If edges have duplicate weights
- We make them unique:
 - By ensuring that for any two edges e and e'
 - Either wt(e) < wt(e') or wt(e')<wt(e)</p>
 - By using node ids
 - Eg. If (u,v) and (u',v') have same weight, we define
 - If u<u' then wt(u,v) < wt(u'v')
 - Else if u==u', and if v<v' then wt(u,v) < wt(u'v')