Distributed Systems

Basic Algorithms
Rik Sarkar

University of Edinburgh
2016/2017

Distributed Computation

Ref: NL

How to send messages to all nodes efficiently

How to compute sums of values at all nodes
efficiently

Network as a graph
Broadcasting messages
Computing sums in a tree
Computing trees in a network
Communication complexity

Network as a graph

Network is a graph : G = (V,E)
Each vertex/node is a computer/process
Each edge is communication link between 2 nodes

Every node has a Unique identifier known to itself.

— Oftenused 1, 2,3, ..n

Every node knows its neighbors — the nodes it can reach
directly without needing other nodes to route

— Edges incident on the vertex

— For example, in LAN or WLAN, through listening to the
broadcast medium

— Or by explicitly asking: Everyone that receives this message,
please report back

But a node does not know the rest of the network

Example: Unit disk graphs

Suppose all nodes are wireless

Each can communicate with
nodes within distance .

Say,r=1

UDG is a model
Not perfect

In general, networks can be
any graph

Distributed Systems, Edinburgh, 2016

Directed graphs

* When A can send message to B, but B cannot
send message to A

* For example,in wireless transmission, if B is in
A’s range, but A is not in B’s range

Directed graphs

* When A can send message to B, but B cannot
send message to A

* Orif protocol or technology limitations
prevent B from communicating with A

Directed graphs

* Protocols more complex
* Needs more messages

Network as a graph

* Distance/cost between nodes p and g in the
network

— Number of edges on the shortest path between p and
g (when all edges are same: unweighted)

 Sometimes, edges can be weighted
— Each edge e = (a,b) has a weight w(e)

— w(e) is the cost of using the communication link e
(may be length e)

— Distance/cost between p and g is total weight of
edges on the path from p to g with least weight

Network as a graph

e Diameter
— The maximum distance between 2 nodes in the network

e Radius
— Half the diameter

e Spanning tree of a graph:
— A subgraph which is a tree, and reaches all nodes of the
graph
— If network has n nodes
* How many edges does a spanning tree have?

Computing sums in a tree

e Suppose root wants to know sum of values at

all nodes
() root

Distributed Systems, Edinburgh, 2016

Computing sums in a tree

Suppose root wants to know
sum of values at all nodes

It sends “compute” message to

d

T
d

root

| children
ney forward the message to ¢ ~

| their children (unless it is a

leaf node) A

The values move upward from \

leaves \ __ S\
Each node adds values from all

children and its own value

Sends it to its parent

Computing sums in a tree

 What can you compute
other than sums?) root

N7/

* How many messages does
it take?

e How much time does it
take?

Communication complexity

* Used to represent communication cost for
general scenarios

* Called Communication Complexity or
Asymptotic communication complexity

* Use big oh notation: O

Big oh — upper bounds

* For a system of n nodes,

e Communication
complexity c(n) is O(f(n))
means:

— There are constants a and
N, such that:

— For n>N: c(n) < a*f(n)

! a*f(n)

N
Allowing some initial irregularity, ‘c(n)’ is not
bigger than a constant times ‘f(n)’

In the long run, c(Qs)triguggs%tpmg’gdgorupgwofgster than f(n)

Examples

3n =0(?)

1000n = O(?)
n%/5=0(?)

10log n = O(?)
2n3+n+log n+ 200 = O(?)
15 =0(?)

Examples

3n =0(n)

1000n = O(n)

n%/5 = O(n?)

10log n = O(log n)

2n3+n+log n+ 200 = O(n3)

15 or any other constant= O(1)

Example 1

e ‘Star’ network
e Computing sum of all values
 Communication complexity: O(n)

Server

Example 2a

* ‘Chain’ topology network

* Simple protocol where everyone sends value
to server

e Communication complexity:?

Server

Example 2a

* ‘Chain’ topology network

* Simple protocol where everyone sends value
to server

 Communication complexity: 1+2+...+n = O(n?)

Server

Example 2b

e ‘Chain’ network

 Protocol where each node waits for sum of
previous values and sends

e Communication complexity: 1+1+...+1 = O(n)

Server

Computing sums in a tree

* How many messages does

it take? () root
- ()
e How much time does it L
take?
) ¢ >
)
@ o

Distributed Systems, Edinburgh, 2016

Global Message broadcast

 Message must reach all nodes in the network
— Different from broadcast transmission in LAN

— All nodes in a large network cannot be reached
with single transmission

Source

Global Message broadcast

 Message must reach all nodes in the network
— Different from broadcast transmission in LAN

— All nodes in a large network cannot be reached
with single transmissions

Source

Flooding for Broadcast

 The source sends a Flood message to all
neighbors

* The message has
— Type Flood

— Unique id: (source id, message seq)
— Data

Flooding for Broadcast

* The source sends a Flood message, with a
unique message id to all neighbors

* Every node p that receives a flood message m,
does the following:
— If m.id was seen before, discard m

— Otherwise, Add m.id to list of previously seen
messages and send m to all neighbors of p

Flooding for broadcast

* Storage

— Each node needs to store a list of flood ids seen
before

— If a protocol requires x floods, then each node
must store x ids

* (there is a way to reduce this. Think!)

Assumptions

* We are assuming:

— Nodes are working in synchronous communication
rounds (e.qg. transmissions occur in intervals of 1
second exactly)

— Messages from all neighbors arrive at the same
time, and processed together

— In each round, each node can successfully send 1
message to each neighbor

— Any necessary computation can be completed
before the next round

Communication complexity

* The the message/communication complexity
IS:

Communication complexity

* The the message/communication complexity
IS:

— O(]E])

Communication complexity

* The the message/communication complexity
IS:

— O(]E])

— Worst case: O(n?)

Reducing Communication
complexity (slightly)

* Node p need not send message m to any node
from which it has already received m

— Needs to keep track of which nodes have sent the
message

— Saves some Mmessages

— Does not change asymptotic complexity

Time complexity

e The number of rounds needed to reach all
nodes: diameter of G

Computing Tree from a network

* BFS tree
— The Breadth first search tree
— With a specified root node

BFS Tree

Breadth first search tree
— Every node has a parent pointer
— And zero or more child pointers

— BFS Tree construction algorithm sets these
pointers

BFS Tree Construction algorithm

* Breadth first search tree
— The root(source) node decides to construct a tree
— Uses flooding to construct a tree

— Every node p on getting the message forwards to all
neighbors

— Additionally, every node p stores parent pointer: node
from which it first received the message

* If multiple neighbors had first sent p the message in the
same round, choose parent arbitrarily. E.g. node with
smallest id

— p informs its parent of the selection
* Parent creates a child pointer to p

BFS Tree

* Property: BFS tree is a shortest path tree
— For source s and any node p

— The shortest path between s and p is contained in
the BFS tree

Time & message complexity

* Asymptotically Same as Flooding

Distributed Systems, Edinburgh, 2016

Tree based broadcast

* Send message to all nodes
using tree

— BFS tree is a spanning tree:
connects all nodes

root

* Flooding on the tree J

* Receive message from
parent, send to children

Tree based broadcast

* Simpler than flooding: send message to all
children

e Communication: Number of edges in spanning
tree: n-1

Aggregation: Find the sum of values at
all nodes

e With BFS tree

e Start from leaf nodes
— Nodes without children
— Send the value to parent
* Every other node:

— Wait for all children to report
— Sum values from children + own value
— Send to parent

Aggregation

e Without the tree

* Flood from all nodes:
— O(|E|) cost per node
— O(n*|E|) total cost: expensive

— Each node needs to store flood ids from n nodes

e Requires Q(n) storage at each node

— Good fault tolerance

* If a few nodes fail during operation, all the rest still get
some value

Aggregation

e With Tree

* Also called Convergecast

Aggregation
With Tree

Once tree is built, any node can use for broadcast
— Just flood on the tree

Any node can use for convergecast

— First flood a message on the tree requesting data
— Nodes store parent pointer

— Then receive data

What is the drawback of tree based aggregation?

Aggregation
With Tree

Once tree is built, any node can use for broadcast
— Just flood on the tree

Any node can use for convergecast
— First flood a message on the tree requesting data
— Nodes store parent pointer

— Then receive data

Fault tolerance not very good

— If a node fails, the messages in its subtree will be lost
— Will need to rebuild the tree for future operations

BFS trees can be used for routing

* From each node, create a separate BFS tree

* Each node stores a parent pointer
corresponding to each BFS tree

* Acts as routing table 13 !
, , 1 1 2 3 2

5 5 5 , 3 3 3

4 3 4 4 — .

Qo 5 4 5

3

u B W
w w w

~ B B b

BFS trees can be used for routing

From each node, create a separate BFS tree

Each node stores a parent pointer
corresponding to each BFS tree

Acts as routing table
O(n*|E|) message complexity in computing
routing table

Observation on complexity

e Suppose c(n)=n
— Then c(n) is O(n) and also O(n?)
— Although, when we ask for the complexity, we

are looking for the tightest possible bound, which
is O(n)

Big Q — lower bounds

* For a system of n nodes,

e Communication
complexity c(n) is Q(f(n))
means:

— There are constants a and
N, such that:

— For n>N: b*f(n) < c(n)

Allowing some initial irregularity, ‘c(n)’ is not
smaller than a constant times ‘f(n)’

In the long run, f(n) does no’ttogguorng(flgster than c(n)

ystems

Big O — tight bounds: both O and O

* For a system of n nodes,

—>
Q)
*
—
——
>
S

e Communication
complexity c(n) is ©(f(n))
means:

— There are constants a,b
and N, such that:

— For n>N:
b*f(n)<c(n)<a*f(n) N

Allowing some initial irregularity, c(n) and f(n) are
Within constant factors of each other.

In the long run, c(n) grows at same rate as f(n),
upto constant factos e >vtems Fanbureh 2016

Bit complexity of communication

We have assumed that each communication is 1 message,
and we counted the messages

Sometimes, communication is evaluated by bit complexity
— the number of bits communicated

This is different from message complexity because a
message may have number of bits that depend on n or |E|

For example, node ids in message have size O(log n)

In practice this is may not be critical since log n is much
smaller than packet sizes, so it does not change the number
of packets communicated

But depending on what other data the algorithm is
communicating, sizes of messages may matter

Size of ids

* |[n a network of n nodes

 Each node id needs O(log n) (that is, both
O(log n) and Q(log n)) bits for storage
— The binary representation of n needs log, n bits

() —since we need at least this many bits

— May vary by constant factors depending on base
of logarithm

Computing Trees:

 What if the edges have weights?

Aggregation using Trees:

 What if the edges have weights?

* The cost may not be O(n) since weights can be
higher

* How to get the best performance?

Minimum spanning tree is

A spanning tree (reaches all nodes)
With minimum possible total weight

How can we compute a minimum spanning
tree efficiently in a distributed system?

(remember, a node knows only its neighbors
and edge weights)

