
Distributed	Systems	
	

Basic	Algorithms	
Rik	Sarkar	

	
University	of	Edinburgh	

2016/2017	

Distributed	ComputaEon	

•  How	to	send	messages	to	all	nodes	efficiently	
•  How	to	compute	sums	of	values	at	all	nodes	
efficiently	

•  Network	as	a	graph	
•  BroadcasEng	messages	
•  CompuEng	sums	in	a	tree	
•  CompuEng	trees	in	a	network	
•  CommunicaEon	complexity	

Distributed	Systems,	Edinburgh,	2016	

Ref:	NL	

Network	as	a	graph	
•  Network	is	a	graph	:	G	=	(V,E)	
•  Each	vertex/node	is	a	computer/process	
•  Each	edge	is	communicaEon	link	between	2	nodes	
•  Every	node	has	a	Unique	idenEfier	known	to	itself.		

–  OVen	used	1,	2,	3,	…	n	
•  Every	node	knows	its	neighbors	–	the	nodes	it	can	reach	

directly	without	needing	other	nodes	to	route	
–  Edges	incident	on	the	vertex	
–  For	example,	in	LAN	or	WLAN,	through	listening	to	the	
broadcast	medium	

–  Or	by	explicitly	asking:	Everyone	that	receives	this	message,	
please	report	back	

•  But	a	node	does	not	know	the	rest	of	the	network	

Distributed	Systems,	Edinburgh,	2016	

Example:	Unit	disk	graphs	

•  Suppose	all	nodes	are	wireless	
•  Each	can	communicate	with	
nodes	within	distance	r.	

•  Say,	r	=	1	

•  UDG	is	a	model	
•  Not	perfect	

•  In	general,	networks	can	be	
any	graph	

Distributed	Systems,	Edinburgh,	2016	

Directed	graphs	

•  When	A	can	send	message	to	B,	but	B	cannot	
send	message	to	A	

•  For	example,	in	wireless	transmission,	if	B	is	in	
A’s	range,	but	A	is	not	in	B’s	range	

Distributed	Systems,	Edinburgh,	2016	

B	A	

Directed	graphs	

•  When	A	can	send	message	to	B,	but	B	cannot	
send	message	to	A	

•  Or	if	protocol	or	technology	limitaEons	
prevent	B	from	communicaEng	with	A	

Distributed	Systems,	Edinburgh,	2016	

B	A	

Directed	graphs	

•  Protocols	more	complex	
•  Needs	more	messages	

Distributed	Systems,	Edinburgh,	2016	

Network	as	a	graph	
•  Distance/cost	between	nodes	p	and	q	in	the	
network	
– Number	of	edges	on	the	shortest	path	between	p	and	
q	(when	all	edges	are	same:	unweighted)	

•  SomeEmes,	edges	can	be	weighted	
–  Each	edge	e	=	(a,b)	has	a	weight	w(e)	
– w(e)	is	the	cost	of	using	the	communicaEon	link	e	
(may	be	length	e)	

– Distance/cost	between	p	and	q	is	total	weight	of	
edges	on	the	path	from	p	to	q		with	least	weight	

Distributed	Systems,	Edinburgh,	2016	

Network	as	a	graph	

•  Diameter	
–  The	maximum	distance	between	2	nodes	in	the	network	

•  Radius	
–  Half	the	diameter	

•  Spanning	tree	of	a	graph:	
–  A	subgraph	which	is	a	tree,	and	reaches	all	nodes	of	the	
graph	

–  If	network	has	n	nodes	
•  How	many	edges	does	a	spanning	tree	have?	

Distributed	Systems,	Edinburgh,	2016	

CompuEng	sums	in	a	tree	

•  Suppose	root	wants	to	know	sum	of	values	at	
all	nodes	

Distributed	Systems,	Edinburgh,	2016	

root	

CompuEng	sums	in	a	tree	
•  Suppose	root	wants	to	know	
sum	of	values	at	all	nodes	

•  It	sends	“compute”	message	to	
all	children	

•  They	forward	the	message	to	
all	their	children	(unless	it	is	a	
leaf	node)	

•  The	values	move	upward	from	
leaves	

•  Each	node	adds	values	from	all	
children	and	its	own	value	

•  Sends	it	to	its	parent	

Distributed	Systems,	Edinburgh,	2016	

root	

CompuEng	sums	in	a	tree	

•  What	can	you	compute	
other	than	sums?	

•  How	many	messages	does	
it	take?		

•  How	much	Eme	does	it	
take?	

Distributed	Systems,	Edinburgh,	2016	

root	

CommunicaEon	complexity	

•  Used	to	represent	communicaEon	cost	for	
general	scenarios	

•  Called	CommunicaEon	Complexity	or	
AsymptoEc	communicaEon	complexity	

•  Use	big	oh	notaEon:	O	

Distributed	Systems,	Edinburgh,	2016	

Big	oh	–	upper	bounds	
•  For	a	system	of	n	nodes,	
•  CommunicaEon	
complexity	c(n)	is	O(f(n))	
means:	
– There	are	constants	a	and	
N,	such	that:	

– For	n>N:	c(n)	<	a*f(n)	

f(n)	

c(n)	

N	
Allowing	some	iniEal	irregularity,	‘c(n)’	is	not		
bigger	than	a	constant	Emes	‘f(n)’	
	
In	the	long	run,	c(n)	does	not	grow	faster	than	f(n)	

a*f(n)	

Distributed	Systems,	Edinburgh,	2016	

Examples	

•  3n	=	O(?)	
•  1000n	=	O(?)	
•  n2/5	=	O(?)	
•  10log	n	=	O(?)	
•  2n3+n+log	n+	200	=	O(?)	
•  15	=	O(?)	

Distributed	Systems,	Edinburgh,	2016	

Examples	

•  3n	=	O(n)	
•  1000n	=	O(n)	
•  n2/5	=	O(n2)	
•  10log	n	=	O(log	n)	
•  2n3+n+log	n+	200	=	O(n3)	
•  15	or	any	other	constant=	O(1)	

Distributed	Systems,	Edinburgh,	2016	

Example	1	

•  ‘Star’	network	
•  CompuEng	sum	of	all	values	
•  CommunicaEon	complexity:	O(n)	

Server	

Distributed	Systems,	Edinburgh,	2016	

Example	2a	
•  ‘Chain’	topology	network	
•  Simple	protocol	where	everyone	sends	value	
to	server	

•  CommunicaEon	complexity:?	

Server	

Distributed	Systems,	Edinburgh,	2016	

Example	2a	
•  ‘Chain’	topology	network	
•  Simple	protocol	where	everyone	sends	value	
to	server	

•  CommunicaEon	complexity:	1+2+…+n	=	O(n2)	

Server	

Distributed	Systems,	Edinburgh,	2016	

Example	2b	
•  ‘Chain’	network	
•  Protocol	where	each	node	waits	for	sum	of	
previous	values	and	sends		

•  CommunicaEon	complexity:	1+1+…+1	=	O(n)	

Server	

Distributed	Systems,	Edinburgh,	2016	

CompuEng	sums	in	a	tree	

•  How	many	messages	does	
it	take?		

•  How	much	Eme	does	it	
take?	

Distributed	Systems,	Edinburgh,	2016	

root	

Global	Message	broadcast	
•  Message	must	reach	all	nodes	in	the	network	
– Different	from	broadcast	transmission	in	LAN	
– All	nodes	in	a	large	network	cannot	be	reached	
with	single	transmission	

Distributed	Systems,	Edinburgh,	2016	

Source	

Global	Message	broadcast	
•  Message	must	reach	all	nodes	in	the	network	
– Different	from	broadcast	transmission	in	LAN	
– All	nodes	in	a	large	network	cannot	be	reached	
with	single	transmissions	

Distributed	Systems,	Edinburgh,	2016	

Source	

Flooding	for	Broadcast	

•  The	source	sends	a	Flood	message	to	all	
neighbors	

•  The	message	has	
– Type	Flood	
– Unique	id:	(source	id,	message	seq)	
– Data	

Distributed	Systems,	Edinburgh,	2016	

Flooding	for	Broadcast	

•  The	source	sends	a	Flood	message,	with	a	
unique	message	id	to	all	neighbors	

•  Every	node	p	that	receives	a	flood	message	m,	
does	the	following:	
–  If	m.id	was	seen	before,	discard	m	
– Otherwise,	Add	m.id	to	list	of	previously	seen	
messages	and	send	m	to	all	neighbors	of	p	

Distributed	Systems,	Edinburgh,	2016	

Flooding	for	broadcast 		

•  Storage	
– Each	node	needs	to	store	a	list	of	flood	ids	seen	
before	

–  If	a	protocol	requires	x	floods,	then	each	node	
must	store	x	ids		
•  (there	is	a	way	to	reduce	this.	Think!)	

Distributed	Systems,	Edinburgh,	2016	

AssumpEons	

•  We	are	assuming:	
– Nodes	are	working	in	synchronous	communicaDon	
rounds	(e.g.	transmissions	occur	in	intervals	of	1	
second	exactly)	

– Messages	from	all	neighbors	arrive	at	the	same	
Eme,	and	processed	together	

–  In	each	round,	each	node	can	successfully	send	1	
message	to	each	neighbor	

– Any	necessary	computaEon	can	be	completed	
before	the	next	round		

Distributed	Systems,	Edinburgh,	2016	

CommunicaEon	complexity	

•  The	the	message/communicaEon	complexity	
is:	

Distributed	Systems,	Edinburgh,	2016	

CommunicaEon	complexity	

•  The	the	message/communicaEon	complexity	
is:	
– O(|E|)	

Distributed	Systems,	Edinburgh,	2016	

CommunicaEon	complexity	

•  The	the	message/communicaEon	complexity	
is:	
– O(|E|)	
– Worst	case:	O(n2)	

Distributed	Systems,	Edinburgh,	2016	

Reducing	CommunicaEon		
complexity	(slightly)	

•  Node	p	need	not	send	message	m	to	any	node	
from	which	it	has	already	received	m	
– Needs	to	keep	track	of	which	nodes	have	sent	the	
message	

– Saves	some	messages	
– Does	not	change	asymptoEc	complexity	

Distributed	Systems,	Edinburgh,	2016	

Time	complexity	

•  The	number	of	rounds	needed	to	reach	all	
nodes:	diameter	of	G	

Distributed	Systems,	Edinburgh,	2016	

CompuEng	Tree	from	a	network	

•  BFS	tree	
– The	Breadth	first	search	tree	
– With	a	specified	root	node	

Distributed	Systems,	Edinburgh,	2016	

BFS	Tree	

•  Breadth	first	search	tree	
– Every	node	has	a	parent	pointer	
– And	zero	or	more	child	pointers	

– BFS	Tree	construcEon	algorithm	sets	these	
pointers	

Distributed	Systems,	Edinburgh,	2016	

BFS	Tree	ConstrucEon	algorithm	
•  Breadth	first	search	tree	
–  The	root(source)	node	decides	to	construct	a	tree	
– Uses	flooding	to	construct	a	tree	
–  Every	node	p	on	gepng	the	message	forwards	to	all	
neighbors	

– AddiEonally,	every	node	p	stores	parent	pointer:	node	
from	which	it	first	received	the	message	
•  If	mulEple	neighbors	had	first	sent	p	the	message	in	the	
same	round,	choose	parent	arbitrarily.	E.g.	node	with	
smallest	id	

–  p	informs	its	parent	of	the	selecEon	
•  Parent	creates	a	child	pointer	to	p	

Distributed	Systems,	Edinburgh,	2016	

BFS	Tree	

•  Property:	BFS	tree	is	a	shortest	path	tree	
– For	source	s	and	any	node	p	
– The	shortest	path	between	s	and	p	is	contained	in	
the	BFS	tree	

Distributed	Systems,	Edinburgh,	2016	

Time	&	message	complexity	

•  AsymptoEcally	Same	as	Flooding	

Distributed	Systems,	Edinburgh,	2016	

root	

Tree	based	broadcast	

•  Send	message	to	all	nodes	
using	tree	
– BFS	tree	is	a	spanning	tree:	
connects	all	nodes	

•  Flooding	on	the	tree	

•  Receive	message	from	
parent,	send	to	children	

Distributed	Systems,	Edinburgh,	2016	

root	

Tree	based	broadcast	

•  Simpler	than	flooding:	send	message	to	all	
children	

•  CommunicaEon:	Number	of	edges	in	spanning	
tree:	n-1	

Distributed	Systems,	Edinburgh,	2016	

AggregaEon:	Find	the	sum	of	values	at	
all	nodes	

•  With	BFS	tree	

•  Start	from	leaf	nodes	
– Nodes	without	children	
– Send	the	value	to	parent	

•  Every	other	node:	
– Wait	for	all	children	to	report	
– Sum	values	from	children	+	own	value	
– Send	to	parent	

Distributed	Systems,	Edinburgh,	2016	

AggregaEon	

•  Without	the	tree	
•  Flood	from	all	nodes:	
– O(|E|)	cost	per	node	
– O(n*|E|)	total	cost:	expensive	
– Each	node	needs	to	store	flood	ids	from	n	nodes	

•  Requires	Ω(n)	storage	at	each	node	
– Good	fault	tolerance	

•  If	a	few	nodes	fail	during	operaEon,	all	the	rest	sEll	get	
some	value	

Distributed	Systems,	Edinburgh,	2016	

AggregaEon	

•  With	Tree	

•  Also	called	Convergecast	

Distributed	Systems,	Edinburgh,	2016	

AggregaEon	
•  With	Tree	

•  Once	tree	is	built,	any	node	can	use	for	broadcast	
–  Just	flood	on	the	tree	

•  Any	node	can	use	for	convergecast	
–  First	flood	a	message	on	the	tree	requesEng	data	
– Nodes	store	parent	pointer	
–  Then	receive	data	

•  What	is	the	drawback	of	tree	based	aggregaEon?	

Distributed	Systems,	Edinburgh,	2016	

AggregaEon	
•  With	Tree	

•  Once	tree	is	built,	any	node	can	use	for	broadcast	
–  Just	flood	on	the	tree	

•  Any	node	can	use	for	convergecast	
–  First	flood	a	message	on	the	tree	requesEng	data	
–  Nodes	store	parent	pointer	
–  Then	receive	data	

•  Fault	tolerance	not	very	good	
–  If	a	node	fails,	the	messages	in	its	subtree	will	be	lost	
–  Will	need	to	rebuild	the	tree	for	future	operaEons	

Distributed	Systems,	Edinburgh,	2016	

BFS	trees	can	be	used	for	rouEng	
•  From	each	node,	create	a	separate	BFS	tree	
•  Each	node	stores	a	parent	pointer	
corresponding	to	each	BFS	tree	

•  Acts	as	rouEng	table	

Distributed	Systems,	Edinburgh,	2016	

1	 4	

2	 4	

3	 4	

4	 4	

1	 3	

2	 3	

3	 3	

5	 5	

1	 1	

2	 2	

4	 4	

5	 4	

2	 2	

3	 3	

4	 3	

5	 3	1	

2	

4	

3	

5	

1	 1	

3	 3	

4	 3	

5	 3	 Distributed	Systems,	Edinburgh,	2014	 45	

BFS	trees	can	be	used	for	rouEng	
•  From	each	node,	create	a	separate	BFS	tree	
•  Each	node	stores	a	parent	pointer	
corresponding	to	each	BFS	tree	

•  Acts	as	rouEng	table	
•  O(n*|E|)	message	complexity	in	compuEng	
rouEng	table	

Distributed	Systems,	Edinburgh,	2014	 46	
Distributed	Systems,	Edinburgh,	2016	

ObservaEon	on	complexity		

•  Suppose	c(n)=n	
– Then	c(n)	is	O(n)	and	also	O(n2)	
–  	Although,	when	we	ask	for	the	complexity,	we	
are	looking	for	the	Eghtest	possible	bound,	which	
is	O(n)	

	

Distributed	Systems,	Edinburgh,	2016	

Big	Ω	–	lower	bounds	
•  For	a	system	of	n	nodes,	
•  CommunicaEon	
complexity	c(n)	is	Ω(f(n))	
means:	
– There	are	constants	a	and	
N,	such	that:	

– For	n>N:		b*f(n)	<	c(n)	

f(n)	
c(n)	

N	
Allowing	some	iniEal	irregularity,	‘c(n)’	is	not		
smaller	than	a	constant	Emes	‘f(n)’	
	
In	the	long	run,	f(n)	does	not	grow	faster	than	c(n)	

b*f(n)	

Distributed	Systems,	Edinburgh,	2016	

Big	θ	–	Eght	bounds:	both	O	and	Ω	
•  For	a	system	of	n	nodes,	
•  CommunicaEon	
complexity	c(n)	is	θ(f(n))	
means:	
– There	are	constants	a,b	
and	N,	such	that:	

– For	n>N:	
b*f(n)<c(n)<a*f(n)	

f(n)	
c(n)	

N	
Allowing	some	iniEal	irregularity,	c(n)	and	f(n)	are	
Within	constant	factors	of	each	other.	
In	the	long	run,	c(n)	grows	at	same	rate	as	f(n),	
upto	constant	factors.		

b*f(n)	

a*f(n)	

Distributed	Systems,	Edinburgh,	2016	

Bit	complexity	of	communicaEon	
•  We	have	assumed	that	each	communicaEon	is	1	message,	

and	we	counted	the	messages	
•  SomeEmes,	communicaEon	is	evaluated	by	bit	complexity	

–	the	number	of	bits	communicated	
•  This	is	different	from	message	complexity	because	a	

message	may	have	number	of	bits	that	depend	on	n	or	|E|	
•  For	example,	node	ids	in	message	have	size	Θ(log	n)	

•  In	pracEce	this	is	may	not	be	criEcal	since	log	n	is	much	
smaller	than	packet	sizes,	so	it	does	not	change	the	number	
of	packets	communicated	

•  But	depending	on	what	other	data	the	algorithm	is	
communicaEng,	sizes	of	messages	may	maxer	

Distributed	Systems,	Edinburgh,	2016	

Size	of	ids	

•  In	a	network	of	n	nodes	
•  Each	node	id	needs	Θ(log	n)	(that	is,	both	
O(log	n)	and	Ω(log	n))	bits	for	storage	
– The	binary	representaEon	of	n	needs	log2	n	bits	

•  Ω	–	since	we	need	at	least	this	many	bits	
– May	vary	by	constant	factors	depending	on	base	
of	logarithm	

Distributed	Systems,	Edinburgh,	2016	

CompuEng	Trees:	

•  What	if	the	edges	have	weights?		

Distributed	Systems,	Edinburgh,	2016	

AggregaEon	using	Trees:	

•  What	if	the	edges	have	weights?		
•  The	cost	may	not	be	O(n)	since	weights	can	be	
higher	

•  How	to	get	the	best	performance?	

Distributed	Systems,	Edinburgh,	2016	

Minimum	spanning	tree	is	

•  A	spanning	tree	(reaches	all	nodes)	
•  With	minimum	possible	total	weight	

•  How	can	we	compute	a	minimum	spanning	
tree	efficiently	in	a	distributed	system?	

•  (remember,	a	node	knows	only	its	neighbors	
and	edge	weights)	

Distributed	Systems,	Edinburgh,	2016	

