
Distributed Systems 
 

Operating Systems

Björn Franke

University of Edinburgh
2016/2017

Overview

• Operating Systems
• Networked Operating Systems
• Distributed Operating Systems
• Virtualisation
• Current Trends

2

Operating System

3

Distributed Systems, Edinburgh, 2016/17

Operating System

• What is an operating system?
• An operating system is a resource manager
• Provides an abstract computing interface
• OS arbitrates resource usage between processes
– CPU, memory, filesystem, network, keyboard,

mouse, monitor
– Other hardware

• This makes it possible to have multiple processes in
the same system
– If two processes ask for use of same resource OS

decides who gets is when, how much etc.

4

Distributed Systems, Edinburgh, 2016/17

Operating System

• How OS handles different resources
• Memory:

– Each process is given a different part of memory to use, they
cannot access other’s memory

– If it needs more memory, OS will allocate from unallocated
memory store

• Filesystem
– OS checks that process has rights to read/write the file
– Makes sure that 2 processes are not writing the same file

• Network:
– OS receives messages from processes, sends them to network

card one at a time
– When messages are received, OS delivers to suitable

processes

5

Virtual Memory

6

Kernel/User Mode Operation

7

Distributed Systems, Edinburgh, 2016/17

Operating System

• OS makes processes oblivious of
environment

• Process does not know details of hardware
• Process does not know about other

processes (unless they communicate with
each-other)

8

Distributed Systems, Edinburgh, 2016/17

Threads

9

Distributed Systems, Edinburgh, 2016/17

Benefits of Threads

• Responsiveness: even if part of program is blocked or
performing lengthy operation multithreading allow a
program to continue.

• Resource Sharing: threads share the memory &
resources of the process within the same address space.

• Economy: Allocating memory & resources for process
creation is costly. Threads share resources of the
process to which it belongs. Create and context switch
threads is more economical.

• Utilisation of multicore architectures: In multicore
system, threads running in parallel on different cores.

10

Distributed Systems, Edinburgh, 2016/17

Networked OS (any standard OS)
• A networked OS is aware that it is connected to the network
• Every node has an OS running
• Every node manages the resources at that node
• A process can request communication to processes in other

nodes
– It has to be explicitly aware that it is requesting service at at

different node
– And which node it is requesting (eg. I.P. address)
– So it also has to know which services/resources are available in the

network
• A process cannot request resources in control of a different

computer
• It has to communicate with a process on that computer and

request it to do the job
• Distributed computing has to be done explicitly

11

Networked Operating System

12

Distributed Systems, Edinburgh, 2016/17

Distributed Operating System

• OSes running on the different computers act like a single OS
• Process does not get to know (or need to know) that other

resources/processes are at other computers
– Process gets input/output from hardware X, which can be

on any computer
– Process A communicates with process B the same way

whether they are on same computer or not
– OS takes care of using the network if needed

• A process may be running on a different computer from
where it was started. Processes can be moved among
different computers

• The “distributed” nature of the system is hidden from the
processes

• The OS manages all the “distributed” aspects

13

Distributed Operating System

14

Distributed Operating System

15

Distributed Systems, Edinburgh, 2016/17

Distributed OS

• One interface to all resources in the network

• Regular program can be made to run in a
distributed fashion

• Easier to program applications that make use
of networked resources

• Or is it?

16

Distributed Systems, Edinburgh, 2016/17

Problems with Distributed OS

• What happens if part of the network fails, and
processes are separated into two sets?
– Now we have to tell processes that the network has

failed, and process has to take action
– What if some OS-processes were moved elsewhere?

• Suppose we start processes A and B on the
same computer
– OS moves them to different computers
– But A and B communicate a lot, so it would have

been efficient to have them on the same
computer!

17

Distributed Systems, Edinburgh, 2016/17

Problems with Distributed OS

• Access to offsite resources
– Has to be through explicit network connection
– All computers in the world cannot be in same

system!

• Adding new nodes to a distributed computing
– May be part of a different instance of the OS
– We will still need explicit connections

• Distributed OS does not help a lot with
distributed computing

18

Distributed Systems, Edinburgh, 2016/17

Problems with Distributed OS

• A network/computer failure means part of the OS failed
– Hard to design OS with tolerance to such failures

• Distributed OS has to allow for lots of different
possibilities in distributed computing
– Harder to design
– In fact, it is not possible to allow for all different possibilities

• “Distributed computing” means different things in
different cases

• Better to let the application programmer decide how it
will be distributed, and how to handle communication,
failure etc

• OS provides only the basic infrastructure

19

Distributed Systems, Edinburgh, 2016/17

Networked OS vs Distributed OS

• As a result, we do not have any
distributed OS in regular use

• Networked OS are popular
• Provide communication facilities
• Let software decide how they want to

execute distributed computation
– More flexibility
– Failure etc are application’s responsibility
– OS continues to do basic tasks

20

Distributed Systems, Edinburgh, 2016/17

Distributed Computation  
and Networked OS

• Use distributed algorithms at the application
layer (e.g. Apache Ignite) for
– Synchronization
– Consistent ordering
– Mutual Exclusion
– Leader election
– Failure detection
– Multicast
– Etc..

• And design distributed computing applications
• Different applications will need different sets of

features

21

Virtualisation

22

Virtualisation

• Multiple operating system instances to run concurrently
within virtual machines on a single computer,
dynamically partitioning and sharing the available physical
resources such as CPU, storage, memory and I/O devices.

• Hosted or a hypervisor architecture.
• Hosted architecture installs and runs the virtualization

layer as an application on top of an operating system
• Hypervisor (bare-metal) architecture installs the

virtualization layer directly on a clean x86-based
system.
• Direct hardware access: more efficient, greater

scalability, robustness and performance

23

Distributed Systems, Edinburgh, 2016/17

Virtualisation

• Sandboxing
• Testing
• Backup
• Fault-tolerance
• Migration
• Consolidation
• …

24

Distributed Systems, Edinburgh, 2016/17

Virtualisation & Distributed Computing

• Consider a server farm
• Many different servers are running
• Instead of giving a physical server to

each, many server farms consist of real
servers running virtual machines

• For example, renting a server to host a
web site is likely to give you a VM based
server

25

Distributed Systems, Edinburgh, 2016/17

Virtualisation & Distributed Computing

• Advantages: more flexibility
– Multiple VMs on same computer
• Need fewer physical machines

– Easier to turn on/off
– Easier to backup
– VMs can be moved from one computer to

another while preserving state
• Useful when the work load changes, some servers

need more computation, others need less..

26

Distributed Systems, Edinburgh, 2016/17

Virtualisation & Distributed Computing

• This is not a good strategy for CPU
intensive computation such a large data
mining

• Because running a large computation in a
virtual machine can be inefficient

• However, many systems need computation
running all the time, but not so intensively

• Virtualisation is most useful when
flexibility is critical

27

Distributed Systems, Edinburgh, 2016/17

Current Trends

• Mobile
– Heavily contested area
– Adaptation to mobility
– Harder to network when moving
– Adaptation to low energy system
– Different style of user interaction
– Needs better synchronization across multiple

mobile user devices

28

Distributed Systems, Edinburgh, 2016/17

Current Trends

• Sensor networks, Internet of Things
– For sensor networks
– TinyOS, LiteOS, Contiki
– Small, low power sensor devices
– Needs efficient operation
– Needs specialization to process and handle

sensor data and related operations in place of
application interface

29

Distributed Systems, Edinburgh, 2016/17

Current Trends

• Embedded systems
– Computers all around us, in every device/

machine
– Needs OS and Distributed Computing, since

they need to communicate with each-other
– Adaptation to low power, low resource

environment
– Has to run without supervision/interaction

30

