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Non-stable Predicates

• Where snapshots are not useful 
• Non-stable predicates, e.g.  
–Was this file opened at some time? 
–Was x1-x2 < δ ever? 
–Was the antenna accessed for two 

transmissions at the same time? 

– Non-stable predicates may have happened, 
but then system state changes..
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Non-stable Predicates

• Possibly B: 
– B could have happened 

• Definitely B: 
– B definitely happened 

• How can we check for definitely B and 
possibly B? 
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Collecting Global States

• Each process notes its state & vector 
timestamp 
– Sends it to a server for recording 
– Note: we do not need to save every time a 

state changes: only when it affects the 
predicates to be checked 
• Assuming we know what predicates will be checked 

• The server looks at these and tries to 
figure out if predicate B was possibly or 
definitely true
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Possible States

• Server checks for possible states: 
consistent cuts for B: x=y
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Possible States

• Server checks for possible states: 
consistent cuts for B: x=y
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 Lattice of global states 
(consistent cuts)

• Any downward path 
from Initial state to 
final state is a valid 
execution 
– A possible sequence 

of states that could 
have existed
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 Lattice of global states 
(consistent cuts)

• Possibly B: 
– B occurs on at least 

one downward path 

• Definitely B 
– B occurs on all 

downward paths
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 Lattice of global states 
(consistent cuts)

• How do you 
compute possibly 
and definitely B?
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 Lattice of global states 
(consistent cuts)

• Possibly B: 
– B occurs on at least 

one downward path 

• Do a BFS from start 
state 
– If there is one state 

with B true, then 
possibly B is true
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 Lattice of global states  
(consistent cuts)

• Definitely B 
– B occurs on all 

downward paths 

• Do a BFS from start 
state 
– Do not visit nodes with 

B: true 
– If BFS reaches final state 

and B is false in final 
state then Definitely B is 
false 

– Else Definitely B is true
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What is the computational complexity?
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What is the computational complexity?

• Possibly exponential in number of 
processes 

• Problem is NP-complete 

• Observation: more messages reduces 
complexity!
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Mutual exclusion

• Multiple processes should not use the same 
resource at once 
– Eg. Print to the same printer 
– Transmit/receive using the same antenna 
– Update the same database table 

• Critical section (CS): the part of code that 
uses the restricted resource 

• Mutual exclusion : restrict access to critical 
section to at most one process at one time
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Ref: CDK, VG
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Properties in ME

• Safety: Two processes should not use 
critical section simultaneously 
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Properties in ME

• Safety: Two processes should not use 
critical section simultaneously  

• Liveness: Every live request for CS is 
eventually granted 

• Fairness: Requests must be granted in the 
order they are made (wrt logical time)
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Distributed vs Centralized Mutex

• On a single computer, OS can manage 
access to a shared variable 

• On a distributed system, we have to use 
messages
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Assumption

• There is only one resource in question 

• In reality there can be more, but for now, 
let us focus on just one 

• All channels are FIFO
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Central server algorithm

• There is a server or coordinator 
– Holds a “token” for the resource 

• Other processes send token request to the 
server 

• Server puts incoming requests in a queue 
• Sends token to first process in queue 
• Process returns token when done 
• Server sends to next process
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Central server algorithm

• What are the advantages and 
disadvantages?
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Central server algorithm

• Advantages 
– Simple 
– Constant complexity per message 

• Disadvantages 
– Central point of failure 
– Central bottleneck 
– Does not preserve order in asynchronous 

systems 
– Server must be selected/elected
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Token ring algorithm

• Processes are arranged 
in a ring 

• The token is 
continuously passed in 
one direction 

• A process on receiving 
token: 
– If it does not need CS, 

passes token to next one 
– If it needs CS, it holds 

token, executes CS and 
then passes token
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Token ring algorithm

• Observe: 
– Processes do not need 

to be in an actual ring 
– Each process just 

needs to know the 
next process and have 
a method to send it a 
message
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Token ring

• Problems:
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Token ring

• Problems: 
– Not in-order 
– Long delay in getting token  
• Upto n-1 

– One failure breaks the ring 
– Passes token around even when there are no 

requests
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Lamport’s algorithm

• Every node i has a queue qi of requests 
– Keeps requests sorted by logical timestamps 

• Process i sends CS request: 
– Timestamped REQUEST (tsi, i) to all processes 
– Enters (tsi,i) to its own queue qi 

• Process j receives REQUEST (tsi,i) 
– Send timestamped REPLY to i 
– Enter (tsi,i) to qj
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Lamport’s Algorithm

• Process i enters CS if 
– (tsi,i) is at head of its own queue 
– It has received REPLY from all processes 

• To release CS 
– Process i sends RELEASE message to all 

• On receiving RELEASE, process j  
– Removes (tsi,i) from qj
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Observations

• Requests granted in order consistent with 
happened before 

• 3(n-1) messages per CS
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Ricart and Agrawala’s algorithm

• Main modification: 
– Node j does not send a REPLY if j has a 

request with timestamp lower than i’s 
request 

– j simply delays the REPLY until its RELEASE 
message
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Ricart-Agrawala’s algorithm

• Process i sends CS request: 
– Timestamped REQUEST (tsi, i) to all processes 

• Process j receives REQUEST (tsi,i) 
– If j has no outstanding request of its own 

earlier than (tsi,i) or is not executing CS 
• Send timestamped REPLY to i 
• Enter (tsi,i) to qj 

– Else keep (tsi,i) pending
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Ricart-Agrawala’s algorithm

• Process i enters CS if 
– It has received REPLY from all processes 

• To release CS 
– Sends REPLY message to pending processes 
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Ricart-Agrawala’s algorithm

• Has no queues at processes 
• The queue is maintained distributedly 

across all processes through timestamps 
and delayed replies 

• Uses 2(n-1) messages
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Ricart-Agrawala’s algorithm
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Maekawa’s Quorum algorithm

• Idea: instead of getting permission from all 
processes, get permission from only a subset 
of processes 

• For each process i, we have a voting set 
(quorum) Vi 
– For all i,j: Vi ∩ Vj ≠ ∅ 

– For all i, i ∈ Vi 

– Voting sets are same size, each node is part of 
same number of sets
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Maekawa’s Quorum algorithm

• Idea: 
– Arrange nodes in a square grid 
– Quorum for node i: 
• All nodes in same row or same column as i 

– Any two quorums intersect 

• Complexity? 
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Maekawa’s Quorum algorithm
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Let processes compete for votes. If a process has received more votes 
than any other process, it can enter the CS. If it does not have enough 
votes, it waits until the process in the CS is done and releases its votes. 
Quorums have the property that any two groups have a non-empty 
intersection.Simple majorities are quorums. Any 2 sets whose sizes are 
simple majorities must have at least one element in common. 



Maekawa’s Quorum algorithm
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Grid quorum: arrange nodes in 
logical grid (square). A quorum is all 
of a row and all of a column. 
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• Complexity per CS: O(√n)
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• Non-stable Predicates 
• Reading: CDK 11.5 Global states 

• Mutual exclusion 
• Reading: CDK 15.2 Distributed mutual exclusion 
• https://www.youtube.com/watch?v=r7SJOhGF4Nc 
• https://www.youtube.com/watch?v=yBnRO2gGock 
• https://www.risc.jku.at/software/daj/

https://www.youtube.com/watch?v=r7SJOhGF4Nc
https://www.youtube.com/watch?v=yBnRO2gGock

