Distributed Systems

Failure detection & Leader Election

Rik Sarkar

University of Edinburgh
Fall 2016
Failures

• How do we know that something has failed?
• Let’s see what we mean by failed:

• Models of failure:
 1. Assume no failures
 2. Crash failures: Process may fail/crash
 3. Message failures: Messages may get dropped
 4. Link failures: a communication link stops working
 5. Some combinations of 2,3,4
 6. More complex models can have recovery from failures
 7. Arbitrary failures: computation/communication may be erroneous
Failure detectors

- Detection of a crashed process
 - (not one working erroneously)

- A major challenge in distributed systems

- A failure detector is a process that responds to questions asking whether a given process has failed
 - A failure detector is not necessarily accurate
Failure detectors

• Reliable failure detectors
 – Replies with “working” or “failed”

• Difficulty:
 – Detecting something is working is easier: if they respond to a message, they are working
 – Detecting failure is harder: if they don’t respond to the message, the message may have been lost/delayed, may be the process is busy, etc..

• Unreliable failure detector
 – Replies with “suspected (failed)” or “unsuspected”
 – That is, does not try to give a confirmed answer

• We would ideally like reliable detectors, but unreliable ones (that say give “maybe” answers) could be more realistic
Simple example

• Suppose we know all messages are delivered within D seconds

• Then we can require each process to send a message every T seconds to the failure detectors

• If a failure detector does not get a message from process p in $T+D$ seconds, it marks p as “suspected” or “failed”
Simple example

• Suppose we assume all messages are delivered within D seconds

• Then we can require each process to send a message every T seconds to the failure detectors

• If a failure detector does not get a message from process p in T+D seconds, it marks p as “suspected” or “failed” (depending on type of detector)
Synchronous vs asynchronous

• In a synchronous system there is a bound on message delivery time (and clock drift)

• So this simple method gives a reliable failure detector

• In fact, it is possible to implement this simply as a function:
 – Send a message to process p, wait for $2D + \varepsilon$ time
 – A dedicated detector process is not necessary

• In Asynchronous systems, things are much harder
Simple failure detector

• If we choose T or D too large, then it will take a long time for failure to be detected
• If we select T too small, it increases communication costs and puts too much burden on processes
• If we select D too small, then working processes may get labeled as failed/suspected
Assumptions and real world

• In reality, both synchronous and asynchronous are a too rigid
• Real systems, are fast, but sometimes messages can take a longer than usual
 – But not indefinitely long
• Messages usually get delivered, but sometimes not..
Some more realistic failure detectors

• Have 2 values of D: D1, D2
 – Mark processes as working, suspected, failed

• Use probabilities
 – Instead of synchronous/asynchronous, model delivery time as probability distribution
 – We can learn the probability distribution of message delivery time, and accordingly estimate the probability of failure
Using bayes rule

- \(a = \) probability that a process fails within time \(T \)
- \(b = \) probability a message is not received in \(T + D \)

- So, when we do not receive a message from a process we want to estimate \(P(a | b) \)
 - Probability of \(a \), given that \(b \) has occurred

\[
P(a | b) = \frac{P(b | a)P(a)}{P(b)}
\]

If process has failed, i.e. \(a \) is true, then of course message will not be received! i.e. \(P(b | a) = 1 \). Therefore:

\[
P(a | b) = \frac{P(a)}{P(b)}
\]
Leader of a computation

• Many distributed computations need a coordinating or server process
 – E.g. Central server for mutual exclusion
 – Initiating a distributed computation
 – Computing the sum/max using aggregation tree
• We may need to elect a leader at the start of computation
• We may need to elect a new leader if the current leader of the computation fails
The Distinguished leader

• The leader must have a special property that other nodes do not have

• If all nodes are exactly identical in every way then there is no algorithm to identify one as leader

• Our policy:
 – The node with highest identifier is leader
Node with highest identifier

- If all nodes know the highest identifier (say n), we do not need an election
 - Everyone assumes n is leader
 - n starts operating as leader
- But what if n fails? We cannot assume n-1 is leader, since n-1 may have failed too! Or may be there never was process n-1

- Our policy:
 - The node with highest identifier and still surviving is the leader

- We need an algorithm that finds the working node with highest identifier
Strategy 1: Use aggregation tree

• Suppose node r detects that leader has failed, and initiates leader election

• Node r creates a BFS tree

• Asks for max node id to be computed via aggregation
 – Each node receives id values from children
 – Each node computes max of own id and received values, and forwards to parent

• Needs a tree construction
• If n nodes start election, will need n trees
 – $O(n^2)$ communication
 – $O(n)$ storage per node
Strategy 1: Use aggregation tree

- Suppose node r detects that leader has failed, and initiates leader election

- Node r creates a BFS tree

- Asks for max node id to be computed via aggregation
 - Each node receives id values from children
 - Each node computes max of own id and received values, and forwards to parent

- Needs a tree construction
- If n nodes start election, will need n trees
 - $O(n^2)$ communication
 - $O(n)$ storage per node
Strategy 2: Use a ring

• Suppose the network is a ring
 – We assume that each node has 2 pointers to nodes it knows about:
 • Next
 • Previous
 • (like a circular doubly linked list)
 – The actual network may not be a ring
 – This can be an overlay
Strategy 2: Use a ring

• Basic idea:
 – Suppose 6 starts election
 – Send “6” to 6.next, i.e. 2
 – 2 takes max(2, 6), send to 2.next
 – 8 takes max(8, 6), sends to 8.next
 – etc
Strategy 2: Use a ring

• The value “8” goes around the ring and comes back to 8

• Then 8 knows that “8” is the highest id
 – Since if there was a higher id, that would have stopped 8

• 8 declares itself the leader: sends a message around the ring
Strategy 2: Use a ring

• The problem: What if multiple nodes start leader election at the same time?

• We need to adapt algorithm slightly so that it can work whenever a leader is needed, and works for multiple leader
Strategy 2: Use a ring (Algorithm by chang and roberts)

- Every node has a default state: *non-participant*
- Starting node sets state to *participant* and sends *election* message with id to next
Strategy 2: Use a ring
(Algorithm by chang and roberts)

• If node p receives election message m

• If p is non-participant:
 – send max(m.id, p.id) to p.next
 – Set state to participant

• If p is participant:
 – If m.id > p.id:
 • Send m.id to p.next
 – If m.id < p.id:
 • do nothing
Strategy 2: Use a ring
(Algorithm by chang and roberts)

• If node p receives *election* message m with m.id = p.id

• P declares itself leader
 – Sets p.leader = p.id
 – Sends *leader* message with p.id to p.next
 – Any other node q receiving the leader message
 • Sets q.leader = p.id
 • Forwards leader message to q.next
Strategy 2: Use a ring
(Algorithm by chang and roberts)

• Works in an asynchronous system
• Assuming nothing fails while the algorithm is executing

• Message complexity $O(n^2)$
 – When does this occur?
 – (hint: all nodes start election, and many messages traverse a long distance)

• What is the time complexity?
• What is the storage complexity?
Strategy 3: Use a ring – smartly (Hirschberg Sinclair)

• Assume all nodes want to know the leader
• k-neighborhood of node p
 – The set of all nodes within distance k of p

• How does p send a message to distance k?
 – Message has a “time to live variable”
 – Each node decrements m.ttl on receiving
 – If m.ttl=0, don’t forward any more
Strategy 3: Use a ring – smartly (Hirschberg Sinclair)

• Basic idea:
 – Check growing regions around yourself for someone with larger id
Strategy 3: Use a ring – smartly (Hirschberg Sinclair)

• Algorithm operates in phases
• In phase 0, node p sends election message m to both p.next and p.previous with:
 – m.id = p.id and ttl = 1

• Suppose q receives this message
 – Sets m.ttl=0
 – If q.id > m.id:
 • Do nothing
 – If q.id < m.id:
 • Return message to p
Strategy 3: Use a ring – smartly
(Hirschberg Sinclair)

• Algorithm operates in phases
• In phase 0, node p sends election message m to both p.next and p.previous with:
 – m.id = p.id and ttl = 1

• Suppose q receives this message
 – Sets m.ttl=0
 – If q.id > m.id:
 • Do nothing
 – If q.id < m.id:
 • Return message to p

• If p gets back both message, it decides itself leader of its 1-neighborhood, and proceeds to next phase
Strategy 3: Use a ring – smartly
(Hirschberg Sinclair)

- If \(p \) is in phase \(i \), node \(p \) sends election message \(m \) to \(p\.next \) and \(p\.previous \) with:
 - \(m\.id = p\.id \), and \(m\.ttl = 2^i \)

- A node \(q \) on receiving the message (from next/previous)
 - If \(m\.ttl=0 \): forward suitably to previous/next
 - Sets \(m\.ttl=m\.ttl-1 \)
 - If \(q\.id > m\.id \):
 - Do nothing
 - Else:
 - If \(m\.ttl = 0 \): return to sending process
 - Else forward to suitably to previous/next

- If \(p \) gets both message back, it is the leader of its \(2^i \) neighborhood, and proceeds to phase \(i+1 \)
Strategy 3: Use a ring – smartly (Hirschberg Sinclair)

- When $2^i \geq n/2$
 - Only 1 process survives: Leader

- Number of phases: $O(\log n)$

- What is the message complexity?
Strategy 3: Use a ring – smartly
(Hirschberg Sinclair)

In phase i

• At most one node initiates message in any sequence of 2^{i-1} nodes

• So, $n/2^{i-1}$ candidates
 – Each sends 2 messages, going at most 2^i distance, and returning: $2*2*2^i$ messages

• $O(n)$ messages in phase i

There are $O(\log n)$ phases

• Total of $O(n \log n)$ messages
Strategy 3: Use a ring – smartly (Hirschberg Sinclair)

- Assume synchronous operation
- Assume nodes do not fail during algorithm run

- What is time complexity?
- What is storage complexity?
Strategy 4: Bully Algorithm

Ref: CDK

• Assume:
 – Each node knows the id of all nodes in the system (some may have failed)
 – Synchronous operation

• Node p decides to initiate election
• p sends election message to all nodes with id > p.id
• If p does not hear “I am alive message” from any node, p broadcasts a message declaring itself as leader
• Any working node q that receives election message from p, replies with own id and “I am alive” message
 – And starts an election (unless it is already in the process of an election)
• Any node q that hears a lower id node being declared leader, starts a new election
Strategy 4: Bully Algorithm

• Assume:
 – Each node knows the id of all nodes in the system (some may have failed)
 – Synchronous operation

• Works even when processes fail
• Works when (some) message deliveries fail.

• What are the storage and message complexities?