
Distributed Systems 
 

Multicast and Agreement

Björn Franke 

University of Edinburgh 
2015/2016



Distributed Systems, Edinburgh, 2015/16

Multicast

• Send message to multiple nodes 
• A node can join a multicast group, and 

receives all messages sent to that group 
• The sender sends only once: to the group 

address 
• The network takes care of delivering to all 

nodes in the group 
• Note: groups are restricted to specific 

networks such as LANs & WANs 
– Multicast in the university network will not reach 

nodes outside the network

2



Multicast

3



Distributed Systems, Edinburgh, 2015/16

Multicast

• A special version of broadcast  
(restricted to a subset of nodes) 

• In a LAN 
– Sender sends a broadcast 
– Interested nodes accept the message others reject 

• In larger networks we can use a tree  
– Remember trees can be used for broadcast 
– Interested nodes join the tree, and thus get 

messages 
– All nodes can use the same tree to multicast to the 

same group

4



Multicast

5



Distributed Systems, Edinburgh, 2015/16

IP Multicast

• IP has a specific multicast protocol 
• Addresses from 224.0.0.0 to 239.255.255.255 are 

reserved for multicast 
– They act as groups 
– Some of these are reserved for specific multicast based 

protocols 
• Any message sent to one of the addresses goes to all 

processes subscribed to the group 
– Must be in the same “network” 
– Basically depends on how routers are configured 

• In a LAN, communication is broadcast 
• In more complex networks, tree-based protocols can be 

used

6



Distributed Systems, Edinburgh, 2015/16

IP Multicast

• Any process interested in joining a group 
informs its OS 

• The OS informs the “network” 
– The network interface (LAN card) receives 

and delivers group messages to the OS & 
process 

– The router may need to be informed 
– IGMP – Internet group management protocol

7



Distributed Systems, Edinburgh, 2015/16

IP Multicast

• Sender sends only once 
• Any router also forwards only once 
• No acknowledgement mechanism 
– Uses UDP 

• No guarantee that intended recipient gets 
the message 

• Often used for streaming media type content 
• Not good for critical information

8



Distributed Systems, Edinburgh, 2015/16

Multicast

• Can we design a reliable protocol? 

• If there are multiple messages, can we 
ensure they are delivered in correct 
order?

9



Distributed Systems, Edinburgh, 2015/16

Multicast

• Imagine: We are designing an OS service 
• Other applications will use this service to 

perform multicasts. 
• We have to ensure that everything goes 

correctly 

10

Network

Multicast process

Application



Distributed Systems, Edinburgh, 2015/16

Reliable Multicast

• The sending process is in the multicast group 
• Nodes may fail (by crashing) 
• We will use one to one communication between 

processes 
– The communication is reliable (may be using suitable ack-

based protocol) 
– If both processes are alive, the message gets delivered. i.e. 

the network does not fail 
• Note that these assumptions are necessary. 

– If network and message delivery can fail, then there may be 
2 sets of processes who never communicate with each other 

– Thus message from one set will never reach the other

11



Distributed Systems, Edinburgh, 2015/16

Reliable Multicast

• multicast(g,m) : 
multicast message m to 
group g 

• receive(m): The OS or 
network card receives 
the message and gives to 
the multicasting process 

• deliver(m): The multicast 
process delivers m to the 
application

12

Network

Multicast process

Application



Distributed Systems, Edinburgh, 2015/16

Reliable Multicast - Definition

• Must have the following properties: 
– Integrity: A working process p in group g delivers 

m at most once, and m was multicast by some 
working process 

– Agreement: If a working process delivers m then 
all other working processes in group g will 
deliver m 

• What is the point of having reliable 
multicast? 

13



Distributed Systems, Edinburgh, 2015/16

Reliable Multicast - Definition

• Must have the following properties: 
– Integrity: A working process p in group g delivers m 

at most once, and m was multicast by some working 
process 

– Agreement: If a working process delivers m then all 
other working processes in group g will deliver m 

• What is the point of having reliable multicast?  
– We ensure that one process can communicate with 

all others 
– Application programmer does not have to worry 

about it

14



Distributed Systems, Edinburgh, 2015/16

Basic Multicast

• Suppose send(p,m) is reliable 
• Define Basic multicast p.Bmulticast(g,m): 
– For each q in g: 

• P.send(q,m)  

– On p.receive(m): # by multicasting algorithm 
• P.Bdeliver(m) # to the application 

• Assumes the sender does not crash in operation 
• Therefore, does not implement Agreement in 

presence of crashes

15



Distributed Systems, Edinburgh, 2015/16

Reliable Multicast

• Use Bmulticast as function/procedure 

• Implement Rmulticast(g,m) and 
Rdeliver(m)

16



Distributed Systems, Edinburgh, 2015/16

Reliable Multicast

• Initialization: Received={} 
• p.Rmulticast(g,m): 

– p.Bmulticast(g, m) 
• Q.Bdeliver(m): 

– If m is not in Received: 
• Received = Received U {m} 
• If p≠q : q.Bmulticast(g,m) 
• q.Rdeliver(m) 

• The key point is that q sends the message to other 
working nodes before it accepts the message and 
delivers to the interested application

17



Distributed Systems, Edinburgh, 2015/16

Reliable Multicast
• Integrity: A message is delivered at most once and 

was multicast by some correct process 
– Obvious, since send(p,m) is reliable 

• Agreement: Since a process forwards the message 
to others before it delivers to the local application 
– If it was in the reverse order, then the following could 

have occurred: 
• Application gets the message and takes action according to it 

(such as send a message to update a database) 
• The machine fails, so that no other working processes receive 

the multicast 
• Result: inconsistent state 

– In the present case, a process failing in between the 2 
actions is like it having failed before the multicast 
starts. 

18



Multicast Ordering

19



Distributed Systems, Edinburgh, 2015/16

Multicast Ordering

• We want messages delivered in 
“correct” (intended, consistent etc) order 

• FIFO: If a process p performs 2 multicasts, 
then every working process that delivers these 
2 messages deliver in the correct order 

• Causal: if  p.multicast(g,m) ➝  
q.multicast(g,m’) then every process which 
delivers both, deliver m before m’ 

• Total: All working processes deliver messages 
in the same order

20



Distributed Systems, Edinburgh, 2015/16

Multicast Ordering

• Causal implies FIFO 

• Total ordering 
– Requires messages are delivered same order 

by  each process 
– But this order may have no relation to 

causality or message sending order 
– Can be modified to be FIFO-total or Causal-

total orders

21



Distributed Systems, Edinburgh, 2015/16

FIFO ordered multicast

• Our reliable multicast implements FIFO 
– Assuming the Bmulticast sends to group 

members in same order & channels are FIFO 
– Sequence numbers can be used to implement 

FIFO otherwise

22



Distributed Systems, Edinburgh, 2015/16

FIFO ordered multicast

• Our reliable multicast implements FIFO 
– Assuming the Bmulticast sends to group 

members in same order 
– Sequence numbers can be used to implement 

FIFO otherwise

23



Distributed Systems, Edinburgh, 2015/16

Causally ordered Multicast

• Each process has a Vector clock 
• Suppose p sends a multicast m 
• q receives m and holds it until: 
– It has delivered any earlier message by p 
– delivered any multicast message that has 

been delivered by p (to its application) 
before p multicast m 

• These are easy to check using vector 
timestamps

24



Distributed Systems, Edinburgh, 2015/16

Total ordered multicast

• Using sequencer process 
– p wants to multicast 
– It asks sequencer process for a sequence number 
– Sends multicast tagged with the sequence 

number 
– All processes deliver messages by sequence 

number 

• Simple 
• Single point of failure and bottleneck 

25



Distributed Systems, Edinburgh, 2015/16

Total ordered multicast

• Using collective agreement 
• p first sends Bmulticast to the group 
• Each process in group picks a sequence 

number 
• Processes run a distributed protocol to agree 

on a sequence number for the message 
• Messages delivered according to sequence 

number

26



Distributed Systems, Edinburgh, 2015/16

Consensus

• Agreeing on things (leader, sequence 
numbers, time for action, action to be 
taken etc)

27



Distributed Systems, Edinburgh, 2015/16

Basic Consensus

• Set of processes 
• Each starts with state = undecided 
• Each has a single value 
• Have to set their decision variable to the 

same value and enter decided state

28



Distributed Systems, Edinburgh, 2015/16

Basic Consensus

• Termination: each process sets its decision 
variable and enters decided state 

• Agreement: If 2 processes have entered 
decided state, then their decision 
variables are equal 

• Integrity: If all working processes 
proposed the same value v, then all of 
them in decided state has decision=v

29



Distributed Systems, Edinburgh, 2015/16

Basic Consensus

• A simple solution: 
– Use reliable multicast to communicate all 

values 
– Use a simple rule (min, max etc) to decide 

• Inefficient, but works!

30



Distributed Systems, Edinburgh, 2015/16

Byzantine generals consensus

• 3 or more generals deciding whether to attack 
or not 

• A commander issues the attack 
• One or more processes may be faulty 

(controlled by the enemy) 
• Properties: 
– Termination : everyone decides 
– Agreement : non-faulty processes agree 
– Integrity : If the commander is non-faulty, then all 

non-faulty processes agree with commander

31



Distributed Systems, Edinburgh, 2015/16

Byzantine generals consensus

• Suppose 3 processes: A, B, C. 
– C is commander 
– B is faulty 

• C says attack to both 

• A tells B: “C told me: attack” 
• B tells A: “C told me: do-not-attack” 

• A knows someone is lying. But does not know who 

• No solution with 3 processes 

• In general, no solution with n ≤ 3f processes, where f is 
number of faulty proceses

32



Distributed Systems, Edinburgh, 2015/16

Interactive consensus

• Processes have to agree on a vector of values 
• Each process contributed only to part of the 

vector (but all processes must have same 
vector in the end) 

• Termination : everyone decides 
• Agreement: they decide the same vector V 
• If pi proposes x, then in Vi=x for all processes

33



Distributed Systems, Edinburgh, 2015/16

Consensus in Asynchronous systems

• Cannot be guaranteed 

• Process A is not responding: 
– Is it failed or just slow? 
– It might just send a message at the wrong 

time

34



Distributed Systems, Edinburgh, 2015/16

Termination detection

• How do we know when a distributed 
computation has ended?

35



Distributed Systems, Edinburgh, 2015/16

Termination detection
• We suppose that the computation is started by a process s.  

– This means, other processes start working after receiving message 
from s or some other process 

– They have no other way to know that a computation is in progress 
• s wants to know when all other processes have concluded 

working 
• S starts with  weight = 1.0 
• Other processes start with weight = 0 
• When a process sends a message, it puts part (say, half) of its 

weight in the message. 
• When a process receives a message, it adds the message 

weight to its own weight. 

• When a process has finished computing, it sends its current 
weight to s 

• When s has weight=1, it knows no other process is active
36



Distributed Systems, Edinburgh, 2015/16

Termination detection
• Works on the assumption that no message 

is lost 
– Methods like TCP give good guarantee for 

delivery 
– Many other distributed algorithms have this 

assumption 
– Useful for their termination detection 

• Other, more complicated methods are 
possible

37


