Distributed Systems

Mobile networking

Rik Sarkar

University of Edinburgh
Fall 2015
How do mobile phones work?

- Cellular base stations (antennas + cpu) with hexagonal cells
Channel assignments

• Each base station uses a set of “channels” (e.g. frequencies) to communicate with mobile nodes in its cell

• Usually adjacent cells do not use same channel
 – To avoid interference
Spatial Reuse

• This feature of using the same channel in different cells is called “spatial reuse”
 – Same channel can be used in different parts of “space”

• Distance between base stations can vary
 – Few hundred meters in urban region
 – Several kilometers in open spaces/rural regions
• One antenna has a fixed number of channels
• If its cell is large, there may be many people in it, and the antenna may not be able to handle
• Hence closer antenna placement in cities
• But still limited capacity due to interference from other antennas using same channel
Channel assignments

• In a region, there may be different mobile operators
• They usually bid for rights to use different parts of the spectrum
 – Depending on where they need more channels or less etc
 – Spectrum auctions
 – Then decide which channel to use in which cell
The real mobility issue

• What happens when a mobile phone moves from one cell to another cell?
Terminology

• Mobile node
• Home network
 – The network that “owns” the mobile number
 • Eg. EE or vodafone or O2...
 • Local
• Home location register
 – Database of profile, current location etc of mobile numbers
• Visited network
 – Where the mobile currently resides
 – Visitor location register : database of nodes currently in region
Call

- Goes first to home network
- Which returns the current location of the mobile (its visited network)
- Then the call goes to the actual location
Handoff

- When mobile moves from one cell to another
 - It’s communication is handed off to the new cell
- Detected by weak signal from cell 1 but strong signal for cell 2
- Or for load balancing
- Executed by base stations and MSC
Internet issues
Internet issues

- Cellular systems are fine for calling, not for internet
- Internet routing is IP – based
- IP is geography based
- What happens when a mobile phone moves to a different area? Or simply to a different cell?
Internet issues

• So communication from MN is disrupted.
• MN may be able to re-initialize everything, but that is undesirable

• We want a packet for IP X to still be delivered to MN
Internet issues

• Suppose an MN had IP address X in its initial subnet (local area network) s1 (in cell 1)
• Now the MN moves to a different subnet s2
 – X is not a valid address in s2
 – Routers on the internet will send packets for IP X to s1, never to s2.
Solution: IP in IP encapsulation

• When MN moves, it informs visited network of its IP X

• Home agent
 – A process on home network that intercepts packets for IP X
 – Sends it to IP Y (IP of foreign agent)

• Foreign agent (corresponding process on visited network)
 – Receives packet
 – Unpacks to see it is intended for X
 – Delivers through MAC layer address
Mobile IP

• Solves the routing problem
• However, on initial move, some packets or acks may get lost/delayed
 – Transport layer thinks there is congestion
 – Slows down
 – ...

Distributed Systems, Edinburgh, 2014
More advanced things

- With advancing technology
- New features are cropping up in mobile nets
- New issues are appearing
Localization in wireless networks

• Can be done based on signal strengths
 – Decreases with distance
• Trilateration – three distances suffice to locate a point
 – Signal strength from three or more wireless transmitters with known location
 – Approximate localization due to variation in signal propagation, noise etc
Location in mobile nets

• Can be done using three cellular towers
 – Either at the mobile phone
 – Or at cell network

• New possibilities
 – Predict handoffs from motion, make preparations early
 – Learn/predict user behavior
 – Give location based recommendations etc…
Privacy issues

• Location is considered private information
• Tracking location all the time is considered intrusive
• No way to prevent cell companies from doing it...
• At the mobile phone end, efforts are being made to fuzz locations
 – Give some information for location based services to run
 – Avoid some other information, or avoid precise locations
• Context/activity information is also private...

Distributed Systems, Edinburgh, 2014
Femto-cell networks

- Small personalized cell antennas (~10m range)
 - Plug into your wireless router
- Even better spatial reuse
- Less organized, trickier to coordinate channel assignment etc
- Possibility of channel clash with macro cells
Beamforming directed communication

• Sends signals in a particular direction
 – Uses multiple antennas together transmitting at different phases
 – Destructive interference ensures that signal does not travel in other directions
 – Easy to change directions quickly

• Angle can range from 20 or 30 degrees to a few degrees (narrow beam)
Beamforming directed communication

- Usually around 60GHz frequency
- High supported bandwidth
- Good for hi def video, large data volumes etc
- At this range, signal has high attenuation from air
 - Short range (few meters to 100 meters)
- Together with directionality implies very effective spatial reuse
Beamforming directed communication

• Challenges
 – Easily affected by obstacles
 – Both transmitter and receiver need to be “looking” at each-other at the right time
 • Medium access becomes harder
 – Mobility can create a challenge of “tracking” a device
Mobile computing

• Mobile wireless devices are going to be even more popular
• More apps/services/media
• Great need for wireless bandwidth
 – Current infrastructure is not sufficient
• New technologies
• Simultaneously, detection of collective context, groups etc for better adaptive services

Distributed Systems, Edinburgh, 2014