
Distributed Systems 
 

Predicates and Mutual Exclusion

Björn Franke 
2015/2016

University of Edinburgh

Distributed Systems, Edinburgh,
2015/2016

Where snapshots are not useful:  
non-stable predicates

• E.g.
–Was this file opened at some time?
–Was x1-x2 < δ ever?
–Was the antenna accessed for two

transmissions at the same time?

– Non-stable predicates may have happened,
but then system state changes..

2

Distributed Systems, Edinburgh,
2015/2016

Non-stable predicates

• Possibly B:
– B could have happened

• Definitely B:
– B definitely happened

• How can we check for definitely B and
possibly B?

3

Distributed Systems, Edinburgh,
2015/2016

Collecting global states

• Each process notes its state & vector
timestamp
– Sends it to a server for recording
– Note: we do not need to save every time a

state changes: only when it affects the
predicates to be checked
• Assuming we know what predicates will be checked

• The server looks at these and tries to
figure out if predicate B was possibly or
definitely true

4

Distributed Systems, Edinburgh,
2015/2016

Possible states

• Server checks for possible states:
consistent cuts for B: x=y

5

p1

p2

2,0 3,0

0,1 2,2 2,3

4,41,0

2,4
X = 1 X = 5X = 3

Y = 5 Y = 5

X = 5

Y = 3 Y = 4 Y = 7

Distributed Systems, Edinburgh,
2015/2016

Possible states

• Server checks for possible states:
consistent cuts for B: x=y

6

p1

p2

1,0 2,0

1,1 1,2

4,2

X = 1 X = 5X = 3

Y = 1 Y = 5

X = 9

Y = 3 Y = 7

S0,0

S1,0

0,0

0,0

S2,0

S2,1

S2,2

3,0

S3,0

S3,1

S3,2

1,3

S3,3

S4,3

S2,3

X = 5

Distributed Systems, Edinburgh,
2015/2016

 Lattice of global states 
(consistent cuts)

• Any downward path
from Initial state to
final state is a valid
execution
– A possible sequence

of states that could
have existed

7

Time

S0,0

S1,0

S2,0

S2,1

S2,2

S3,0

S3,1

S3,2

S3,3

S4,3

level

0

1

2

5

3

4

6

7

S2,3

Distributed Systems, Edinburgh,
2015/2016

 Lattice of global states 
(consistent cuts)

• Possibly B:
– B occurs on at least

one downward path

• Definitely B
– B occurs on all

downward paths

8

Time

S0,0

S1,0

S2,0

S2,1

S2,2

S3,0

S3,1

S3,2

S3,3

S4,3

level

0

1

2

5

3

4

6

7

S2,3

Distributed Systems, Edinburgh,
2015/2016

 Lattice of global states
(consistent cuts)

• How do you
compute possibly
and definitely B?

9

Time

S0,0

S1,0

S2,0

S2,1

S2,2

S3,0

S3,1

S3,2

S3,3

S4,3

level

0

1

2

5

3

4

6

7

S2,3

Distributed Systems, Edinburgh,
2015/2016

 Lattice of global states 
(consistent cuts)

• Possibly B:
– B occurs on at least

one downward path

• Do a BFS from start
state
– If there is one state

with B true, then
possibly B is true

10

Time

S0,0

S1,0

S2,0

S2,1

S2,2

S3,0

S3,1

S3,2

S3,3

S4,3

level

0

1

2

5

3

4

6

7

S2,3

Distributed Systems, Edinburgh,
2015/2016

 Lattice of global states  
(consistent cuts)

• Definitely B
– B occurs on all

downward paths

• Do a BFS from start
state
– Do not visit nodes with

B: true
– If BFS reaches final state

and B is false in final
state then Definitely B is
false

– Else Definitely B is true

11

Time

S0,0

S1,0

S2,0

S2,1

S2,2

S3,0

S3,1

S3,2

S3,3

S4,3

level

0

1

2

5

3

4

6

7

S2,3

Distributed Systems, Edinburgh,
2015/2016

What is the computational complexity?

12

Distributed Systems, Edinburgh,
2015/2016

What is the computational complexity?

• Possibly exponential in number of
processes

• Problem is NP-complete

• Observation: more messages reduces
complexity!

13

Distributed Systems, Edinburgh,
2015/2016

Mutual exclusion

• Multiple processes should not use the same
resource at once
– Eg. Print to the same printer
– Transmit/receive using the same antenna
– Update the same database table

• Critical section (CS): the part of code that
uses the restricted resource

• Mutual exclusion : restrict access to critical
section to at most one process at one time

14

Ref: CDK, VG

Distributed Systems, Edinburgh,
2015/2016

Properties in ME

• Safety: Two processes should not use
critical section simultaneously

15

Distributed Systems, Edinburgh,
2015/2016

Properties in ME

• Safety: Two processes should not use
critical section simultaneously

• Liveness: Every live request for CS is
eventually granted

• Fairness: Requests must be granted in the
order they are made (wrt logical time)

16

Distributed Systems, Edinburgh,
2015/2016

Distributed Vs Centralized Mutex

• On a single computer, OS can manage
access to a shared variable

• On a distributed system, we have to use
messages

17

Distributed Systems, Edinburgh,
2015/2016

Assumption

• There is only one resource in question

• In reality there can be more, but for now,
let us focus on just one

• All channels are FIFO

18

Distributed Systems, Edinburgh,
2015/2016

Central server algorithm

• There is a server or coordinator
– Holds a “token” for the resource

• Other processes send token request to the
server

• Server puts incoming requests in a queue
• Sends token to first process in queue
• Process returns token when done
• Server sends to next process

19

Distributed Systems, Edinburgh,
2015/2016

Central server algorithm

• What are the advantages and
disadvantages?

20

Distributed Systems, Edinburgh,
2015/2016

Central server algorithm

• Advantages
– Simple
– Constant complexity per message

• Disadvantages
– Central point of failure
– Central bottleneck
– Does not preserve order in asynchronous

systems
– Server must be selected/elected

21

Distributed Systems, Edinburgh,
2015/2016

Token ring algorithm

• Processes are arranged
in a ring

• The token is
continuously passed in
one direction

• A process on reciving
token:
– If it does not need CS,

passes token to next one
– If it needs CS, it holds

token, executes CS and
then passes token

22

Distributed Systems, Edinburgh,
2015/2016

Token ring algorithm

• Observe:
– Processes do not need

to be in an actual ring
– Each process just

needs to know the
next process and have
a method to send it a
message

23

Distributed Systems, Edinburgh,
2015/2016

Token ring

• Problems:

24

Distributed Systems, Edinburgh,
2015/2016

Token ring

• Problems:
– Not in-order
– Long delay in getting token
• Upto n-1

– One failure breaks the ring
– Passes token around even when there are no

requests

25

Distributed Systems, Edinburgh,
2015/2016

Lamport’s algorithm

• Every node i has a queue qi of requests
– Keeps requests sorted by logical timestamps

• Process i sends CS request:
– Timestamped REQUEST (tsi, i) to all processes
– Enters (tsi,i) to its own queue qi

• Process j receives REQUEST (tsi,i)
– Send timestamped REPLY to i
– Enter (tsi,i) to qj

26

Distributed Systems, Edinburgh,
2015/2016

Lamport’s Algorithm

• Process i enters CS if
– (tsi,i) is at head of its own queue
– It has received REPLY from all processes

• To release CS
– Process i sends RELEASE message to all

• On receiving RELEASE, process j
– Removes (tsi,i) from qj

27

Distributed Systems, Edinburgh,
2015/2016

Observations

• Requests granted in order consistent with
happened before

• 3(n-1) messages per CS

28

Distributed Systems, Edinburgh,
2015/2016

Ricart and Agrawala’s algorithm

• Main modification:
– Node j does not send a REPLY if j has a

request with timestamp lower than i’s
request

– j simply delays the REPLY until its RELEASE
message

29

Distributed Systems, Edinburgh,
2015/2016

Ricart-Agrawala’s algorithm

• Process i sends CS request:
– Timestamped REQUEST (tsi, i) to all processes

• Process j receives REQUEST (tsi,i)
– If j has no outstanding request of its own

earlier than (tsi,i) or is not executing CS
• Send timestamped REPLY to i
• Enter (tsi,i) to qj

– Else keep (tsi,i) pending

30

Distributed Systems, Edinburgh,
2015/2016

Ricart-Agrawala’s algorithm

• Process i enters CS if
– It has received REPLY from all processes

• To release CS
– Sends REPLY message to pending processes

31

Distributed Systems, Edinburgh,
2015/2016

Ricart-Agrawala’s algorithm

• Has no queues at processes
• The queue is maintained distributedly

across all processes through timestamps
and delayed replies

• Uses 2(n-1) messages

32

Distributed Systems, Edinburgh,
2015/2016

Maekawa’s Quorum algorithm

• Idea: instead of getting permission from all
processes, get permission from only a subset
of processes

• For each process i, we have a voting set
(quorum) Vi
– For all i,j: Vi ∩ Vj ≠ ∅

– For all i, i ∈ Vi

– Voting sets are same size, each node is part of
same number of sets

33

Distributed Systems, Edinburgh,
2015/2016

Maekawa’s Quorum algorithm

• Idea:
– Arrange nodes in a square grid
– Quorum for node i:
• All nodes in same row or same column as i

– Any two quorums intersect

• Complexity?

34

Distributed Systems, Edinburgh,
2015/2016

• Complexity per CS: O(√n)

35

