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Where snapshots are not useful:  
non-stable predicates

• E.g.  
–Was this file opened at some time? 
–Was x1-x2 < δ ever? 
–Was the antenna accessed for two 

transmissions at the same time? 

– Non-stable predicates may have happened, 
but then system state changes..
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Non-stable predicates

• Possibly B: 
– B could have happened 

• Definitely B: 
– B definitely happened 

• How can we check for definitely B and 
possibly B? 
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Collecting global states

• Each process notes its state & vector 
timestamp 
– Sends it to a server for recording 
– Note: we do not need to save every time a 

state changes: only when it affects the 
predicates to be checked 
• Assuming we know what predicates will be checked 

• The server looks at these and tries to 
figure out if predicate B was possibly or 
definitely true
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Possible states

• Server checks for possible states: 
consistent cuts for B: x=y
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Possible states

• Server checks for possible states: 
consistent cuts for B: x=y
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 Lattice of global states 
(consistent cuts)

• Any downward path 
from Initial state to 
final state is a valid 
execution 
– A possible sequence 

of states that could 
have existed
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 Lattice of global states 
(consistent cuts)

• Possibly B: 
– B occurs on at least 

one downward path 

• Definitely B 
– B occurs on all 

downward paths
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 Lattice of global states 
(consistent cuts)

• How do you 
compute possibly 
and definitely B?
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 Lattice of global states 
(consistent cuts)

• Possibly B: 
– B occurs on at least 

one downward path 

• Do a BFS from start 
state 
– If there is one state 

with B true, then 
possibly B is true
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 Lattice of global states  
(consistent cuts)

• Definitely B 
– B occurs on all 

downward paths 

• Do a BFS from start 
state 
– Do not visit nodes with 

B: true 
– If BFS reaches final state 

and B is false in final 
state then Definitely B is 
false 

– Else Definitely B is true
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What is the computational complexity?
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What is the computational complexity?

• Possibly exponential in number of 
processes 

• Problem is NP-complete 

• Observation: more messages reduces 
complexity!
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Mutual exclusion

• Multiple processes should not use the same 
resource at once 
– Eg. Print to the same printer 
– Transmit/receive using the same antenna 
– Update the same database table 

• Critical section (CS): the part of code that 
uses the restricted resource 

• Mutual exclusion : restrict access to critical 
section to at most one process at one time
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Properties in ME

• Safety: Two processes should not use 
critical section simultaneously 

15



Distributed Systems, Edinburgh, 
2015/2016

Properties in ME

• Safety: Two processes should not use 
critical section simultaneously  

• Liveness: Every live request for CS is 
eventually granted 

• Fairness: Requests must be granted in the 
order they are made (wrt logical time)
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Distributed Vs Centralized Mutex

• On a single computer, OS can manage 
access to a shared variable 

• On a distributed system, we have to use 
messages
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Assumption

• There is only one resource in question 

• In reality there can be more, but for now, 
let us focus on just one 

• All channels are FIFO
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Central server algorithm

• There is a server or coordinator 
– Holds a “token” for the resource 

• Other processes send token request to the 
server 

• Server puts incoming requests in a queue 
• Sends token to first process in queue 
• Process returns token when done 
• Server sends to next process
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Central server algorithm

• What are the advantages and 
disadvantages?
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Central server algorithm

• Advantages 
– Simple 
– Constant complexity per message 

• Disadvantages 
– Central point of failure 
– Central bottleneck 
– Does not preserve order in asynchronous 

systems 
– Server must be selected/elected
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Token ring algorithm

• Processes are arranged 
in a ring 

• The token is 
continuously passed in 
one direction 

• A process on reciving 
token: 
– If it does not need CS, 

passes token to next one 
– If it needs CS, it holds 

token, executes CS and 
then passes token
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Token ring algorithm

• Observe: 
– Processes do not need 

to be in an actual ring 
– Each process just 

needs to know the 
next process and have 
a method to send it a 
message
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Token ring

• Problems:
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Token ring

• Problems: 
– Not in-order 
– Long delay in getting token  
• Upto n-1 

– One failure breaks the ring 
– Passes token around even when there are no 

requests
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Lamport’s algorithm

• Every node i has a queue qi of requests 
– Keeps requests sorted by logical timestamps 

• Process i sends CS request: 
– Timestamped REQUEST (tsi, i) to all processes 
– Enters (tsi,i) to its own queue qi 

• Process j receives REQUEST (tsi,i) 
– Send timestamped REPLY to i 
– Enter (tsi,i) to qj
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Lamport’s Algorithm

• Process i enters CS if 
– (tsi,i) is at head of its own queue 
– It has received REPLY from all processes 

• To release CS 
– Process i sends RELEASE message to all 

• On receiving RELEASE, process j  
– Removes (tsi,i) from qj
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Observations

• Requests granted in order consistent with 
happened before 

• 3(n-1) messages per CS
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Ricart and Agrawala’s algorithm

• Main modification: 
– Node j does not send a REPLY if j has a 

request with timestamp lower than i’s 
request 

– j simply delays the REPLY until its RELEASE 
message
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Ricart-Agrawala’s algorithm

• Process i sends CS request: 
– Timestamped REQUEST (tsi, i) to all processes 

• Process j receives REQUEST (tsi,i) 
– If j has no outstanding request of its own 

earlier than (tsi,i) or is not executing CS 
• Send timestamped REPLY to i 
• Enter (tsi,i) to qj 

– Else keep (tsi,i) pending
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Ricart-Agrawala’s algorithm

• Process i enters CS if 
– It has received REPLY from all processes 

• To release CS 
– Sends REPLY message to pending processes 
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Ricart-Agrawala’s algorithm

• Has no queues at processes 
• The queue is maintained distributedly 

across all processes through timestamps 
and delayed replies 

• Uses 2(n-1) messages
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Maekawa’s Quorum algorithm

• Idea: instead of getting permission from all 
processes, get permission from only a subset 
of processes 

• For each process i, we have a voting set 
(quorum) Vi 
– For all i,j: Vi ∩ Vj ≠ ∅ 

– For all i, i ∈ Vi 

– Voting sets are same size, each node is part of 
same number of sets
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Maekawa’s Quorum algorithm

• Idea: 
– Arrange nodes in a square grid 
– Quorum for node i: 
• All nodes in same row or same column as i 

– Any two quorums intersect 

• Complexity? 
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• Complexity per CS: O(√n)
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