Distributed Systems

Clocks, Ordering, and global snapshots

Rik Sarkar
Edinburgh Fall 2014

University of
Logical clocks

• Why do we need clocks?
 – To determine when one thing happened before another

• Can we determine that without using a “clock” at all?
 – Then we don’t need to worry about synchronization, millisecond errors etc..
Happened before

• a→b : a happened before b
 – If a and b are successive events in same process then a→b
 – Send before receive
 • If a : “send” event of message m
 • And b : “receive” event of message m
 • Then a→b
 – Transitive: a→b and b→c ⇒ a→c
• Events without a happened before relation are “concurrent”
• $e_1 \rightarrow e_2$, $e_3 \rightarrow e_4$, $e_1 \rightarrow e_5$, $e_5 \parallel e_2$
• Events without a happened before relation are “concurrent”
• Happened before is a partial ordering
Happened before & causal order

• Happened before == could have caused/influenced
• Preserves causal relations
• Implies a partial order
 – Implies time ordering between certain pairs of events
 – Does not imply anything about ordering between concurrent events
Logical clocks

• Idea: Use a counter at each process
• Increment after each event
• Can also increment when there are no events
 – Eg. A clock
• An actual clock can be thought of as such an event counter
• It counts the states of the process
• Each event has an associated time: The count of the state when the event happened
Lamport clocks

• Keep a logical clock (counter)
• Send it with every message
• On receiving a message, set own clock to
 max({own counter, message counter}) + 1
• For any event e, write c(e) for the logical time
• Property:
 – If a → b, then c(a) < c(b)
 – If a || b, then no guarantees
Lamport clocks: example
Concurrency and lamport clocks

• If $e_1 \rightarrow e_2$
 – Then no lamport clock C exists with $C(e_1) = C(e_2)$
Concurrency and lamport clocks

- If \(e_1 \rightarrow e_2 \)
 - Then no lamport clock \(C \) exists with \(C(e_1) = C(e_2) \)

- If \(e_1 \parallel e_2 \), then there exists a lamport clock \(C \) such that \(C(e_1) = C(e_2) \)
The purpose of Lamport clocks
The purpose of Lamport clocks

- If \(a \rightarrow b \), then \(c(a) < c(b) \)
- If we order all events by their lamport clock times
 - We get a partial order, since some events have same time
 - The partial order satisfies “causal relations”
The purpose of Lamport clocks

• Suppose there are events in different machines
 – Transactions, money in/out, file read, write, copy
• An ordering of events that guarantees
 preserving causality
Total order from lamport clocks

• If event e occurs in process j at time C(e)
 – Give it a time (C(e), j)
 – Order events by (C, process id)
 – For events e1 in process i, e2 in process j:
 • If C(e1)<C(e2), then e1<e2
 • Else if C(e1)==C(e2) and i<j, then e1<e2

• Leslie Lamport. Time, clocks and ordering of events in a distributed system.
Vector clocks

• We want a clock such that:
 – If $a \rightarrow b$, then $c(a) < c(b)$
 – AND
 – If $c(a) < c(b)$, then $a \rightarrow b$

– Ref: Coulouris et al. V. Garg
Vector clocks

- Each process i maintains a vector V_i
- V_i has n elements
 - keeps clock $V_i[j]$ for every other process j
 - On every local event: $V_i[i] = V_i[i] + 1$
 - On sending a message, i sends entire V_i
 - On receiving a message at process j:
 - Takes max element by element
 - $V_j[k] = \max(V_j[k], V_i[k])$, for $k = 1,2,...,n$
 - And adds 1 to $V_j[j]$
Comparing timestamps

- $V = V'$ iff $V[i] = V'[i]$ for $i=1,2,...,n$
- $V < V'$ iff $V[i] < V'[i]$ for $i=1,2,...,n$
Comparing timestamps

- $V = V'$ iff $V[i] = V'[i]$ for $i=1,2,...,n$
- $V < V'$ iff $V[i] < V'[i]$ for $i=1,2,...,n$

- For events a, b and vector clock V
 - $a \rightarrow b$ iff $V(a) < V(b)$

- Is this a total order?
Comparing timestamps

• \(V = V' \) iff \(V[i] = V'[i] \) for \(i=1,2,\ldots,n \)

• \(V \leq V' \) iff \(V[i] \leq V'[i] \) for \(i=1,2,\ldots,n \)

• For events \(a, b \) and vector clock \(V \)
 – \(a \rightarrow b \) iff \(V(a) \leq V(b) \)

• Two events are concurrent if
 – Neither \(V(a) < V(b) \) nor \(V(b) < V(a) \)
Vector clock examples

• $(1,2,1) \leq (3,2,1)$ but $(1,2,1) \not< (3,1,2)$

• Also $(3,1,2) \not< (1,2,1)$

• No ordering exists
Vector clocks

• What are the drawbacks?

• What is the communication complexity?
Vector clocks

• What are the drawbacks?
 – Entire vector is sent with message
 – All vector elements (n) have to be checked on every message

• What is the communication complexity?
 – $\Omega(n)$ per message
 – Increases with time
Logical clocks

• There is no way to have perfect knowledge on ordering of events
 – A “true” ordering may not exist..

 – Logical and vector clocks give us a way to have ordering consistent with causality
Distributed snapshots

• Take a “snapshot” of a system
• E.g. for backup: If system fails, it can start up from a meaningful state

• Problem:
 – Imagine a sky filled with birds. The sky is too large to cover in a single picture.
 – We want to take multiple pictures that are consistent in a suitable sense
 • Eg. We can correctly count the number of birds from the snapshot
Distributed snapshots

• Global state:
 – State of all processes and communication channels

• Consistent cuts:
 – A set of states of all processes is a consistent cut if:
 – For any states s, t in the cut, s||t

• If \(a \to b \), then the following is not allowed:
 – b is before the cut, a is after the cut
Consistent cut
Distributed snapshot algorithm

• Ask each process to record its state
• The set of states must be a consistent cut

• Assumptions:
 – Communication channels are FIFO
 – Processes communicate only with neighbors
 – (We assume for now that everyone is neighbor of everyone)
 – Processes do not fail
Global snapshot: Chandy and Lamport algorithm

• One process initiates snapshot and sends a marker
• Marker is the boundary between “before” and “after” snapshot
Global snapshot: Chandy and Lamport algorithm

- **Marker send rule (Process i)**
 - Process i records its state
 - On every outgoing channel where a marker has not been sent:
 - i sends a marker on the channel
 - before sending any other message

- **Marker receive rule (Process i receives marker on channel C)**
 - If i has not received the marker before
 - Record state of I
 - Record state of C as empty
 - Follow marker send rule
 - Else:
 - Record the state of C as the set of messages received on C since recording i’s state and before receiving marker on C

- **Algorithm stops when all processes have received marker on all incoming channels**
Complexity

• Message?

• Time?