Distributed Systems

Peer-to-Peer
Rik Sarkar

University of Edinburgh
Fall 2014

Peer to Peer

e The common perception
— A system for distributing (sharing?) files

— Using the computers of common users (instead of
servers)

— A popular file is hosted by one or more users’
computers

— Someone who needs the file can download from
one or more users

— The P2P system provides easy methods to search
for files and download them

Peer to Peer

* More generally:
— Files are not the only things that can be shared

— Users can share computing power
* CPU cycles
* Storage
* Anonymity (lookup The Onion Router)
* Peer: One that is of equal standing to others in
the group
— Everyone is server and a client

— They provide the service as well as use it

Client — Server model

* The traditional model of internet service is
client server

* For a service X (search, email...)
— There is a specific known server

— Clients (browsers, email clients) contact the server
to get data

Client — Server model (drawbacks)

e Central point of failure
— When the server fails, entire service goes down
— If the server does not recover, all data may be lost

* Load management

— When many clients send requests, everyone gets
slow response

— Popular content gets slower service!

e Addressing: have to “know” the server or
search for it

P2P: Motivations

Tolerance to faults/attacks
Load balancing

User participation

Cost efficiency

Hard to control

Fault/attack tolerant

Everyone is a server, serving part of the data
store

Each file has multiple copies

Failures of few or even many computers does
not take down the entire service

Hard to attack everyone at the same time

Load balanced

Each file is hosted by multiple users

If many users want to download, the job gets
divided

Each host handles only a small load, so does
not get overloaded

Each downloader gets faster speed

Participation

Everyone feels involved
“I am providing something useful to the entire world!”

A unique application to inspire user-participation (crowdsourcing).
Internet 2.07

Previously (say, in 1999), internet used to be a passive experience
for most people

— Except the lucky few who had access to servers and could publish web
pages

Participation is critical to user interest

Cost efficiency

A file or service can be provided without the
expense of a large server

Popular content is hosted by many users

Popular content gets better and faster service!
— Unlikely to be lost due to failure

Large delivery bandwidth does not require
expensive server or infrastructure

Hard to control

* And therefore hard to take down

* No one person has much authority over the
system

Some Properties

* Unreliable, uncoordinated, unmanaged
— No central Authority, peers are independent

— Increases flexibility of individual peers, but makes
overall system (possibly) unreliable

* Resilient to attack, heterogeneous

— Large number of peers, hard to take down

* Large collection of resources
— Volunteer participation, global reach

Issues in p2p

Connecting -- bootstrapping

Finding content

Qua
Qua

Harc

ity of service
ity of data
to control

Issues In p2p

Connecting — bootstrapping
We first need a network
Suppose we want to connect to a p2p system

We need to find some members of the
existing system to join the system
— How can we do that?

Remember, there is no “server” with fixed
address that we can always use to connect

Issues In p2p

Finding content

Suppose we have managed to find the
network somehow

We now want to find a particular video
We don’t know who has it

Hard to build a search service, since peers
regularly join and leave the system

Issues In p2p

Quality of service

How fast a download or service works may
depend on who is hosting the file/service

A file/service may be unavailable simply
because all the peers hosting it are
unavailable

Hard to rely on it..

Issues In p2p

Quality of data
You ask for file X
Node Y claims to have the file

You download the file, and then find it is
something completely different

We can’t prevent node Y from making false
claims

Issues In p2p

Quality of data
You ask for file X
Node Y claims to have the file

You download the file, and then find it is
something completely different

We can’t prevent node Y from making false
claims

Issues In p2p

* Hard to control
* Therefore hard to guarantee anything

* The service may deteriorate in quality and
hard to do anything about it

Examples

Arpanet-Internet
SETI@Home
Napster

Gnutella
Bittorrent

Skype

ARPAnet -- iInternet

* Advanced research project agency of US defense
built a network

— To facilitate communication between few universities
working on defense and ARPA projects

— Each university had a few computers on this network
(computers were very expensive)

— They can send messages using those computers
— Each computer acted as server as well as client

* This network eventually grew to be the Internet

ARPAnet -- iInternet

ILLINOIS

MAP 4 September 1971

Distributed Systems, Edinburgh, 2014

22

ARPAnet -- iInternet

Original design of the Internet was with “peers” —
all computers on equal footing

The internet is still fundamentally a peer-based
system

You can have a server on your computer, and the
network protocols treat it the same way as any
other computer/server

So we can use our personal computers to host
web pages or other service

(Your ISP may make it difficult, but this is a
money issue, not a technology one)

SETI@Home

Search for extra-terrestrial Intelligence

Radio signal data from outer space are collected
by astronomical telescopes/antennae

To be analyzed for signs of “artificial signal”
structures created by intelligent life in other
planets

The data is split into small chinks for analysis by
different computers

SETI@home volunteers have the software
installed on their computers

The software contacts the UC Berkeley Server
and downloads data

When the computer is not in heavy use, the
software analyzes data and sends results back
to server

Distributed Systems, Edinburgh, 2014 24

SETI@Home

Still relies largely on the
central server for

coordination

Individual partcipants dioelescope A\ data conversion

only do the computation — _‘)

they are asked to ‘ —

No communication to daaserver | _

peers lternet 7 T\ days to each ciat

Y N Ty

(PCA) (FOMa) (P

U-I_\'IX_/ \U-"‘IQ(-_ / \L:I_\'I?(. J

Uses PZP for home business
computation instead of
the usual file sharing

school

Distributed Systems, Edinburgh, 2014 25

Napster

Music sharing software
Software makes list of all songs user wants to share

Uploads list of songs to napster server(s)

— (large systems need server farms — a distributed system in
itself)

When someone searches for a song, the search goes to
server

Server returns list of peers (IP addresses) that have the
song, and it thinks are online

Song download happens directly from one of the peers

Napster

Central server based indexing and search
— Single point of failure

Connecting to the network is easy — connect
to server

Download is fast — download from peer
Download from a single peer
No verification of data correctness

Napster -- History

Started in 1999

Popular -- 13 million users in 2001
Copyright lawsuits throughout
Millions in fines

Bankrupt and closed in 2002

“napster” brand exists as music store

Gnutella

Trying to address napster’s drawbacks
Completely distributed

— No server for indexing and searching

— Open protocol —anyone can build software
Gnutella used an overlay network for search

— Every node had a few peers as “neighbors”

— Choice of neighbors unrelated to underlying network

Search queries flooded in overlay network to reach all peers
Any node that has the file responds to search

— Response routed along the path that the search took to arrive to node
The file is downloaded from one of the responders

— The download happens directly from the peer (not through the
overlay network)

Gnutella

Flooding for search was inefficient

— Cost can be reduced by using TTL and limiting search radius, but
still inefficient

Need the IP address of at least 1 peer to join network

— Then can connect find other peers through it

— In practice, some peers were known to be always running
(servers)

— No fully distributed solution to this problem

No verification of data/content

More distributed operation than other systems
No longer active

Replaced by Kaaza, limewire etc

Bittorrent

* A file/folder shared creates a “torrent” file

— Acts as a more detailed description than simply the
name

— Contains name

— Contains list of trackers
* Trackers are servers that maintain list of peers hosting the
file
— Contains list of chunks & checksums
* Chunks are parts of the shared file

* Checksums are hashes to make sure that the correct data
has been downloaded

Bittorrent

Torrent files are found on web sites
— Bittorrent does not attempt to implement search

Bittorrent software contacts trackers to get list of
peers that have or are downloading file

— Seeds and leeches
Contacts them to get lists of chunks they have

Starts downloading multiple chunks in parallel
from different peers

Randomly, but preferring the more rare chunks

Bittorrent

* Rewards peers for more sharing

— The more you upload, the better download
speeds you get

* Prefers faster peers for download

Skype

Communication software
Central server to find IP address or for initial contact to user

After that, communication occurs directly, server does not see
messages

Means receiver does not get messages until both sender and
receiver are online and aware of each-other

Uses Voice over IP (VolP) for audio
Allows phone calls with credit
— Skype has an office phone line in country X
When user calls a number in country X
— The call goes to skype office in X through Internet (free of cost)
— Then it is routed to the regular phone (cost of a local call)
— To skype, it costs like a local call
— User charged a bit more for profit
— Still cheaper than International call

What is P2P good for?

In principle, can be used for all sorts of sharing

Possible to rebuild entire Internet as p2p

— Everyone participates

— A;g resources can be anywhere, found and delivered through
P

Not very practical, hard to do efficiently

Problem: peers are too dynamic, unreliable

Adapting to that, makes the system inefficient
— Think of Gnutella search

Still some interesting questions remain

— Can we use it to distribute data better? le. What if users stored
data in general, and not what they downloaded

— Can we use it to distribute computation in general?

Some criteria for using p2p design

Budget — p2p is low budget solution to distribute data/computation

Resource relevance/popularity — if the item is popular, p2p is useful.
Otherwise the few users may go offline..

Trust — if other users can be trusted, p2p can be a good solution.
— Can we build a secure network that operates without this assumption?

Rate of system change — if the system is too dynamic, p2p may not be
good. (Imagine peers joining/leaving too fast)

Rate of content change — p2p is good for static/fixed content. Not good for
contents that change regularly, since then all copies have to be updated.

Criticality — p2p is unreliable, since peers cats independently, may leave/
fail any time.
— P2P is good for applications that are good to have but are not critical to
anything urgent

Better p2p design: Some theory

* File transfer in p2p is scalable (efficient even
in large systems with many nodes)

— Occurs directly between peers using Internet

— Bittorrent like systems can download from
multiple peers — more efficiency

* The problem in p2p:
— Search is inefficient in large systems

Hash tables

A hash tableshasb

buckets

— Any item x is put into
bucket h(x)

— h(x) must be at most b

~ w N -, O

for all x

 Example: a hash table
of 5 buckets

— Any item x is put into
bucket x mod 5

— Insert numbers 3, 5,
12, 116, 211

Hash tables

Hash tables are used to find elements

quickly o |s
Suppose we use hash on the file name ' |-
“fname” 5 |2
Then h(“fname”) takes us to the bucket j >

containing file fname

If the bucket has many files, then we
will still have to search for the file
inside the bucket

But if our hash table is reasonably
large, then usually there will be only a
few files in the bucket — easy to search

Distributed hash tables

 Each computer knows the hash
function

w N = O

 Each computer is responsible for
some of the hash buckets

* Different parts of the data are
stored in different computers

Distributed Systems, Edinburgh, 2014 40

Distributed hash tables

 Elements can be inserted/
retrieved as usual to the
corresponding bucket

w N = O

— But need to ask the computer
responsible for that bucket

e Need efficient mechanism to find 4
the responsible node

— Using communication between
nodes

Distributed Systems, Edinburgh, 2014 41

Distributed hash tables

* P2p systems are dynamic

— Nodes join/leave all the time

w N = O

— Need a mechanism to shift
responsibilities with change

Distributed Systems, Edinburgh, 2014 42

Example system: Chord

e P2P system from MIT
(2001)

* Operates using a ring
overlay for the set of
node ids

* Each id has a slot in the
overlay

— Each slot may not be
occupied

Example system: Chord

Each node knows the next and
previous occupied slots in the
ring

Storage using hash tables

To store/retrieve data, forward ©
message to next until reaching
the node with the bucket

If the slot is not occupied, (for
example, 5 in the figure), store it
at the next occupied slot (eg. 6)

Example system: Chord

* When a node wants to join, it
finds occupied slots just before/
after itself

 Example: 5 wants to join

— 5 has to know at least one node
already in system, say node 1.

— 5 sends search message for itself
to1l

— The message gets forwarded
using next pointers

— Node 3 and 6 realize that they
are neighbors of 5

— Message sent back to 5

Example system: Chord

e 6 can send 5’s hash table 0
to5

* Each node replicates all
the data for several
nodes before/after itself

* If a node fails, its data is
still preserved

Example system: Chord

Problem: search is still
inefficient

It goes sequentially along
the ring

Cost: O(n)

Now imagine a ring with
a million nodes!

Chord: more efficient search

e Add some extra links in e

the overlay graph s o

* To find node x, go to the
neighbor that is nearest
to the destination Q

Q
* Which extra links to add

to the network?

Distributed Systems, Edinburgh, 2014

48

Chord: more efficient search

At node v, add links to

Q
— (2'+v) mod n o

Q
— Or the first occupied slot

after Q

* Each node has logn Q@
additional links

— O(log n) storage
e Search is efficient

Distributed Systems, Edinburgh, 2014

49

Chord: more efficient search

Suppose we are at node v

And searching for nodev g

+ X

There is at least one link
to a node between Q

v + X/2 and v+x

The message goes to that

node

Distributed Systems, Edinburgh, 2014

50

Chord: more efficient search

* The distance to the ®
destination becomes half s ®
in each step

Q
* How many steps does it @
?
take: &
Qe

Distributed Systems, Edinburgh, 2014

51

Chord: more efficient search

The distance d to the
destination becomes half o ©
or less in each step Q

How many steps does it
take? @

Q
The sequence d, d/2, d/4 ...
convergesto 1 ®)
In O(lg n) steps

— (since d<=n) ®

Distributed Systems, Edinburgh, 2014

52

Magnet links

Instead of a .torrent or other descriptor file, use a “link”
which eventually gets the file or equivalent data

— Can be used in any system, currently popular in bittorrent

Can be of different types
— Some links direct to the “trackers”, and give the hash of the file

— Other links lead into a DHT, to find .torrent file/info

e Assumes the user agent knows how to enter and find content in the
overlay network of the DHT

» Several slightly different formats for magnet links

Overall, bittorrent is moving toward using DHT magnet
links

But the formats/protocols are not yet standardized or well
documented

P2P — Some thoughts

File sharing has been studied a lot

Other things much less

Most p2p designs are old

Things have changed a lot in recent years
— More mobile, portable devices

— Faster networks

— Bluetooth, nfc, social networks
— Locations!

What are good p2p designs in the new
environments?

P2P — Can you..

* Design a system for personal storage?
— Not just copies
— Needs to be reliable

* No use if my data is not available when someone else is
offline

* Need multiple replicas
* Need to keep these replicas updated

— What other properties?

