Distributed Systems

Global states and snapshots

Rik Sarkar
Edinburgh Fall 2014

University of Edinburgh

Distributed snapshots

* Take a “snapshot” of a system

e E.g.for backup: If system fails, it can start up
from a meaningful state

 Problem:

— Imagine a sky filled with birds. The sky is too large to
cover in a single picture.

— We want to take multiple pictures that are consistent
in a suitable sense

* Eg. We can correctly count the number of birds from the
snapshot

Events and states

* Every process goes through alternate
sequence of states and events

* |tis enough to count the states for correct
clock sequence

-

?
¥ ?~
bw |

oV
I\/ 1

=\ 4
Pt

Events and states

 Happened before and concurrent relations for
states are defined similarly

Distributed snapshots

* Global state:
— State of all processes
— And state of all communication channels
 What message it is carrying
* Consistent cuts:
— A set of states of all processes is a consistent cut if:
— For any states s, t in the cut, s| |t

* If a—b, then the following is not allowed:
— b is before the cut, a is after the cut

Consistent cut

°
m
o
6| 65 %
Inconsistent cut
Consistent cut

Distributed Systems, Edinburgh, 2014

Distributed snapshot algorithm

* Find a set of states: one for each process
— Ask each process to record its state

e The set of states must be a consistent cut

* Assumptions:
— Communication channels are FIFO
— Processes communicate only with neighbors

— (We assume for now that everyone is neighbor of
everyone)

— Processes do not fail

Global snapshot: Chandy and Lamport
algorithm
* One process initiates snapshot and sends a
marker

 Marker is the boundary between “before” and
“after” the snapshot

Global snapshot: Chandy and Lamport algorithm

 Marker send rule (Process i)

— Process i records its state

— On every outgoing channel where a marker has not been sent:
* isends a marker on the channel
* before sending any other message

 Marker receive rule (Process j receives marker on channel

C)

— If j has not received the marker before
* Record state of |

e Record state of C as empty
* Follow marker send rule

— Else:

* Record the state of C as the set of messages received on C since
recording j’s state and before receiving marker on C

e Algorithm stops when all processes have received marker
on all incoming channels

Complexity

* Message?

Property

e Ifsl (inpl) —s2(in p2)
— Then s2 is before the cut = s1 is before the cut

— Suppose not & sl is after the cut.

 Then pl recorded its state before sl

* Consider the message m from p1 to p2
— This causes the relation s1—s2 to be true

pl must have recorded its state before sending m

pl must have sent marker to p2 before sending m
— By marker sending rule

p2 must have received marker before m and before s2
s2 must be after the cut — contradiction.

Application of snapshots:

Detection of stable predicates

e Stable predicate:

— A property that once it becomes true, stays true (until
detection and intervention)
— Eg:
* Deadlocked : every process in some subset is waiting for another
* Terminated : once ended, computation remains stopped

e Loss of token : in mutual exclusion, process with token can access
a resource. If token gets lost due to failure, it stays lost.

e Garbage : If no-one has a reference to a file, that file can be
deleted
— So, if such a property was true before the snapshot, it is
true in the snapshot, and can be detected by checking the
snapshot

Where snapshots are not useful:
non-stable predicates
 E.8.

— Was this file opened at some time?
— Was x1-x2 < 0 ever?

— Non-stable predicates may have happened, but
then system state changes..

Types of non-stable predicates

* Possibly B:
— B could have happened

* Definitely B:
— B definitely happened

* How can we check for definitely B and
possibly B?

Collecting global states

* Each process notes its every state & vector
timestamp
— Sends it to a server for recording

— Note: we do not need to save every time a state
changes: only when it affects the predicates to be

checked

* Assuming we know what predicates will be checked

 The server looks at these and tries to figure
out if predicate B was possibly or definitely

true

