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Asynchronous event 
ordering

• Goal: achieve some measure of synchronization 
between processes located at different sites 

• Ultimately, we will never be able to synchronize 
clocks to arbitrary precision 

• For some applications low precision is enough, for others it 
is not. 

• Where we cannot guarantee high enough precision 
for synchronization, we are forced to operate in the 
asynchronous world 

• Despite this we can still provide a logical ordering 
on events, which may useful for certain applications 
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Logical ordering

Logical Clocks

Logical Ordering

I Logical orderings attempt to give an order to events similar to
physical causal ordering of reality but applied to distributed
processes

I Logical clocks are based on the simple principles:

I Any process can order the events which it observes/executes

I Any message must be sent before it is received

• Logical orderings attempt to give an order to events similar to physical 
causal ordering of reality but applied to distributed processes 

• Logical clocks are based on the simple principles: 

• Any process knows the order of events which it observes or executes 

• Any message must be sent before it is received 
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Happened-before

Logical Clocks

Logical Ordering — Happened Before

I More formally we define the happened-before relation ! by
the three rules:

1. If e
1

and e
2

are two events that happen in a single process and
e
1

proceeds e
2

then e
1

! e
2

2. If e
1

is the sending of message m and e
2

is the receiving of the
same message m then e

1

! e
2

3. If e
1

! e
2

and e
2

! e
3

then e
1

! e
3

Logical Clocks

Logical Ordering

I Logical orderings attempt to give an order to events similar to
physical causal ordering of reality but applied to distributed
processes

I Logical clocks are based on the simple principles:

I Any process can order the events which it observes/executes

I Any message must be sent before it is received

• We define the happened-before relation → by the three rules:

1. If e1 and e2 are two events that happen in a single process and e1 precedes e2 then 
e1 → e2

2. If e1 is the sending of message m and e2 is the receiving of the same message m 
then e1 → e2

3. If e1 → e2 and e2 → e3 then e1 → e3

• If neither e1 → e2 nor e2 → e1 hold then e1, e2 are concurrent (e1 || e2)
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Logical Ordering — 
A Logical Clock

• Lamport designed an algorithm whereby events in a logical order 
can be given a numerical value 

• This is a logical clock, 

• similar to a program counter except that there is no backward jumping

• so it is monotonically increasing 

• Each process Pi maintains its internal logical clock Li 

• So in order to record the logical ordering of events, each process 
does the following: 

• Li is incremented immediately before each event is issued at Pi 

• When the process Pi sends a message m it piggybacks the value 
of its logical clock t = Li(m) - sending (m,t).

• Upon receiving a message (m,t) process Pj computes the new 
value of Lj as max(Lj,t) (and then processes m as usual)
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Logical clocks: 
Example

• Note that e's timestamp is the length of 
the longest chain of events that 
happened before e 
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Logical clocks: 
Example

• Note that e's timestamp is the length of 
the longest chain of events that 
happened before e 
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Logical Clocks: 
Properties

• Key point: using induction we can show that: 

• e1 → e2 implies that L(e1) < L(e2) 

• However, the converse is not true, that is: 

• L(e1) < L(e2) does not imply that e1 → e2 

• It is easy to see why, consider two processes, P1 and P2 which each 
perform two steps prior to any communication. 

• The two steps on the first process P1 are concurrent with both of the 
two steps on process P2. 

• In particular P1(e2) is concurrent with P2(e1) but L(P1(e2)) = 2 and 
L(P2(e1)) = 1 

P1

P2

e1

e1

e2

e2
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Logical Clocks

Lamport Clocks — No reverse implication

I Here event L(e) < L(b) < L(c) < L(d) < L(f )

I but only e ! f

I e is concurrent with b, c and d .

No reverse 
implication

• Clock values L(e)<L(b)<L(c)<L(d)<L(f)

• but only e→f 

• while e is concurrent with b, c and d.
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Total ordering
• The happened-before relation is a partial ordering 

• The numerical Lamport stamps attached to each 
event are not unique

• That is, some (concurrent) events can have the same number attached. 

• However we can make it a total ordering by considering the 
process identifier at which the event took place 

• In this case (Li(e1),i) < (Lj(e2),j) if either: 

• Li(e1) < Lj(e2) OR

• Li(e1) = Lj(e2) AND i<j 

• This has no physical meaning but can be useful for tie-
breaking
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Vector Clocks
• Vector clocks were developed (by Mattern and Fidge) to 

overcome the problem of the lack of a reversed implication 

• That is: L(e1) < L(e2) does not imply e1 → e2 

• Each process keeps it own vector clock Vi (an array of 
Lamport clocks, one for every process) 

• The vector clocks are updated according to the following rules: 

• Initially Vi = (0,...,0) 

• As with Lamport clocks before each event at process Pi it updates its 
own Lamport clock within the vector: Vi[i] = Vi[i] + 1 

• Every message Pi sends "piggybacks" its entire vector clock t = Vi

• When Pi receives a timestamp Vx then it updates all of its 
vector clocks with: Vi[j] = max(Vi[j],Vx[j]) 
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Vector Clocks
illustrated

p1

p2

p3

(1,0,0)

(1,1,0)

(0,0,1)
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(2,0,1)

(3,3,1)

(1,2,2)

(3,0,1)

Invariant: Vi[j] is the number of events
in process Pj that happened before 

current state of process Pi 
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Vector Clocks
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• Vector clocks (or timestamps) are compared as follows: 

• Vx = Vy iff Vx[i] = Vy[i] ∀i,1...N

• Vx ≤ Vy iff Vx[i] ≤ Vy[i] ∀i,1...N

• Vx < Vy iff Vx[i] < Vy[i] ∀i,1...N

• For example (1,2,1) < (3,2,1) but not < (3,1,2)

• It's not a total order: (1,0,1) and (0,1,0) incomparable!

• As with logical clocks: e1 → e2 implies V(e1) < V(e2)

• In contrast with logical clocks the reverse is also true: 
V(e1) < V(e2) implies e1 → e2

Vector Clocks: 
correctness
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Vector Clocks
• Vector Clocks augment Logical Clocks

• Of course vector clocks achieve this at the cost of larger time 
stamps attached to each message 

• In particular the size of the timestamps grows proportionally 
with the number of communicating processes 

• Summary of Logical Clocks 

• We cannot achieve arbitrary precision of synchronization 
between remote clocks via message passing 

• We are forced to accept that some events are concurrent, 
meaning that we have no way to determine which occurred first 

• Despite this we can still achieve a logical ordering of events that 
is useful for many applications 
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Global State
• Correctness of distributed systems frequently hinges upon 

satisfying some global system invariant 

• Even for applications in which you do not expect your 
algorithm to be correct at all times, it may still be desirable 
that it is “good enough” at all times 

• For example our distributed algorithm may be maintaining a 
record of all transactions 

• In this case it might be okay if some processes are behind 
other processes and thus do not know about the most recent 
transactions 

• But we would never want it to be the case that some process 
is in an inconsistent state, say applying a single transaction 
twice. 
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Global state: 
Motivating examples
1. Distributed garbage collection

2. Distributed deadlock detection

3. Distributed termination detection

4. Distributed debugging

• Let's consider the impact of global time 
on these problems
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Distributed Garbage 
Collection

• Determine whether a given resource is "live" (referenced by any 
processes/messages in transit)

• What if we had a global clock?

• Agree a global time for each process to check whether a reference exists 
to a given object 

• This leaves the problem that a reference may be in transit between 
processes 

• But each process can say which references they have sent before the 
agreed time and compare that to the references received at the agreed 
time 
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Distributed Deadlock 
Detection

• Determine whether processes are "stuck" waiting 
for messages from each other.

• What if we had a global clock?

• At an agreed time all processes send to some master 
process the processes or resources for which they are 
waiting 

• The master process then simply checks for a loop in the 
resulting graph 

you first

i couldn't possibly, after you
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Distributed 
Termination Detection

• Determine if all processes are "done" and no messages are 
in-transit

• What if we had a global clock?

• At an agreed time each process sends whether or not they have 
completed to a master process 

• Again this leaves the problem that a message may be in transit at 
that time 

• Again though, we should be able to work out which messages are still 
in transit 

passive passiveactivate
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Distributed 
Debugging

• Compute some property of the combined 
state of all processes (and channels)

• What if we had a global clock?

• At each point in time we can reconstruct the global 
state 

• We can also record the entire history of events in 
the exact order in which they occurred. 

• Allowing us to replay them and inspect the global 
state to see where things have gone wrong as with 
traditional debugging 
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Global State:
Consistent Cuts

• The global state is the combination of all process states and 
the states of the communication channels at an instant in time

• So, if we had synchronized clocks, we could agree on a time for each 
process to record its state 

• Since we cannot "stop time" to observe the actual global state, 
we attempt to find possible global state(s)

• A cut is a collection of prefix of the (combined) histories of the 
processes

• partitioning all events into those occurring "before" and "after" the cut 

• The goal is to assemble a meaningful global state from the the 
local states of processes 

• recorded at (possibly) different but concurrent times 
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Consistent Cuts

• A consistent cut is one which does not violate the happens-before relation →

• If e1 → e2 then either:

•  both e1 and e2 are before the cut or 

•  both e1 and e2 are after the cut or 

•  e1 is before the cut and e2 is after the cut 

•  but not e1 is after the cut and e2 is before the cut 

Global State — Consistent Cuts

I A consistent cut is one which does not violate the happens
before relation !

I If e
1

! e
2

then either:
I both e

1

and e
2

are before the cut or
I both e

1

and e
2

are after the cut or
I e

1

is before the cut and e
2

is after the cut
I but not
I e

1

is after the cut and e
2

is before the cut
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Summary
• Lamport and Vector clocks were introduced:

• Lamport clocks e1 → e2 ⇒ L(e1) < L(e2) 

• Vector clocks additionally satisfying V(e1) < V(e2) ⇒ e1 → e2 

• But at the cost of message length and scalability 

• The concept of a true history of events as opposed to 
runs and linearizations was introduced

• Next time: 

• Chandy and Lamport’s algorithm for recording a global 
snapshot of the system

•  Distributed debugging


