
Distributed
Systems

Rik Sarkar
James Cheney

Logical Clocks & Global State
January 30, 2014

January 30, 2014DS

Asynchronous event
ordering

• Goal: achieve some measure of synchronization
between processes located at different sites

• Ultimately, we will never be able to synchronize
clocks to arbitrary precision

• For some applications low precision is enough, for others it
is not.

• Where we cannot guarantee high enough precision
for synchronization, we are forced to operate in the
asynchronous world

• Despite this we can still provide a logical ordering
on events, which may useful for certain applications

January 30, 2014DS

Logical ordering

Logical Clocks

Logical Ordering

I Logical orderings attempt to give an order to events similar to
physical causal ordering of reality but applied to distributed
processes

I Logical clocks are based on the simple principles:

I Any process can order the events which it observes/executes

I Any message must be sent before it is received

• Logical orderings attempt to give an order to events similar to physical
causal ordering of reality but applied to distributed processes

• Logical clocks are based on the simple principles:

• Any process knows the order of events which it observes or executes

• Any message must be sent before it is received

January 30, 2014DS

Happened-before

Logical Clocks

Logical Ordering — Happened Before

I More formally we define the happened-before relation ! by
the three rules:

1. If e
1

and e
2

are two events that happen in a single process and
e
1

proceeds e
2

then e
1

! e
2

2. If e
1

is the sending of message m and e
2

is the receiving of the
same message m then e

1

! e
2

3. If e
1

! e
2

and e
2

! e
3

then e
1

! e
3

Logical Clocks

Logical Ordering

I Logical orderings attempt to give an order to events similar to
physical causal ordering of reality but applied to distributed
processes

I Logical clocks are based on the simple principles:

I Any process can order the events which it observes/executes

I Any message must be sent before it is received

• We define the happened-before relation → by the three rules:

1. If e1 and e2 are two events that happen in a single process and e1 precedes e2 then
e1 → e2

2. If e1 is the sending of message m and e2 is the receiving of the same message m
then e1 → e2

3. If e1 → e2 and e2 → e3 then e1 → e3

• If neither e1 → e2 nor e2 → e1 hold then e1, e2 are concurrent (e1 || e2)

January 30, 2014DS

Logical Ordering —
A Logical Clock

• Lamport designed an algorithm whereby events in a logical order
can be given a numerical value

• This is a logical clock,

• similar to a program counter except that there is no backward jumping

• so it is monotonically increasing

• Each process Pi maintains its internal logical clock Li

• So in order to record the logical ordering of events, each process
does the following:

• Li is incremented immediately before each event is issued at Pi

• When the process Pi sends a message m it piggybacks the value
of its logical clock t = Li(m) - sending (m,t).

• Upon receiving a message (m,t) process Pj computes the new
value of Lj as max(Lj,t) (and then processes m as usual)

January 30, 2014DS

Logical clocks:
Example

• Note that e's timestamp is the length of
the longest chain of events that
happened before e

p1

p2

p3

1

2

1
3

2

4

4

3

January 30, 2014DS

Logical clocks:
Example

• Note that e's timestamp is the length of
the longest chain of events that
happened before e

p1

p2

p3

1

2

1
3

2

4

4

3

January 30, 2014DS

Logical Clocks:
Properties

• Key point: using induction we can show that:

• e1 → e2 implies that L(e1) < L(e2)

• However, the converse is not true, that is:

• L(e1) < L(e2) does not imply that e1 → e2

• It is easy to see why, consider two processes, P1 and P2 which each
perform two steps prior to any communication.

• The two steps on the first process P1 are concurrent with both of the
two steps on process P2.

• In particular P1(e2) is concurrent with P2(e1) but L(P1(e2)) = 2 and
L(P2(e1)) = 1

P1

P2

e1

e1

e2

e2

January 30, 2014DS

Logical Clocks

Lamport Clocks — No reverse implication

I Here event L(e) < L(b) < L(c) < L(d) < L(f)

I but only e ! f

I e is concurrent with b, c and d .

No reverse
implication

• Clock values L(e)<L(b)<L(c)<L(d)<L(f)

• but only e→f

• while e is concurrent with b, c and d.

January 30, 2014DS

Total ordering
• The happened-before relation is a partial ordering

• The numerical Lamport stamps attached to each
event are not unique

• That is, some (concurrent) events can have the same number attached.

• However we can make it a total ordering by considering the
process identifier at which the event took place

• In this case (Li(e1),i) < (Lj(e2),j) if either:

• Li(e1) < Lj(e2) OR

• Li(e1) = Lj(e2) AND i<j

• This has no physical meaning but can be useful for tie-
breaking

January 30, 2014DS

Vector Clocks
• Vector clocks were developed (by Mattern and Fidge) to

overcome the problem of the lack of a reversed implication

• That is: L(e1) < L(e2) does not imply e1 → e2

• Each process keeps it own vector clock Vi (an array of
Lamport clocks, one for every process)

• The vector clocks are updated according to the following rules:

• Initially Vi = (0,...,0)

• As with Lamport clocks before each event at process Pi it updates its
own Lamport clock within the vector: Vi[i] = Vi[i] + 1

• Every message Pi sends "piggybacks" its entire vector clock t = Vi

• When Pi receives a timestamp Vx then it updates all of its
vector clocks with: Vi[j] = max(Vi[j],Vx[j])

January 30, 2014DS

Vector Clocks
illustrated

p1

p2

p3

(1,0,0)

(1,1,0)

(0,0,1)

(1,2,0)

(2,0,1)

(3,3,1)

(1,2,2)

(3,0,1)

Invariant: Vi[j] is the number of events
in process Pj that happened before

current state of process Pi

January 30, 2014DS

Vector Clocks
illustrated

p1

p2

p3

(1,0,0)

(1,1,0)

(0,0,1)

(1,2,0)

(2,0,1)

(3,3,1)

(1,2,2)

(3,0,1)

Invariant: Vi[j] is the number of events
in process Pj that happened before

current state of process Pi

January 30, 2014DS

• Vector clocks (or timestamps) are compared as follows:

• Vx = Vy iff Vx[i] = Vy[i] ∀i,1...N

• Vx ≤ Vy iff Vx[i] ≤ Vy[i] ∀i,1...N

• Vx < Vy iff Vx[i] < Vy[i] ∀i,1...N

• For example (1,2,1) < (3,2,1) but not < (3,1,2)

• It's not a total order: (1,0,1) and (0,1,0) incomparable!

• As with logical clocks: e1 → e2 implies V(e1) < V(e2)

• In contrast with logical clocks the reverse is also true:
V(e1) < V(e2) implies e1 → e2

Vector Clocks:
correctness

January 30, 2014DS

Vector Clocks
• Vector Clocks augment Logical Clocks

• Of course vector clocks achieve this at the cost of larger time
stamps attached to each message

• In particular the size of the timestamps grows proportionally
with the number of communicating processes

• Summary of Logical Clocks

• We cannot achieve arbitrary precision of synchronization
between remote clocks via message passing

• We are forced to accept that some events are concurrent,
meaning that we have no way to determine which occurred first

• Despite this we can still achieve a logical ordering of events that
is useful for many applications

January 30, 2014DS

Global State
• Correctness of distributed systems frequently hinges upon

satisfying some global system invariant

• Even for applications in which you do not expect your
algorithm to be correct at all times, it may still be desirable
that it is “good enough” at all times

• For example our distributed algorithm may be maintaining a
record of all transactions

• In this case it might be okay if some processes are behind
other processes and thus do not know about the most recent
transactions

• But we would never want it to be the case that some process
is in an inconsistent state, say applying a single transaction
twice.

January 30, 2014DS

Global state:
Motivating examples
1. Distributed garbage collection

2. Distributed deadlock detection

3. Distributed termination detection

4. Distributed debugging

• Let's consider the impact of global time
on these problems

January 30, 2014DS

Distributed Garbage
Collection

• Determine whether a given resource is "live" (referenced by any
processes/messages in transit)

• What if we had a global clock?

• Agree a global time for each process to check whether a reference exists
to a given object

• This leaves the problem that a reference may be in transit between
processes

• But each process can say which references they have sent before the
agreed time and compare that to the references received at the agreed
time

January 30, 2014DS

Distributed Deadlock
Detection

• Determine whether processes are "stuck" waiting
for messages from each other.

• What if we had a global clock?

• At an agreed time all processes send to some master
process the processes or resources for which they are
waiting

• The master process then simply checks for a loop in the
resulting graph

you first

i couldn't possibly, after you

January 30, 2014DS

Distributed
Termination Detection

• Determine if all processes are "done" and no messages are
in-transit

• What if we had a global clock?

• At an agreed time each process sends whether or not they have
completed to a master process

• Again this leaves the problem that a message may be in transit at
that time

• Again though, we should be able to work out which messages are still
in transit

passive passiveactivate

January 30, 2014DS

Distributed
Debugging

• Compute some property of the combined
state of all processes (and channels)

• What if we had a global clock?

• At each point in time we can reconstruct the global
state

• We can also record the entire history of events in
the exact order in which they occurred.

• Allowing us to replay them and inspect the global
state to see where things have gone wrong as with
traditional debugging

January 30, 2014DS

Global State:
Consistent Cuts

• The global state is the combination of all process states and
the states of the communication channels at an instant in time

• So, if we had synchronized clocks, we could agree on a time for each
process to record its state

• Since we cannot "stop time" to observe the actual global state,
we attempt to find possible global state(s)

• A cut is a collection of prefix of the (combined) histories of the
processes

• partitioning all events into those occurring "before" and "after" the cut

• The goal is to assemble a meaningful global state from the the
local states of processes

• recorded at (possibly) different but concurrent times

January 30, 2014DS

Consistent Cuts

• A consistent cut is one which does not violate the happens-before relation →

• If e1 → e2 then either:

• both e1 and e2 are before the cut or

• both e1 and e2 are after the cut or

• e1 is before the cut and e2 is after the cut

• but not e1 is after the cut and e2 is before the cut

Global State — Consistent Cuts

I A consistent cut is one which does not violate the happens
before relation !

I If e
1

! e
2

then either:
I both e

1

and e
2

are before the cut or
I both e

1

and e
2

are after the cut or
I e

1

is before the cut and e
2

is after the cut
I but not
I e

1

is after the cut and e
2

is before the cut

January 30, 2014DS

Summary
• Lamport and Vector clocks were introduced:

• Lamport clocks e1 → e2 ⇒ L(e1) < L(e2)

• Vector clocks additionally satisfying V(e1) < V(e2) ⇒ e1 → e2

• But at the cost of message length and scalability

• The concept of a true history of events as opposed to
runs and linearizations was introduced

• Next time:

• Chandy and Lamport’s algorithm for recording a global
snapshot of the system

• Distributed debugging

