
Distributed
Systems

Rik Sarkar
James Cheney

Security Protocols & Case Studies
March 17, 2014

March 17, 2014DS

Recap & outline
• Security is hard

• Cryptography is not security

• No "security through obscurity"

• Today:

• cryptographic protocols, continued

• case studies: Kerberos, TLS, Wifi, Bitcoin

March 17, 2014DS

Scenario 3. Authenticated
Communication with Public Keys

• Alice and Bob want to securely set up a shared private key KAB

• Assume that Bob has generated his own public/private key pair
KBpub,KBpriv

• We also assume that there is some public-key certificate
system such that Alice can obtain Bob’s public key in a way that
she is confident that it is indeed Bob’s public key

• Alice obtains Bob’s public key KBpub

• Alice creates a new shared key KAB and encrypts it using
KBpub using a public-key algorithm. This she sends to Bob
{KAB }KBpub

• Bob decrypts this using the appropriate private key to obtain
the shared private key KAB.

• Alice and Bob can now use KAB to communicate

March 17, 2014DS

Scenario 3. Authenticated
Communication with Public Keys

• This is a hybrid cryptographic protocol and is widely used as it
exploits useful features of both public-key and secret-key
encryption algorithms

• The slower public-key algorithm is used to set up the speedier
secret-key communication

• Problems:

• The distribution of public keys. Mallory may intercept Alice’s initial
request to obtain Bob’s public key and simply send Alice their own public
key.

• Mallory then intercepts the sending of the shared key which they copy
and then re-encrypt using Bob’s real public key and forward it to Bob.

• Mallory can then intercept all subsequent messages since they have the
shared secret key. They may also need to forward the messages on to
Bob and Alice depending on the delivery mechanism.

March 17, 2014DS

Digital Signatures
• Cryptography can be used to implement digital signatures

• Alice can also encrypt the message using her own secret key

• Anyone can decrypt the message so long as they know Alice’s public
key

• Provided we can be sure that the public key in question really is Alice’s
we now know that the message must have originated from Alice, since
only Alice knows Alice’s private key

• Rather than encrypt the entire message Alice can compute a digest of
the message, where a digest is similar to a checksum except that two
distinct messages are very unlikely to have the same digest value

• Cryptographically secure hashing: MD5 (broken), SHA-1

• This digest is encrypted and attached to the message, the receiver
can then check that the unencrypted digest matches the (receiver
computed) digest of the contents of the message

March 17, 2014DS

Scenario 4. Digital
Signatures

• Alice wishes to sign a document M so that any subsequent
receiver can be sure that it originated from Alice

• Alice computes a fixed length digest of the document
Digest(M)

• Alice encrypts the digest with her private key and
attaches the result to the message: M,{Digest(M)}KApriv

• Alice makes the document with signature available

• Bob (or anyone else) obtains the signed document,
extracts M and computes d = Digest(M)

• Bob decrypts {Digest(M)}KApriv using KApub and compares
the result to d, if they match the signature is valid.

March 17, 2014DS

Scenario 4. Digital
Signatures

• We have three requirements of digital signatures

• Authenticity: It convinces the recipient that the signer deliberately signed the
document and it has not been altered by anyone else

• Unforgeability: It provides proof that the signer, and no one else, deliberately
signed the document. In particular the signature cannot be copied and placed on
another document

• Non-repudiation: The signer cannot credibly deny that the document was
signed by them

• Note that encryption of the entire document, or its digest, gives good
evidence for the signature as unforgeable

• Non-repudiation is the most difficult to achieve for digital signatures. A
signer may simply deliberate disclose their secret key to others and
then claim that anyone could have signed it.

• This can be solved through engineering but is generally solved through
social contract “If you give away your secret key you are liable”

March 17, 2014DS

Scenario 5.
Certificates

• Suppose Alice would like to shop with Carol

• Carol would like to be sure that Alice has some
form of bank account

• Alice has a bank account at Bob’s bank

• Bob’s bank provides Alice with a certificate
stating that Alice does indeed have an account
with Bob.

• Such a certificate is digitally signed with Bob’s
private key KBpriv and can be checked using Bob’s
public key KBpub

March 17, 2014DS

Scenario 5.
Certificates

• Now suppose Mallory wished to carry out an attack
to convince Carol that she owns Alice's account
(i.e. identity theft)

• This is quite simple, Mallory only requires to
generate a new public-private key pair
KBprivFake,KBpubFake

• She then creates a certificate falsely claiming that
she is the owner of Alice's account and signs it
using KBprivFake

• This attack works if she can convince Carol that
KBpubFake is the true public key of Bob’s bank

March 17, 2014DS

Scenario 5.
Certificates

• The solution is for Carol to require a certificate from a trusted
fourth party, Dave from the Bankers’ Federation, whose role it is
to certify the public keys of banks

• Dave issues a public-key certificate for Bob’s public key KBpub. This
is signed using Dave’s private key KDpriv and can be verified using
Dave’s public key KDpub

• Of course now we have a recursive problem, since now we need
to authenticate that KDpub is the legitimate public key of Dave
from the Bankers’ federation.

• We break the recursion by insisting that at some point Carol must
trust one person, say Dave, and to do so may require to meet
them in person to exchange public keys

• Note that Carol only has to trust Dave in order to verify bank
account certificates from a variety of banks

March 17, 2014DS

Scenario 5.
Certificates

• To make certificates useful, we require:

1. A standard format such that certificate issuers and users can
construct and interpret them successfully.

2. Agreement on the way in which chains of certificates are constructed
and in particular the notion of a trusted authority

• In addition, we may wish to revoke a certificate, for example if
someone closes their account

• This is problematic since once the certificate is given it can be
copied and stored etc

• The usual solution is for the certificate to have an expiration
date

• the holder of the certificate must periodically renew it (in the same way
that one renews a passport)

March 17, 2014DS

Announcements
•No lecture March 20 (Thursday)

•Final lecture March 24

• review of course and examinable material

March 17, 2014DS

Case studies
• We will now see how some of these

ideas play out in practice:

• Needham-Schroeder protocol and Kerberos

• TLS (used in HTTPS)

• IEEE 802.11 WiFi security

• Electronic money - Bitcoin

March 17, 2014DS

Needham-Schroeder
• Authentication in more detail:

Bob

Sara

Alice

March 17, 2014DS

Needham-Schroeder
• Authentication in more detail:

Bob

A,B,NA

Sara

Alice

March 17, 2014DS

Needham-Schroeder
• Authentication in more detail:

Bob

A,B,NA

Sara

{NA,B
,KAB,{K

AB,A
}KB}K

A

Alice

March 17, 2014DS

Needham-Schroeder
• Authentication in more detail:

Bob

A,B,NA

Sara

{NA,B
,KAB,{K

AB,A
}KB}K

A

Alice

{KAB,A}KB

March 17, 2014DS

Needham-Schroeder
• Authentication in more detail:

Bob

A,B,NA

Sara

{NA,B
,KAB,{K

AB,A
}KB}K

A

Alice

{KAB,A}KB

{NB}KAB

March 17, 2014DS

Needham-Schroeder
• Authentication in more detail:

Bob

A,B,NA

Sara

{NA,B
,KAB,{K

AB,A
}KB}K

A

Alice

{KAB,A}KB

{NB}KAB

{f(NB)}KAB

March 17, 2014DS

Nonces
• Needham-Schoeder uses nonces

• Essentially, a timestamp or random
unguessable value

• used to avoid replay attacks

• and challenge other party to decrypt/re-encrypt

• Last step uses some function f(NB)

• requiring Alice to prove that she was able to
decrypt Bob's message using KAB, do f to it, and
re-encrypt

March 17, 2014DS

Problem
• Needham-Schroeder has a weakness

• If Mallory learns an (old but still valid) KAB she
can replay the third message {KAB,A}KB

• Thereby convincing Bob that she is Alice

• Can easily happen if Alice's system is
compromised

• Solution: add nonce/timestamp to message 3
also: {KAB,A,time}KB

• enabling Bob to detect & reject attempts to replay stale
messages

March 17, 2014DS

Kerberos
• Uses Needham-Schroeder authentication in 2

stages:

• Tickets timestamped with start & end time

• typically valid for up to 12 hours

Authentication
service A

Ticket-
granting service

TGS

Client
C

Server
S

March 17, 2014DS

Kerberos
• Uses Needham-Schroeder authentication in 2

stages:

• Tickets timestamped with start & end time

• typically valid for up to 12 hours

Authentication
service A

Ticket-
granting service

TGS

Client
C

Server
S

March 17, 2014DS

Kerberos
• Uses Needham-Schroeder authentication in 2

stages:

• Tickets timestamped with start & end time

• typically valid for up to 12 hours

Authentication
service A

Ticket-
granting service

TGS

Client
C

Server
S

March 17, 2014DS

Kerberos
• Uses Needham-Schroeder authentication in 2

stages:

• Tickets timestamped with start & end time

• typically valid for up to 12 hours

Authentication
service A

Ticket-
granting service

TGS

Client
C

Server
S

March 17, 2014DS

Critiques
• In earlier versions:

• Using nonces as timestamps requires clock
synchronization

• which is hard in itself

• and may lead to indirect vulnerabilities through
synchronization protocol

• Fix: allow timestamps or sequence numbers

• Keep recent history to prevent reuse / replay

• Difficult to guarantee in presence of server failures
though

March 17, 2014DS

TLS
• Secure Sockets Layer (SSL)

• introduced to support secure online
transactions (e-commerce)

• Transport Layer Security (TLS)

• extension of SSL; Internet standard RFC 2246

• Supported by most browsers

• now used for many other applications, e.g.
(secure) Web email clients

March 17, 2014DS

Overview

TLS
Handhake
Protocol

TLS Cipher
Change

Spec

TLS Alert
Protocol

HTTP

TLS Record Protocol

Transport layer (TCP)

Network layer (IP)

...

TLS Application Protocol

March 17, 2014DS

Main features
• Provides a (relatively) transparent wrapper over a

standard TCP/IP connection

• Negotiation to agree on protocol / key size

• initially to avoid export restrictions, but also a good idea
for futureproofing

• Use hybrid public/shared key approach to establish
secure channel

• Use certificate authorities to identify server reliably

• user is alerted if certificate doesn't match URL, or if
something else goes wrong

March 17, 2014DS

Attacks
• TLS has a number of known

vulnerabilities (cf. Wikipedia)

March 17, 2014DS

IEEE 802.11 (WiFi)
• Wired Equivalent Privacy (WEP)

• simple attempt to secure wireless
communications

• Access control: challenge-response
(similar to Kerberos)

• Privacy and integrity: optional
encryption based on RC4 stream cipher

March 17, 2014DS

Problems with WEP
• RC4 with weak (40 or 64 bit) keys

• Stream cipher subject to brute-force attack

• Single key across network (= single point of failure)

• Base stations not authenticated (allows eavesdropping)

• Misconfiguration / lack of documentation

• hard for end users to understand risks and how to address
them

• Successors: WPA, WPA2

• use stronger (128-bit) keys, AES encryption

• support negotiation of cryptographic algorithms (like TLS)

March 17, 2014DS

Bitcoin
• "Cryptocurrency"

• uses cryptography to enable creation and transfer of
money

• Started in 2009

• Supported by a peer-to-peer payment network -
the "Bitcoin network"

• There are now >12M bitcoins (BTCs) in circulation

• currently each worth ~$600, over $7 billion total

• (Arbitrary) limit of 21 million

March 17, 2014DS

March 17, 2014DS

March 17, 2014DS

Bitcoin: how it works
(simplified)

• Send payments by sending signed messages (public key
encryption)

• Request update to public distributed database of all transactions

• similar to BitTorrent, but stores complete history of all coins/transactions

• transactions timestamped, forming a "block chain"

• Adding transactions to the block chain ("mining") takes work

• This work is rewarded with more bitcoins (~ 25 BTC/block currently)

• Several different types of specialized Bitcoin mining hardware for
sale

March 17, 2014DS

Wallets
• A collection of public/private keys

• Can be managed by:

• Software clients (Win, Linux, Mac)

• Websites (including currency exchange)

• Storing electronically readable coins on paper

March 17, 2014DS

Is it a good idea?
• Caveat #1: volatility

• BTC value varies a lot compared to normal currencies

• There have been several speculative "bubbles"

• Some people have made (or lost) a lot of (real) money investing in
Bitcoin

March 17, 2014DS

Is it a good idea?
• Caveat #2: Private key = money

• BTCs are no more secure than money in bank (or under mattress)

• (Probably less, depending on how careful you are)

• If someone learns your private key (or you lose it) there is no way
to prevent theft/loss

• "Bitcoins can be lost. In 2013 one user said he lost 7,500 bitcoins,
worth $7.5m at the time, when he discarded a hard drive containing
his private key." (Wikipedia)

• Caveat #3: Many governments not a big fan of Bitcoin

• Can easily be used for criminal / black market / money laundering

• Political/national security concerns may win out over BTC

• What if someone (NSA) breaks PK encryption in the future?

