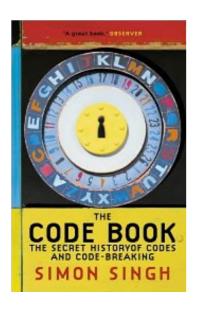
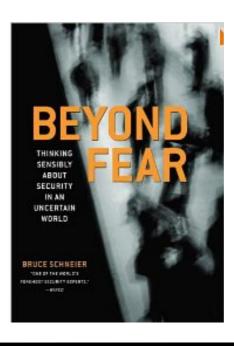
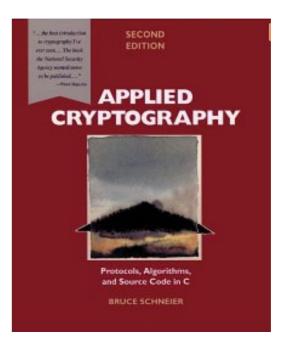
Distributed Systems

Rik Sarkar James Cheney


Security & Cryptography March 13, 2014


Overview


- In this part of the course we will look at security in distributed systems
- Cryptography will provide the basis of secrecy and integrity
 - That is, making sure that no unauthorised entity may read any particular message
 - No unintended message is delivered, including a duplication of an intended message
- We will examine private-key techniques as well as publickey techniques and digital signatures
- Will also cover other security issues arising in distributed systems

Books

- We will focus on threats to distributed systems caused by the unavoidable exposure of their communication channels
- The largest threat is generally human error
- Bruch Schneier also has a newsletter each month called "cryptogram" which talks about many security related topics including cryptography and physical/human related policies

Cryptography

- Computer security and computer cryptography are separate subjects
 - cryptography provides the basis for most of the mechanisms that we use in computer security
- Until the 1990s cryptographic techniques were tighylt controlled military/government
- When Bruce Schneier first published his book "Applied Cryptography" in 1994 the legal status of including cryptographic algorithms and techniques was in doubt.
- Today it is recognized that "security through obscurity" doesn't work; algorithms are peer-reviewed and publicly available

Pre-1999 US Munitions Control

- RSA crypto-algorithms, were, until 1999, classified by the US State Department as munitions
 - Meaning they were classified in the same category as: chemical and biological weapons, tanks, heavy artillery, and military aircraft
- Additionally this meant that it was illegal to export such cryptographic algorithms, with penalties including \$1m fines and long prison sentences
- This was obviously silly:
 - It is impossible to enforce
 - The technology is widely available throughout the world
 - Algorithms published in international journals
 - Some cryptographic algorithms were developed outside the US

Pre-1999 US Munitions Control

- Popular email programs such as Netscape Communicator had to have separate downloads for US based downloaders and external downloaders
- When it went open-source and became Mozilla the external versions were quickly patched to include full 160-bit encryption
- People took to methods of highlighting how ridiculous export ban was
- one such effort demonstrated that RSA crypto algorithms can be written in a fairly short amount of Perl code:

```
#!/bin/perl -sp0777i<X+d*lMLa^*lN%0]dsXx++lMlN/dsM0<j]dsj
$/=unpack('H*',$_);$_='echo 16dio\U$k"SK$/SM$n\EsN0p[lN*1
lK[d2%Sa2/d0$^Ixp"|dc';s/\W//g;$_=pack('H*',/((..)*)$/)</pre>
```

Pre-1999 US Munitions Control

- So to highlight how ludicrous it was people started attaching it to emails
- Technically if said emails were sent outside the US such people could have been prosecuted

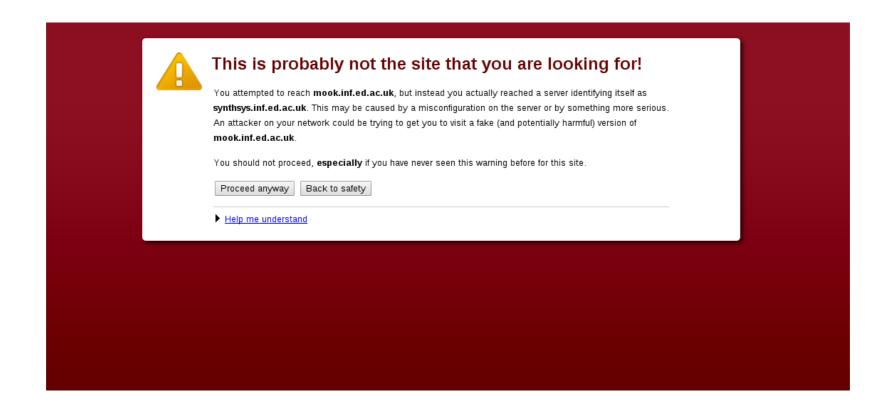
```
The following is classified as munitions by
  the US state department:
#!/bin/perl -sp0777i<X+d*lMLa^*lN%0]dsXx++lMlN/dsM0<j]dsj
$/=unpack('H*',$_);$_='echo 16dio\U$k"SK$/SM$n\EsN0p[lN*1
lK[d2%Sa2/d0$^Ixp"|dc';s/\W//g;$ =pack('H*',/((..)*)$/)</pre>
```

We will assume

- Wherever you are in the world you have access to cryptographic protocols and algorithms
- There are a set of nodes which share resources
- Resources may be physical or data/programming objects
- Communication is via message passing only, and hence access to shared resources occurs via message passing
- The nodes are connected via a network which may be accessed by any attacker
- An attacker may copy or read any message transmitted through the network
- They may also inject arbitrary messages, to any destination purporting to come from any source

Policies and Mechanisms

- There is an important distinction between a security policy and a security mechanism
- Policy: what you want to achieve
- Mechanism: what you actually do
- For example, the door to your accommodation is likely secured using a lock and key, that is the security mechanism
 - Additional rules such as "lock door when you leave" and "change locks if key lost" may be needed too
- The policy is "prevent people from entering accommodation"
- Another mechanism for the same policy: door is broken, but security guard keeps people from entering


Threats and Attacks

- For most types of network, an attacker wishing to obtain private information can simply listen in on all messages
 - especially wireless
- Doing so means that it is relatively simple to log all messages between communicating computers
- Depending on the application simply knowing the contents of some messages may be enough,
- otherwise the attacker may need information about the distributed algorithm in question in order to construct information from the data in the messages that were recorded

Threats and Attacks

- A slightly more elaborate attack is to construct a server in between the client and the intended server
- If the client does not authenticate the server, then it may send private information to what it believes to be the intended server
- Often the fake server will then log the information sent to it, but then also forward it on the real server in question
 - "man in the middle"
- Thus the attack is non-trivial to detect.
- This is a common technique for obtaining web-passwords

Security

 Third party "Certificate Authorities" issue digital certificates containing encryption keys to verify the identity of secure websites

Threats and Attacks

Threats and attacks fall into three broad categories:

1. Leakage

The acquisition of data by unauthorized entities

2. Tampering

The alteration of data by an unauthorized entity

3. Vandalism

 Disruption to the service in question without gain to the perpetrators

Threats and Attacks

 We can further distinguish attacks in a distributed system by the way in which communication channels are misused:

1. Eavesdropping

Obtaining copies of messages without authority

2. Masquerading

 Sending or receiving messages using the identity of another process/entity without their authority

3. Message Tampering

 Intercepting messages and altering them before forwarding them on to their intended recipient

4. Replaying

 Storing intercepted messages and sending them at a later date. This attack can be effective even when used against authenticated and encrypted messages.

Denial of Service

Flooding a service with requests such that it cannot handle legitimate requests

Information Existence

- Even with strong encryption, the detection of a message transmitted between two processes may leak information
- The mere existence of such a message may be the source of information.
 - "Alice said something to Bob, what are they up to?"
 - A flood of messages to a dealer of a particular set of stocks may indicate a high-level of trading for a particular stock
- One possible defense is to regularly send random nonsense/ignorable messages

Trade-offs

- Ultimately all security measures involve trade-offs
- A cost is incurred in terms of computational work and network usage for use of cryptography and other protocols
 - How many passwords do you have?
- Where a security measure is not correctly specified it may limit the availability of the service for legitimate users/uses
- These costs must be compared against the threat or cost of failure to maintain security
- Generally we wish to avoid disaster and minimize mishaps
 - while still allowing effective use of the system

Assume the worst

- Interfaces are exposed distributed systems are designed such that processes offer a set of services, or an interface.
- These interfaces must be open to allow for new clients. Attackers therefore are able to send an arbitrary message to any interface
- Networks are insecure: An attacker can send a message and falsify the origin address so as to masquerade as another user.
- Host addresses may be spoofed so that an attacker may receive a message intended for another
- Algorithms and program code is available to attackers
- Messages sent may be intercepted but that may not be useful since to make sense of the message an attacker may need to know the purpose/protocol within which the message is sent.
 - Assume that attacker does know these things and has significant computational resources - no "security through obscurity"

Assume the worst

- Attackers may have access to large resources
 - Do not therefore rely on the fact that you may compute something faster than an attacker,
 - or that an attacker has a limited timeframe in which their attack may be valid/dangerous/worthwhile
- Assume all code may have flaws
 - Minimize the part of your software responsible for security must be trusted.
 - Often called the trusted computing base (TCB)
- Principle of least privilege
 - don't give unnecessary abilities to participants that don't need them, to prevent accidents/misuse
 - "Administrator" vs. normal user

Cryptography

- Modern Cryptography relies on the use of algorithms which distort a message and reverse that distortion using a secrets called keys
- A simple substitution cipher like ROT13 is an example of this:
- In this case the key is the mapping of characters: a→n,b→o,c→p,...
- Today's encryption techniques are believed to have the property that the decryption key cannot be feasibly guessed using the ciphertext (the encrypted message)

Cryptography

- There are two main types of algorithms in use:
- 1. shared secret keys
 - both parties must share knowledge of the secret key and it must not be shared with any other party
- 2. public/private key pairs
 - The sender uses the receiver's public key to encrypt the message.
 - The encryption cannot be reversed by the public key and can only be reversed by the receiver's private key
 - The sender needs to know the receiver's public key but need not know the receiver's private key
 - Anyone may know the receiver's public key but the private key must be known only to the receiver
- Both kinds of algorithms are very useful and widely used
 - public/private key algorithms require 100/1000 times more processing power
 - The need for initial secure transfer of the private key often outweighs the disadvantage

Some Notation and Characters

- Alice and Bob are participants in security protocols
- Carol and Dave are extra participants for 3,4 party protocols
- Eve is an eavesdropper
- Mallory is a malicious attacker
- Sara is a server
- Alice has the secret key K_A and Bob the secret key K_B
- They have a shared secret key K_{AB}
- Alice has a private key K_{Apriv} and a public key K_{Apub}
- \bullet {M}_K is a message encrypted with key K
- \bullet [M]_K is a message signed with key K

Scenario 1. Secure communication

- Cryptography can be used to enable secure communication
- In this scenario each message is encrypted and can only be decrypted with the correct secret key
- So long as that secret key is not compromised then secrecy can be maintained
- Integrity is generally maintained using some redundant information within the encrypted message, such as a checksum
 - Ensure that encrypted message hasn't been corrupted.
 - Often obvious from message being garbage (but may be hard to detect in general).

Scenario 1. Secure communication

- Alice wishes to send some secret information to Bob
- If they share the secret key KAB then:
 - Alice uses the key and an agreed encryption algorithm E(KAB,M) to encrypt and send any number of messages {M_i}KAB
 - ullet Bob decrypts the messages using the corresponding decryption algorithm D(K_{AB},M)
- Two problems:
 - How can Alice initiate this communication by sending the secret key K_{AB} to Bob securely?
 - How does Bob know that a message {M_i} isn't a copy of an earlier encrypted message sent by Alice but intercepted by Mallory?

Scenario 2. Authentication

- Cryptography can be used to authenticate communication between a pair of participants
- If there is a shared secret key known only to two parties, then a successful decryption of a received message requires that the message was originally encrypted using the appropriate key
- If only one (other) party knows of that secret key then we can deduce from whom the message originated

Scenario 2. Authentication

- Alice wishes to communicate with Bob
- Sara is a securely managed authentication server
- Sara stores a secret key for each user, each user knows (or can generate from a password) their own secret key.
- Sara may generate a ticket which consists of a new shared key together with the identity of the participant to whom the ticket is issued

Steps to secure communication:

- Alice sends a request to Sara stating who she is and requesting a ticket for secure communication with Bob.
- Sara creates a new secret key K_{AB} to be shared between Alice and Bob.
- Sara encrypts the ticket using Bob's secret key and sends that together with the secret key all encrypted with Alice's secret key {({ticket }K_B , K_{AB})}K_A
- Alice decrypts this message and obtains the shared secret key and a message containing the ticket encrypted using Bob's secret key.
 - Alice cannot decrypt this ticket message
- Alice sends the ticket together with her identity and a request for shared communication to Bob
- ullet Bob decrypts the ticket: $\{(K_{AB}, Alice)\}K_{B}$, confirms that the ticket was issued to the sender (Alice).
- Alice and Bob can then communicate securely using the (now) shared secret key K_{AB}. Generally the key is used for a limited amount of time before a new one is requested from Sara.

Scenario 2. Authentication

- This is a simplified version of Needham and Schroeder algorithm which is used in Kerberos system (developed at MIT and used here)
- The simplified version does not protect against a replay attack, where old authentication messages are replayed
- It is used within organizations since the individual private keys, K_A, K_B etc, must be shared between the authentication server and the participants in some secure way
- It is therefore inappropriate for use with wide area applications such as eCommerce
- An important breakthrough was the realization that the user's password need not be sent through the network each time authentication is required.
 - Instead "challenges" are used
 - ullet When the server sends Alice the ticket and new shared private key it encrypts it with K_A , which is based on Alice's password
 - An attacker pretending to be Alice would be defeated at this point