
Distributed
Systems

Programming assignment overview

February 10, 2014DS

Announcement
• We will accept the coursework

submission as 2 separate files:

• Single source code file for programming
part

• Single PDF for theory/written part

• These will be submittable separately
using submit command

• to be finalized

February 10, 2014DS

Interlude:
Coursework

• We have now covered all material needed
for the practical part of the coursework

• In the rest of lecture, I will give an
overview of what is required / expected

• Overview:

• Simulator

• Logical clocks

• Mutual exclusion

February 10, 2014DS

Overview
• You will implement a simulator for a distributed

algorithm

• Takes in:

• A description of the planned activities of several processes

• Annotated with "mutual exclusion" blocks grouping atomic
operations

• "print" is also atomic: implicitly needs mutual exclusion

• Produces:

• A sequence of events obtained by simulating the system

• Annotated with Lamport clock timestamps

• Satisfying mutual exclusion

February 10, 2014DS

Example input
begin process p1
 send p2 m1
 begin mutex
 print abc
 print def
 end mutex
end process

begin process p2
 print x1
 recv p1 m1
 print x2
 send p1 m2
 print x3
end process p2

February 10, 2014DS

Example output
begin process p1
 send p2 m1
 begin mutex
 print abc
 print def
 end mutex
end process

begin process p2
 print x1
 recv p1 m1
 print x2
 send p1 m2
 print x3
end process p2

printed p2 x1 1
sent p1 m1 p2 1
received p2 m1 p1 2
printed p1 abc 2
printed p1 def 3
printed p2 x2 3
sent p2 m2 p1 4
printed p2 x3 5

OK

February 10, 2014DS

Example output
begin process p1
 send p2 m1
 begin mutex
 print abc
 print def
 end mutex
end process

begin process p2
 print x1
 recv p1 m1
 print x2
 send p1 m2
 print x3
end process p2

sent p1 m1 p2 1
printed p2 x1 1
received p2 m1 p1 2
printed p2 x2 3
sent p2 m2 p1 4
printed p1 abc 2
printed p1 def 3
printed p2 x3 5

OK

February 10, 2014DS

Incorrect output

• Timestamps should be correct

• it is OK for there to be gaps, reflecting internal
events (e.g. messages used for other
protocols)

printed p2 x1 1
sent p1 m1 p2 42
received p2 m1 p1 2
printed p1 abc 2
printed p1 def 3
printed p2 x2 3
sent p2 m2 p1 4
printed p2 x3 5

printed p2 x1 1
sent p1 m1 p2 42
received p2 m1 p1 43
printed p1 abc 45
printed p1 def 47
printed p2 x2 44
sent p2 m2 p1 45
printed p2 x3 50

X OK

February 10, 2014DS

Incorrect output

• no skipped events, events in same order as in process log

• no processes "waiting" indefinitely to receive a message that has
been sent

• if a process can make progress, it should do so

• (Processes may be deadlocked; you don't need to worry about this though.)

printed p2 x1 1
sent p1 m1 p2 42
received p2 m1 p1 2
printed p1 abc 2
printed p2 x2 3X

printed p2 x1 1
sent p1 m1 p2 1
received p2 m1 p1 2
printed p1 def 3
printed p1 abc 2
sent p2 m2 p1 4
printed p2 x2 3
printed p2 x3 5X X

February 10, 2014DS

Incorrect output

• Mutex blocks must be respected

• It should not be possible for events from
mutex blocks in two different processes to
be interleaved

X

printed p2 x1 1
sent p1 m1 p2 1
received p2 m1 p1 2
printed p1 abc 2
printed p2 x2 3
printed p1 def 3
sent p2 m2 p1 4
printed p2 x3 5

February 10, 2014DS

Implementation
• You do not have to use Java

• You can use any language you like

• provided it can read in and print out text

• We provide some Java sample code to
get started

• assuming many people know Java or a similar
language

• But you do not have to use Java

February 10, 2014DS

What do we mean by
simulator?

• For our purposes a simulator is any program that reads in the
specification and produces legal outputs

• describing complete runs of the system

• Two obvious approaches (not exclusive list!)

• represent processes as classes/data structures and implement a
scheduler that switches among them (and coordinates communication)

• represent processes as (Java) threads, use inter-process communication
primitives (or concurrent queues and synchronization) to support
process communication

• Either strategy is fine and can receive full credit; we are
not assuming you are familiar with thread programming.

• In particular, if you are not already familiar with multithreading,
the first approach is recommended.

February 10, 2014DS

Scheduling
• The simulator should interleave the

process behaviors

• There are several reasonable ways to do
this, and part of point of exercise is for
you to think about this

• (if you haven't already seen it in an OS class)

• See also Ch. 7 of Coulouris et al.

February 10, 2014DS

Lamport clocks
• The first part of the assignment asks you to add

support for Lamport clocks

• Each process should maintain a counter and
increment / max when it performs and event or
receives a message

• the sent/received messages should have Lamport clock
values piggybacked on them

• the receivers unpiggyback the timestamps and take the
max with their current time

• Timestamps associated with events should be
reported in the log

February 10, 2014DS

Mutual exclusion
• Mutex blocks should be handled so that no events in different mutex

blocks happen concurrently

• in particular: no interleaving of events from mutex blocks in different processes

• This should be done using messages

• not by repurposing existing shared-memory mutual exclusion techniques like
Java's synchronized

• Processes can send and receive additional messages to support
mutual exclusion

• But these should not be reported in the log

• For full credit this should be fair, i.e. requests should be granted in an
order that respects happens-before ordering

• e.g. Ricart-Agrawala algorithm

• But other simpler algorithms (ring, server) are OK and will receive
partial credit

