
Distributed
Systems

Rik Sarkar
James Cheney

Distributed Mutual Exclusion
February 10, 2014

February 10, 2014DS

Overview
• It is generally important that the processes within a distributed

system have some sort of agreement

• Agreement may be as simple as the goal of the distributed
system

• Has the general task been aborted?

• Should the main aim be changed?

• This is more complicated than it sounds, since all the processes
must, not only agree, but be confident that their peers agree.

• In this part of the course we will examine how distributed
processes can agree on particular values

• We will first look at mutual exclusion to coordinate access to
shared resources

February 10, 2014DS

Mutual Exclusion
• Ensuring mutual exclusion to shared resources is a common

task

• For example, processes A and B both wish to add a value to
a shared variable ‘a’.

• To do so they must store the temporary result of the current
value for the shared variable ‘a’ and the value to be added.

• The intended increment for a is 30 but B’s increment is
nullified

Coordination and Agreement

Mutual Exclusion

I Ensuring mutual exclusion to shared resources is a common
task

I For example, processes A and B both wish to add a value to a
shared variable ‘a’.

I To do so they must store the temporary result of the current
value for the shared variable ‘a’ and the value to be added.

I

Time Process A Process B
1 t = a + 10 A stores temporary
2 t’ = a + 20 B stores temporary
3 a = t’ (a now equals 25)
4 a = t (a now equal 15)

I The intended increment for a is 30 but B’s increment is
nullified

February 10, 2014DS

Concurrent updates

• A higher-level example is concurrent editing of a file on a
shared directory

• Another good reason for using a source code control system

Coordination and Agreement

Mutual Exclusion

new-next = i.next

(i-1).next = new-next

new-next = (i+1).next

i.next = new-next

Shamelessly stolen from Wikipedia

I A h ig h e r- le v e l e xam p le is th e con curre n t e d it in g of a fi le on a
sh are d d ire ctory

I A n oth e r g ood re ason f or usin g a sour ce cod e con trol sy ste m

February 10, 2014DS

Distributed Mutual
Exclusion

• On a single system mutual exclusion is usually a
service offered by the operating system’s kernel.

• Some languages also provide support for mutual exclusion

• In some cases the server that provides access to the
shared resource can also be used to ensure mutual
exclusion

• We will consider the case that this is for some reason
inappropriate

• the resource itself may be distributed for example

• For a distributed system we need a solution that
operates only via message passing

February 10, 2014DS

Generic Algorithms
for Mutual Exclusion
• We will look at the following algorithms which provide

mutual exclusion to a shared resource:

1. The central-server algorithm

2. The ring-based algorithm

3. Ricart and Agrawala — based on multicast and logical clocks

4. Maekawa's voting algorithm

• We will compare these algorithms with respect to:

• Their ability to satisfy three desired properties

• Their performance characteristics

• Their ability to tolerate failure

February 10, 2014DS

Assumptions and
Scenario

• Assumptions:

• The system is asynchronous

• Processes do not fail

• Message delivery is reliable: all messages are eventually
delivered exactly once.

• Scenario: Assume that the application performs the
following sequence:

1. Request access to shared resource, blocking if necessary

2. Use the shared resource exclusively — called the critical
section

3. Relinquish the shared resource

February 10, 2014DS

Assumptions and
Scenario

• Here we are considering mutual exclusion of a single
critical section

• We assume that if there are multiple resources then
either:

• Access to a single critical section suffices for all the shared
resources, OR

• A process cannot request access to more than one critical section
concurrently, OR

• Deadlock arising from two (or more) processes holding each of a
set of mutually desired resources is avoided using some other
means

• We also assume that a process granted access to the
critical section will eventually relinquish that access

February 10, 2014DS

Central Server
Algorithm

• The simplest way to ensure mutual exclusion is through the use of a
centralized server

• This is analogous to the operating system acting as an arbiter

• There is a conceptual token, processes must be in possession of the
token in order to execute the critical section

• The centralized server maintains ownership of the token

• To request the token; a process sends a request to the server

• If the server currently has the token it immediately responds with a
message, granting the token to the requesting process

• When the process completes the critical section it sends token back to server

• If the server doesn’t have the token, some other process is currently in
the critical section

• In this case the server queues the incoming request for the token

• Responds to next request when the token is returned

February 10, 2014DS

Ring-based
Algorithm

• Central server is a single point of failure

• A simple way to arrange for mutual exclusion without the
need for a master process, is to arrange the processes in a
logical ring.

• The ring may of course bear little resemblance to the
physical network or even the direct links between processes.

Distributed Mutual Exclusion Algorithms

Ring-based Algorithm

I A simple way to arrange for mutual exclusion without the
need for a master process, is to arrange the processes in a
logical ring.

I The ring may of course bear little resemblance to the physical
network or even the direct links between processes.

1 2 3 4 1 2 3 4

8 7 6 5 8 7 6 5

Distributed Mutual Exclusion Algorithms

Ring-based Algorithm

I A simple way to arrange for mutual exclusion without the
need for a master process, is to arrange the processes in a
logical ring.

I The ring may of course bear little resemblance to the physical
network or even the direct links between processes.

1 2 3 4 1 2 3 4

8 7 6 5 8 7 6 5

February 10, 2014DS

Ring-based
Algorithm

• The token passes around the ring continuously.

• When a process receives the token from its neighbor:

• If it does not require access to the critical section it immediately
forwards on the token to the next neighbor in the ring

• If it requires access to the critical section, the process:

1. retains the token

2. performs the critical section and then:

3. to relinquish access to the critical section

4. forwards the token on to the next neighbor in the ring

• Token can get lost due to crash or message drop

February 10, 2014DS

Multicast and Logical
Clocks

• Ricart and Agrawala developed an algorithm for mutual
exclusion based upon multicast and logical clocks

• The idea is that a process which requires access to the
critical section first broadcasts this request to all
processes within the group

• It may then only actually enter the critical section once
all of the other processes have granted their approval

• Of course the other processes do not just grant their
approval indiscriminately

• Instead their approval is based upon whether or not
they consider their own request to have been made first

February 10, 2014DS

Multicast and Logical
Clocks

• Each process maintains its own Lamport clock

• Recall that Lamport clocks provide a partial ordering of
events

• that this can be made a total ordering by considering the process
identifier of the process observing the event

• Requests to enter the critical section are multicast to the
group of processes and have the form {T , pi }

• T is the Lamport time stamp of the request and pi is the
process identifier

• This provides us with a total ordering of the sending of a
request message {T1, pi } < {T2, pj } if:
T1 < T2 or T1=T2 and pi<pj

February 10, 2014DS

Requesting Entry
• Each process retains a variable indicating its state, it can

be:
1. “Released” — Not in or requiring entry to the critical section

2. “Wanted” — Requiring entry to the critical section

3. “Held” — Acquired entry to the critical section and has not yet
relinquished that access.

• When a process requires entry to the critical section

• it updates its state to “Wanted” and multicasts a request to enter
the critical section to all other processes. It stores the request
message {Ti , pi }

• Only once it has received a “permission granted” message from all
other processes does it change its state to “Held” and use the
critical section

February 10, 2014DS

Responding to
requests

• A process currently in the “Released” state:

• can immediately respond with a permission granted message

• A process currently in the “Held” state:

• Queues the request and continues to use the critical section

• Once finished using the critical section responds to all such queued requests
with a permission granted message

• changes its state back to “Released”

• A process currently in the “Wanted” state:

• Compares the incoming request message {Tj , pj } with its own stored request
message {Ti , pi } which it broadcasted

• If {Ti,pi} < {Tj,pj} then the incoming request is queued as if the current process
was already in the “Held” state

• If {Ti,pi}>{Tj,pj} then the incoming request is responded to with a permission
granted message as if the current process was in the “Released” state

February 10, 2014DS

Maekawa's voting
algorithm

• Maekawa’s voting algorithm improves upon the
multicast/logical clock algorithm with the observation
that not all the peers of a process need grant it access

• A process only requires permission from a voting set
(subset) of all the peers, provided that the subsets
associated with any pair of processes overlap

• The main idea is that processes vote for which of a
group of processes contending for the critical section
will be given access

• Processes within the intersection of two competing
voting sets can only vote for one process at at time,
ensuring mutual exclusion

February 10, 2014DS

Maekawa's voting
algorithm

• Each process pi is associated with a voting
set Vi of processes

• The set Vi for the process pi is chosen such
that:

1. pi ∈ Vi — A process is in its own voting set

2. Vi ∩ Vj ≠ {} — There is at least one process in the
overlap between any two voting sets

3. | Vi | = | Vj | — All voting sets are the same size

4. Each process pi is contained within M voting sets

February 10, 2014DS

Maekawa's voting
algorithm

• The main idea in contrast to the Ricart-Agrawala algorithm
is that each process may only grant access to one process
at a time

• A process which has already granted access to another
process cannot do the same for a subsequent request. In
this sense it has already voted

• Those subsequent requests are queued

• Once a process has used the critical section it sends a
release message to its voting set

• Once a process in the voting set has received a release
message it may once again vote, and does so immediately
for the head of the queue of requests if there is one

February 10, 2014DS

The state of a
process

• As before each process maintains a state variable which can be
one of the following:

• “Released” — Does not have access to the critical section and does not
require it

• “Wanted” — Does not have access to the critical section but does require it

• “Held” — Currently has access to the critical section

• In addition each process maintains a boolean variable indicating
whether or not the process has “voted”

• Voting is not a one-time action. This variable really indicates whether some
process within the voting set has access to the critical section and has yet
to release it

• To begin with, these variables are set to “Released” and False
respectively

February 10, 2014DS

Requesting
Permission

• To request permission to access the critical section a
process pi:

• Updates its state variable to “Wanted”

• Multicasts a request to all processes in the associated voting
set Vi

• When the process has received a “permission granted”
response from all processes in the voting set Vi :

• update state to “Held” and use the critical section

• Once the process is finished using the critical section, it
updates its state again to “Released” and multicasts a
“release” message to all members of its voting set Vi

February 10, 2014DS

Granting Permission/
Voting

• When a process pj receives a request
message from a process pi:

• If its state variable is “Held” or its voted
variable is True:

• Queue the request from pi without replying

• otherwise:

• send a “permission granted” message to pi

• set the voted variable to True

February 10, 2014DS

Granting Permission/
Voting

• When a process pj receives a “release”
message:

• If there are no queued requests:

• set the voted variable to False

• otherwise:

• Remove the head of the queue, pq:

• send a “permission granted” message to pq

• The voted variable remains True

February 10, 2014DS

Desirable properties
• Safety: At most one process may be in

the critical section

• Liveness: Requests to enter and exit
the critical section eventually succeed

• The Liveness property assures that we are
free from both deadlock and starvation

• starvation is the indefinite postponement of
the request to enter the critical section from a
given process

February 10, 2014DS

Fairness
• Fairness: If e1 and e2 are requests to enter the critical section

and e1 → e2, then the requests should be granted in that order.

• Note: our assumption of request-enter-exit means that
process will not request a second access until after the first is
granted

• Here we assume that when a process requests entry
to the critical section, then until the access is granted
it is blocked only from entering the critical section

• In particular it may do other useful work and send/receive
messages

• If we were to assume that a process is blocked entirely then
the Fairness property is trivially satisfied

February 10, 2014DS

Properties:
Central Server Algorithm
• Given our assumptions that no failures occur it is

straight forward to see that the central server algorithm
satisfies the Safety and Liveness properties

• The Fairness property though is not satisfied

• Consider two processes p1 and p2 and the following
sequence of events:

• Despite send(r1) → send(r2) the r2 request was granted first.

p1

p2

server

r1

r2
critical section

m

February 10, 2014DS

Properties:
Ring-based Algorithm
• It is straightforward to determine that

this algorithm satisfies the Safety and
Liveness properties.

• assuming no failures...

• However once again we fail to satisfy the
Fairness property

February 10, 2014DS

Ring algorithm —
(Un)fairness

• Processes may send messages to one another independently of the token

• Suppose again we have two processes P1 and P2; consider the following
events

1. Process P1 wishes to enter the critical section but must wait for the token to reach it.

2. Process P1 sends a message m to process P2.

3. The token is currently between process P1 and P2 within the ring, but the message m
reaches process P2 before the token.

4. Process P2 after receiving message m wishes to enter the critical section

5. The token reaches process P2 which uses it to enter the critical section before process P1

Ring-based Algorithm

P1 2 token

3

4

8 7 6
P2

I Recall that processes may send messages to one another
independently of the token

I Suppose again we have two processes P

1

and P

2

consider the
following events

1. Process P

1

wishes to enter the critical section but must wait
for the token to reach it.

2. Process P

1

sends a message m to process P

2

.
3. The token is currently between process P

1

and P

2

within the
ring, but the message m reaches process P

2

before the token.
4. Process P

2

after receiving message m wishes to enter the
critical section

5. The token reaches process P

2

which uses it to enter the critical
section before process P

1

February 10, 2014DS

Properties:
Ricart and Agrawala
• Safety — If two or more processes request entry concurrently then

whichever request bears the lowest (totally ordered) timestamp will be
the first process to enter the critical section

• All others will still be awaiting a permission granted message from (at least) that
process until it has exited the critical section

• Liveness — Since the request message timestamps are a total ordering,
and all requests are either responded to immediately or queued and
eventually responded to, all requests to enter the critical section are
eventually granted

• Fairness — Since Lamport clocks assure us that e1 → e2 implies L(e1) <
L(e2):

• for any two requests r1, r2 if r1 → r2 then the timestamp for r1 will be less than the
timestamp for r2

• Hence the process that multicast r1 will not respond to r2 until after it has used the
critical section

• Therefore this algorithm satisfies all three desired properties

February 10, 2014DS

Maekawa's algorithm
— Deadlock

• The algorithm as described does not respect the Liveness property

• Consider three processes p1, p2 and p3

• Their voting sets: V1 = {p1, p2}, V2 = {p2, p3} and
V3 ={p3, p1}

• Suppose that all three processes concurrently request
permission to access the critical section

• All three processes immediately vote for to their own requests

• All three processes have their “voted” variables set to True

• Hence, p1 queues the subsequently received request from p3

• Likewise, p2 queues the subsequently received request from p1

• Finally, p3 queues the subsequently received request from p2

• :(

February 10, 2014DS

Properties:
Maekawa's algorithm
• Safety — Safety is achieved by ensuring that the

intersection between any two voting sets is non-empty.

• A process can only vote (or grant permission) once between each
successive “release” message

• But for any two processes to have concurrent access to the critical
section, the non-empty intersection between their voting sets
would have to have voted for both processes

• Liveness — As described the protocol does not respect the
Liveness property

• It can however be adapted to use Lamport clocks similar to the
previous algorithm

• Fairness — Similarly the Lamport clocks extension to the
algorithm allows it to satisfy the Fairness property

February 10, 2014DS

Performance
Evaluation

• For performance we are interested in:

• The number of messages sent in order to enter and
exit the critical section

• The client delay incurred at each entry and exit
operation

• The synchronisation delay, this is delay between one
process exiting the critical section and a waiting process
entering

• Note: which of these is (more) important depends
upon the application domain, and in particular
how often critical section access is required

February 10, 2014DS

Comparison
Central
Server Ring

Ricart-
Agrawala Maekawa

Enter 2 0-N 2(N-1) 2√N

Client delay round trip 0-N round trip round trip

Synchronization round trip 1-(N-1) 1 round trip

Exit 0 0 0-(N-1) √N

February 10, 2014DS

Central Server
Algorithm

• Entering the critical section:

• requires two messages, the request and the reply — even when no
other process currently occupies it

• The client-delay is the time taken for this round-trip

• Exiting the critical section:

• requires only the sending of the “release” message

• Incurs no delay for the client, assuming asynchronous message
passing.

• The synchronisation-delay is also a round-trip time, the
time taken for the “release” message to be sent from
client to server and the time taken for the server to send
the “grant” message to the next process in the queue.

February 10, 2014DS

Ring-based
Algorithm

• Entering the critical section:

• Requires between 0 and N messages

• Delay, these messages are serialized so the
delay is between 0 and N

• Exiting the critical section:

• Simply requires that the holding process sends the
token forward through the ring

• The synchronisation-delay is between 1 and
N-1 messages

February 10, 2014DS

Ricart and Agrawala
• Entering the critical section:

• This requires 2(N - 1) messages, assuming that multicast is implemented
simply as duplicated message, it requires N-1 requests and N-1 replies.

• Delay: Since these messages are sent and received concurrently
the time taken is comparable to the round-trip time of the
previous two algorithms

• unless there is contention for bandwidth

• Exiting the critical section:

• Zero if no other process has requested entry

• Must send up to N-1 responses to queued requests, but again
if this is asynchronous there is no waiting for a reply

• The synchronisation-delay is only one message, the holder
simply responds to the queued request

February 10, 2014DS

Maekawa’s Voting
algorithm

• Entering the critical section:

• This requires 2 × sqrt(N) messages

• As before though, the delay is comparable to a round-trip time

• Exiting the critical section:

• This requires sqrt(N) messages

• The delay though is comparable to a single message

• The total for entry/exit is thus 3 × sqrt(N) which compares favorably
to Ricart and Agrawala’s total of 2(N − 1) where N > 4

• The synchronisation-delay is a round-trip time as it requires
the holding process to multi-cast to its voting set the
“release” message and then intersecting processes must send
a permission granted message to the requesting process

February 10, 2014DS

Further
Considerations

• The ring-based algorithm continuously
consumes bandwidth as the token is
passed around the ring even when no
process requires entry

• Ricart and Agrawala — the process that
last used the critical section can simply
re-use it if no other requests have been
received in the meantime

February 10, 2014DS

Fault Tolerance
• None of the algorithms described above tolerate

loss of messages

• The token based algorithms lose the token if such a
message is lost meaning no further accesses will be
possible

• Ricart and Agrawala’s method will mean that the
requesting process will indefinitely wait for (N - 1)
“permission granted” messages that will never come
because one or more of them have been lost

• Maekawa’s algorithm cannot tolerate message loss
without it affecting the system, but parts of the system
may be able to proceed unhindered

February 10, 2014DS

Process Crashes
• What happens when a process crashes?

• Central server — provided the process which crashes is not the
central server, does not hold the token and has not requested
the token, everything else may proceed unhindered

• Ring-based algorithm — complete meltdown, but we may get
through up to N-1 critical section accesses in the meantime

• Ricart and Agrawala — complete meltdown, we might get
through additional critical section accesses if the failed process
has already responded to them. But no subsequent requests
will be granted

• Maekawa’s voting algorithm — This can tolerate some process
crashes, provided the crashed process is not within the voting
set of a process requesting critical section access

