Distributed Systems

Communication

Rik Sarkar James Cheney

University of Edinburgh Spring 2014

Types of networks

- Local area networks (Ethernet)
- Wide area networks
- Wireless LANs (WiFi)
- Wireless WANs (Cellular networks, 3G, 4G etc)
- Internetworks comprising of many LANs, WANs etc connected together, allowing communication between computers. E.g. Internet.

Packets

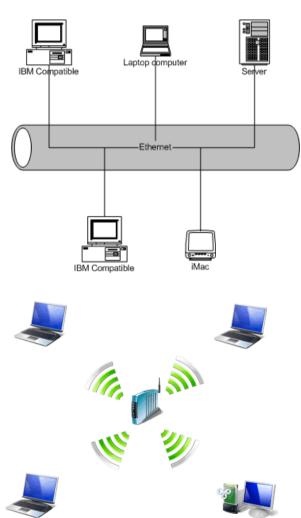
 Networks communicate data in messages of fixed (bounded) size – called packets

More data requires more packets

 Number of messages or packets transmitted is a measure of communication used

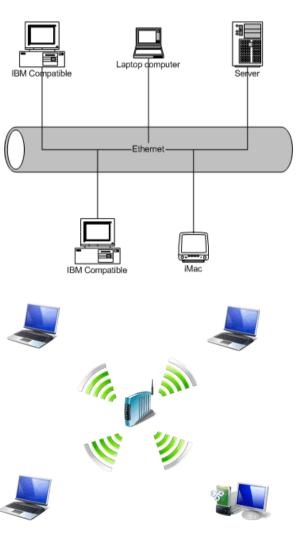
Types of Communications

Point to point communication


- Message goes from one computer to another computer
- There must be a connecting link
 - E.g. A LAN wire directly connecting the two
 - Or, the two computers are in the same LAN
 - Or they are in different LANs, but connected through
 WAN or Internet

Types of Communications

Broadcast


- Message goes from one computer to all other computers (restricted to some set)
 - For example, all other computers in the LAN, or some other system in consideration
- Ethernet LAN is a broadcast medium
 - All computers are connected to a wire. They transmit messages on the wire and all can receive
- Wireless LAN (WiFi) is a broadcast medium
 - Electromagnetic waves is the common medium

Types of Communications

Broadcast

- Useful when message has to be sent to all computers
 - E.g. Multiplayer games, streaming a live video etc
- Can be used to achieve point to point communication
 - Send message, with id of the receiver. Everyone else rejects it.
 - Does not scale well when there are many nodes in the system.
 - When Many pairs of nodes try to communicate using the same medium, messages clash.

Real life networks

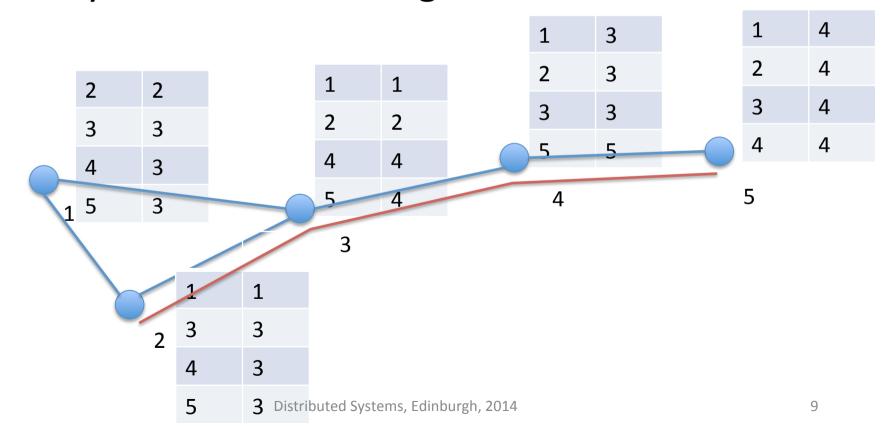
Point to point for long distance & internetworking

Broadcast for local, short range at the LAN

end points

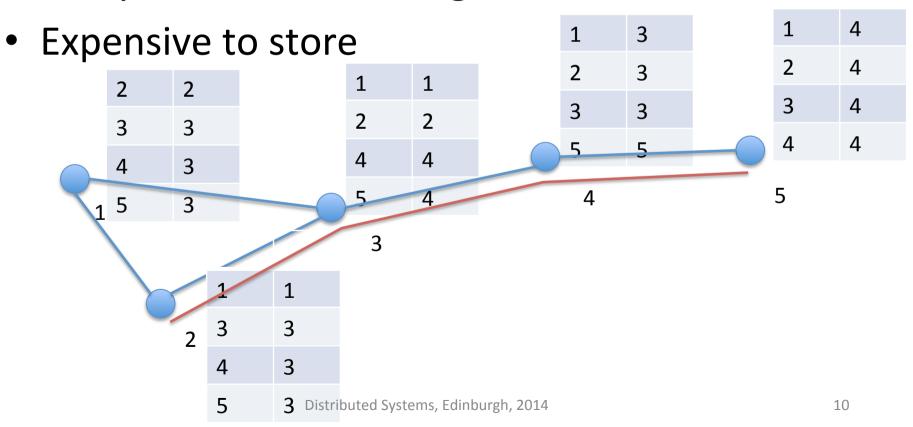
Routers

Point to Point

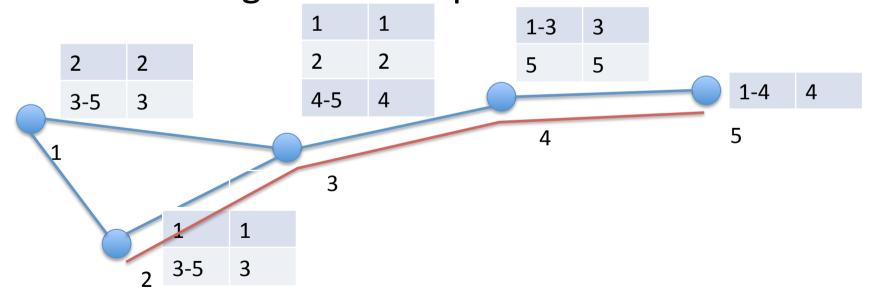

Ethernet/Wifi

Medium access in LANs

- The difficulty of using broadcast
 - If more than one node transmits, packets collide and both messages get garbled
 - MAC protocols ensure that when one node is transmitting, others keep quiet
 - If there is still collision, message is retransmitted

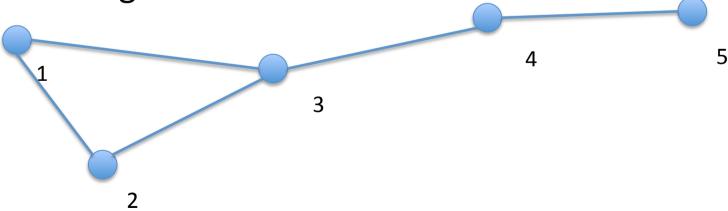

Routing

- Finding a path in the network
- Every node has a routing table


Routing

- Finding a path in the network
- Every node has a routing table Size n-1

Routing


- Smaller routing tables by combining addresses
- Used in IP (Internet) routing
- Smaller routing tables are preferable

Netowrks as graphs

• Note:

- Networks are usually drawn as graphs
- Vertices are nodes/computers
- Edge means these nodes can directly send messages to each-other

An announcement...

If you are interested in doing research on Distributed Systems or related areas

Laboratory for Foundations of Computer Science

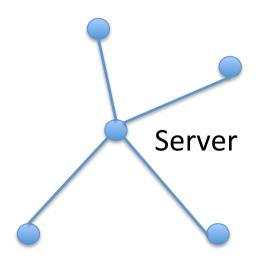
Centre for Intelligent Systems and their Applications

Institute for Computing Systems Architecture

PhD in Pervasive Parallelism

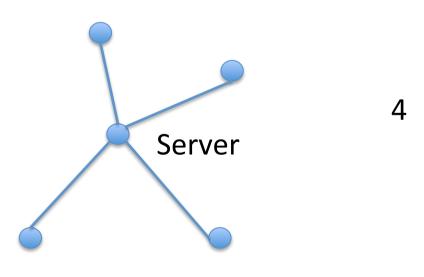
http://pervasiveparallelism.inf.ed.ac.uk

- Contact James Cheney for:
 - Database or web programming languages
 - Data synchronization
- Contact Rik Sarkar for:
 - Algorithms for distributed computing
 - Sensor networks
 - Mobile networks


MS/UG/MInf Projects in distributed Systems

Contact us to discuss more

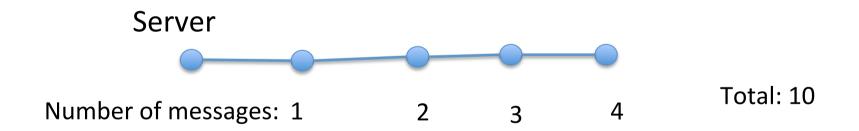
Communication cost


- A distributed computation should be efficient
 - Should use few messages
- Cost of a distributed computation:
 - Number of messages transmitted

- A simple distributed computation:
 - Each node has stored a numeric value
 - Compute the total of these numbers

How many messages does it take?

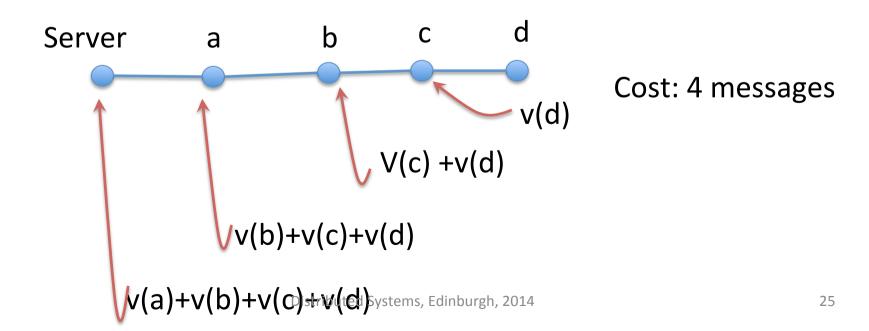
- A simple distributed computation:
 - Each node has stored a numeric value
 - Compute the total of the numbers



- A simple distributed computation:
 - Each node has stored a numeric value
 - Compute the total of the numbers

How many messages does it take?

- A simple distributed computation:
 - Each node has stored a numeric value
 - Compute the total of the numbers


Complexity may depend on the Network

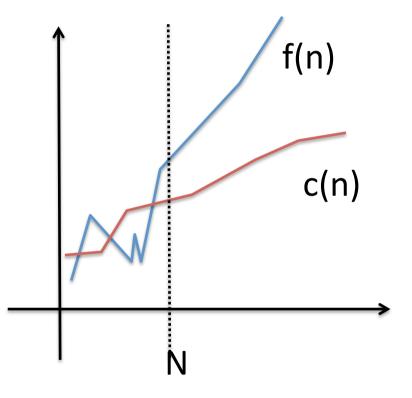
- A simple distributed computation:
 - Each node has stored a numeric value
 - Compute the total of the numbers

Can you find a better, more efficient way?

- A simple distributed computation:
 - Each node has stored a numeric value
 - Compute the total of the numbers

- A simple distributed computation:
 - Each node has stored a numeric value
 - Compute the total of the numbers

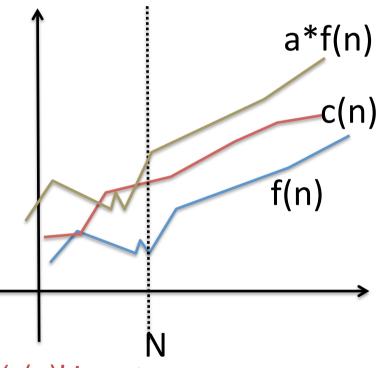
More generally, if there were n nodes, this would cost n messages


Communication complexity

- Used to represent communication cost for general scenarios
- Called Communication Complexity or Asymptotic communication complexity

Use big oh notation: O

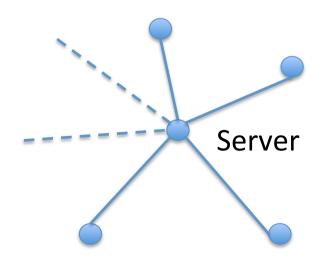
Big oh notation


- For a system of n nodes,
- Communication complexity c(n) is O(f(n)) means:
 - There are constants a andN, such that:
 - For n>N: c(n) < a*f(n)

Allowing some initial irregularity, 'f(n)' can be seen as a bound on 'c(n)'

Big oh – upper bounds

- For a system of n nodes,
- Communication complexity c(n) is O(f(n)) means:
 - There are constants a andN, such that:
 - For n>N: c(n) < a*f(n)


Allowing some initial irregularity, 'c(n)' is not bigger than a constant times 'f(n)'

In the long run, c(n) does not grow faster than f(n)

- 3n = O(?)
- $n^2/5 = O(?)$
- $10\log n = O(?)$
- $2n^3+n+200 = O(?)$
- 15 = O(?)

- 3n = O(n)
- $n^2/5 = O(n^2)$
- $10\log n = O(\log n)$
- $2n^3+n+200 = O(n^3)$
- 15 or any other constant= O(1)

- 'Star' network
- Computing sum of all values
- Communication complexity: O(n)

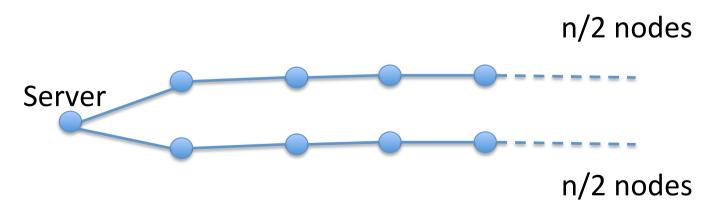
Example 2a

- 'Chain' topology network
- Simple protocol where everyone sends value to server
- Communication complexity: 1+2+...+n = O(n²)

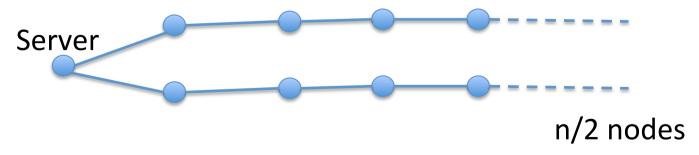
Example 2b

- 'Chain' network
- Protocol where each node waits for sum of previous values and sends
- Communication complexity: 1+1+...+1 = O(n)

Time complexity

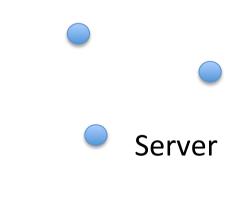

- How much time does the computation take?
- Assume each transmission takes 1 unit time

Example 2b


- 'Chain' topology network
- Protocol where each node waits for sum of previous values and sends
- Time complexity: 1+1+...+1 = O(n)

- 'Chain' network
- Protocol where each node waits for sum of previous values and sends
- Communication complexity: 1+1+...+1 = O(n)

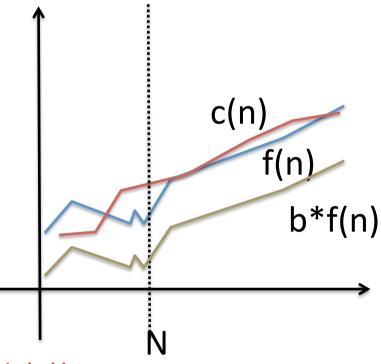
- 2 Chains network
- Protocol where each node waits for sum of previous values and sends
- Communication complexity: 1+1+...+1 = O(n)
- Time complexity: n/2 = O(n)
 - Since 2 chains proceed in parallel n/2 nodes



- What if the server has to send a message to all nodes?
 - Star : O(n)
 - Chain (naive) : O(n²)
 - Route to each node
 - Chain (smarter) : O(n)
 - Each node sends to its neighbor

Server

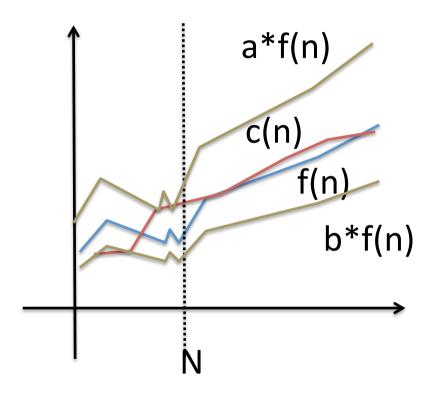
- What if the server has to send a message to all nodes?
 - And the communication is broadcast?
 - -0(1)



Observation

- Suppose c(n)=n
 - Then c(n) is O(n) and also O(n²)
 - Although, when we ask for the complexity, we are looking for the tightest possible bound, which is O(n)

Big Ω – lower bounds


- For a system of n nodes,
- Communication complexity c(n) is Ω(f(n)) means:
 - There are constants a andN, such that:
 - For n>N: b*f(n) < c(n)

Allowing some initial irregularity, 'c(n)' is not smaller than a constant times 'f(n)'

Big θ – tight bounds: both O and Ω

- For a system of n nodes,
- Communication complexity c(n) is θ(f(n)) means:
 - There are constants a,b and N, such that:
 - For n>N:
 b*f(n)<c(n)<a*f(n)</pre>

Allowing some initial irregularity, c(n) and f(n) are Within constant factors of each other. In the long run, c(n) grows at same rate as f(n), upto constant factors.

In our examples

- Star network:
 - Complexity is $\Theta(n)$ (both O(n) and $\Omega(n)$)
 - It does not take any more than a constant times n messages, it also does not take any less!
- Chain network:
 - Complexity $\Theta(n)$ or $\Theta(n^2)$ depending on algorithm