Distributed Systems

Basic Algorithms

Rik Sarkar
James Cheney

University of Edinburgh
Spring 2014
Network as a graph

- Network is a graph: $G = (V,E)$
- Each vertex/node is a computer/process
- Each edge is communication link between 2 nodes
- Every node has a Unique identifier known to itself.
 - Often used 1, 2, 3, ... n
- Every node knows its neighbors – the nodes it can reach directly without needing other nodes to route
 - Edges incident on the vertex
 - For example, in LAN or WLAN, through listening to the broadcast medium
 - Or by explicitly asking: Everyone that receives this message, please report back
Network as a graph

• Distance/cost between nodes p and q in the network
 – Number of edges on the shortest path between p and q (when all edges are same: unweighted)

• Sometimes, edges can be weighted
 – Each edge e = (a,b) has a weight w(e)
 – w(e) is the cost of using the communication link e (may be length e)
 – Distance/cost between p and q is total weight of edges on the path from p to q with least weight
Network as a graph

• Diameter
 – The maximum distance between 2 nodes in the network

• Radius
 – Half the diameter

• Spanning tree of a graph:
 – A subgraph which is a tree, and reaches all nodes of the graph
 – How many edges does a spanning tree have?
Size of ids

• In a network of n nodes
• Each node id needs \(\Theta(\log n) \) (that is, both \(O(\log n) \) and \(\Omega(\log n) \)) bits for storage
 – The binary representation of \(n \) needs \(\log_2 n \) bits

• \(\Omega \) – since we need at least this many bits
 – May vary by constant factors depending on base of logarithm
Global Message broadcast

• Message must reach *all nodes in the network*
 – Different from broadcast transmission in LAN
 – All nodes in a large network cannot be reached with single transmissions
Global Message broadcast

• Message must reach \textit{all nodes in the network}
 – Different from broadcast transmission in LAN
 – All nodes in a large network cannot be reached with single transmissions
Flooding for Broadcast

• The source sends a *Flood* message to all neighbors

• The message has
 – *Flood* type
 – *Unique id*: *(source id, message seq)*
 – *Data*
Flooding for Broadcast

• The source sends a *Flood* message, with a unique message id to all neighbors

• Every node p that receives a flood message m, does the following:
 – *If m.id was seen before, discard m*
 – *Otherwise, Add m.id to list of previously seen messages and send m to all neighbors of p*
Flooding form broadcast

• Storage
 – Each node needs to store a list of flood ids seen before
 – If a protocol requires x floods, then each node must store x ids
Flooding form broadcast

• Storage
 – Each node needs to store a list of flood ids seen before
 – If a protocol requires x floods, then each node must store x ids
 – Requires $\Omega(x)$ storage
 – (Actual storage depends on size of $m.id$)
Assumptions

- We are assuming:
 - Nodes are working in synchronous *communication rounds*
 - Messages from all neighbors arrive at the same time, and processed together
 - In each round, each node can successfully send 1 message to all its neighbors
 - Any necessary computation can be completed before the next round
Communication complexity

• The message/communication complexity is:
 – $O(|E|)$
 – E is set of communication edges in the network.
 – $|E|$ is the number of communication edges

• Since each node sends the message to each neighbor exactly once
 – The actual number of messages is $2|E|$
Reducing Communication complexity (slightly)

• Node p need not send message m to any node from which it has already received m
 – Needs to keep track of which nodes have sent the message
 – Saves some messages
 – Does not change asymptotic complexity
Time complexity

• The number of rounds needed to reach all nodes: diameter of G
BFS Tree

• Breadth first search tree
 – Every node has a *parent* pointer
 – And zero or more child pointers

 – BFS Tree construction algorithm sets these pointers
BFS Tree Construction algorithm

• Breadth first search tree
 – The \textit{root(source)} node decides to construct a tree
 – Uses flooding to construct a tree
 – Every node \(p\) on getting the message forwards to all neighbors
 – Additionally, every node \(p\) stores \textit{parent} pointer: node from which it first received the message
 • If multiple neighbors had first sent \(p\) the message in the same round, choose \textit{parent} arbitrarily. E.g. node with smallest id
 – \(p\) informs its parent of the selection
 • Parent creates a child pointer to \(p\)
Time & message complexity

- Asymptotically Same as Flooding
Tree based broadcast

- Send message to all nodes using tree
 - BFS tree is a *spanning* tree: connects all nodes

- Flooding on the tree

- Receive message from parent, send to children
Tree based broadcast

• Simpler than flooding: send message to all children

• Communication: Number of edges in spanning tree: n-1
Aggregation

• Without the tree
• Flood from all nodes:
 – $O(|E|)$ cost per node
 – $O(n^\ast |E|)$ total cost: expensive
 – Each node needs to store flood ids from n nodes
 • Requires $\Omega(n)$ storage at each node
 – Good fault tolerance
 • If a few nodes fail during operation, all the
Aggregation: Find the sum of values at all nodes

• With BFS tree

• Start from leaf nodes
 – Nodes without children
 – Send the value to parent

• Every other node:
 – Wait for all children to report
 – Sum values from children + own value
 – Send to parent
Aggregation

• With Tree

• Also called Convergecast
Aggregation

• With Tree

• Once tree is built, any node can use for broadcast
 – Just flood on the tree

• Any node can use for convergecast
 – First flood a message on the tree requesting data
 – Nodes store parent pointer
 – Then receive data

• Fault tolerance not very good
 – If a node fails, the messages in the subtree will be lost
 – Will need to rebuild the tree for future operations
Shortest paths

• BFS tree rooted at node p contains shortest paths to p from all nodes in the network

• From any node q, follow parent pointers to p
 – Gives shortest path
BFS trees can be used for routing

• From each node, create a separate BFS tree
• Each node stores a parent pointer corresponding to each BFS tree
• Acts as routing table
BFS trees can be used for routing

• From each node, create a separate BFS tree
• Each node stores a parent pointer corresponding to each BFS tree
• Acts as routing table
• $O(n*|E|)$ message complexity
Shortest (least weight) paths with BFS tree and edge weights

- Bellman-Ford algorithm
- Each node \(p \) has a variable \(\text{dist} \) representing distance to root. Initially \(p.\text{dist} = \infty \), \(\text{root.\text{dist}} = 0 \)
- In each round, each node sends its \(\text{dist} \) to all neighbors
- If for neighbor \(q \) of \(p \): \(q.\text{dist} + w(p,q) < p.\text{dist} \)
 - Then set \(p.\text{dist} = q.\text{dist} + w(p,q) \)
Shortest (least weight) paths with BFS tree and edge weights

• Complexity
 – Time: $O(\text{Diameter})$
 – Message: $O(\text{diameter} \cdot |E|)$
Directed graphs

• We have considered only undirected graphs
• Communication may be directed
• When A can send message to B, but B cannot send message to A
Directed graphs

• When A can send message to B, but B cannot send message to A
• For example, in wireless transmission, if B is in A’s range, but A is not in B’s range
Directed graphs

- When A can send message to B, but B cannot send message to A
- Or if protocol or technology limitations prevent B from communicating with A
Directed graphs

- Protocols more complex
- Needs more messages
Bit complexity of communication

• We have assumed that each communication is 1 message, and we counted the messages
• Sometimes, communication is evaluated by bit complexity – the number of bits communicated
• This is different from message complexity because a message may have number of bits that depend on n or |E|
• For example, node ids in message have size $\Theta(\log n)$

• In practice this is may not be critical since log n is much smaller than packet sizes, so it does not change the number of packets communicated
• But depending on what other data the algorithm is communicating, sizes of messages may matter
Finding diameter of a network
About Course Assignment

• Will be based on implementation of a distributed algorithm/protocol

• Will be simulation oriented, so not dependent on knowledge of any specific technology or API

• Will have a small part of theoretical questions