Distributed Systems

Leader Election

Rik Sarkar
James Cheney

University of Edinburgh
Spring 2014
No fixed master

• We saw in previous weeks that some algorithms require a global coordinator or master
• Agreement is simpler with a master process
 – But introduces a single point of failure
• There is no reason for a master process to be fixed
 – When one fails, may be another can take over?

• Today we look at the problem of what to do when a master process fails
Failures

• How do we know that something has failed?
• Let’s see what we mean by *failed*:

• Models of failure:
 1. Assume no failures
 2. Crash failures: Process may fail/crash
 3. Message failures: Messages may get dropped
 4. Link failures: a communication link stops working
 5. Some combinations of 2,3,4
 6. More complex models can have recovery from failures
 7. Arbitrary failures: computation/communication may be erroneous
Failure detectors

- Detection of a crashed process
 - (not one working erroneously)

- A major challenge in distributed systems
- A failure detector is a process that responds to questions asking whether a given process has failed
 - A failure detector is not necessarily accurate
Failure detectors

• Reliable failure detectors
 – Replies with “working” or “failed”

• Difficulty:
 – Detecting something is working is easier: if they respond to a message, they are working
 – Detecting failure is harder: if they don’t respond to the message, the message may have been lost/delayed, may be the process is busy, etc..

• Unreliable failure detector
 – Replies with “suspected (failed)” or “unsuspected”
 – That is, does not try to give a confirmed answer

• We would ideally like reliable detectors, but unreliable ones (that say give “maybe” answers) could be more realistic
Simple example

• Suppose we know all messages are delivered within D seconds

• Then we can require each process to send a message every T seconds to the failure detectors

• If a failure detector does not get a message from process p in T+D seconds, it marks p as “suspected” or “failed”
Simple example

• Suppose we assume all messages are delivered within D seconds

• Then we can require each process to send a message every T seconds to the failure detectors

• If a failure detector does not get a message from process p in T+D seconds, it marks p as “suspected” or “failed” (depending on type of detector)
Synchronous vs asynchronous

• In a synchronous system there is a bound on message delivery time (and clock drift)

• So this simple method gives a reliable failure detector

• In fact, it is possible to implement this simply as a function:
 – Send a message to process p, wait for $2D + \varepsilon$ time
 – A dedicated detector process is not necessary

• In Asynchronous systems, things are much harder
Simple failure detector

- If we choose T or D too large, then it will take a long time for failure to be detected
- If we select T too small, it increases communication costs and puts too much burden on processes
- If we select D too small, then working processes may get labeled as failed/suspected
Assumptions and real world

• In reality, both synchronous and asynchronous are a too rigid

• Real systems, are fast, but sometimes messages can take a longer than usual
 – But not indefinitely long

• Messages usually get delivered, but sometimes not..
Some more realistic failure detectors

• Have 2 values of D: D1, D2
 – Mark processes as working, suspected, failed

• Use probabilities
 – Instead of synchronous/asynchronous, model delivery time as probability distribution
 – We can learn the probability distribution of message delivery time, and accordingly estimate the probability of failure
Using bayes rule

• \(a = \text{probability that a process fails within time } T \)
• \(b = \text{probability a message is not received in } T+D \)

• So, when we do not receive a message from a process we want to estimate \(P(a|b) \)
 – Probability of \(a \), given that \(b \) has occurred

\[
P(a|b) = \frac{P(b|a)P(a)}{P(b)}
\]

If process has failed, i.e. \(a \) is true, then of course message will not be received! i.e. \(P(b|a) = 1 \). Therefore:

\[
P(a|b) = \frac{P(a)}{P(b)}
\]
Leader of a computation

• Many distributed computations need a coordinating or server process
 – E.g. Central server for mutual exclusion
 – Initiating a distributed computation
 – Computing the sum/max using aggregation tree
• We may need to elect a leader at the start of computation
• We may need to elect a new leader if the current leader of the computation fails
The Distinguished leader

• The leader must have a special property that other nodes do not have

• If all nodes are exactly identical in every way then there is no algorithm to identify one as leader

• Our policy:
 – The node with highest identifier is leader
Node with highest identifier

• If all nodes know the highest identifier (say n), we do not need an election
 – Everyone assumes n is leader
 – n starts operating as leader
• But what if n fails? We cannot assume n-1 is leader, since n-1 may have failed too! Or may be there never was process n-1

• Our policy:
 – The node with highest identifier and still surviving is the leader

• We need an algorithm that finds the working node with highest identifier
Strategy 1: Use aggregation tree

• Suppose node r detects that leader has failed, and initiates leader election

• Node r creates a BFS tree

• Asks for max node id to be computed via aggregation
 – Each node receives id values from children
 – Each node computes max of own id and received values, and forwards to parent

• Needs a tree construction
• If n nodes start election, will need n trees
 – O(n²) communication
 – O(n) storage per node
Strategy 1: Use aggregation tree

- Suppose node r detects that leader has failed, and initiates leader election.

- Node r creates a BFS tree.

- Asks for max node id to be computed via aggregation:
 - Each node receives id values from children.
 - Each node computes max of own id and received values, and forwards to parent.

- Needs a tree construction.
- If n nodes start election, will need n trees:
 - $O(n^3)$ communication.
 - $O(n)$ storage per node.
Strategy 2: Use a ring

• Suppose the network is a ring
 – We assume that each node has 2 pointers to nodes it knows about:
 • Next
 • Previous
 • (like a circular doubly linked list)
 – The actual network may not be a ring
 – This can be an overlay
Strategy 2: Use a ring

• Basic idea:
 – Suppose 6 starts election
 – Send “6” to 6.next, i.e. 2
 – 2 takes max(2, 6), send to 2.next
 – 8 takes max(8, 6), sends to 8.next
 – etc
Strategy 2: Use a ring

• The value “8” goes around the ring and comes back to 8

• Then 8 knows that “8” is the highest id
 – Since if there was a higher id, that would have stopped 8

• 8 declares itself the leader: sends a message around the ring
Strategy 2: Use a ring

- The problem: What if multiple nodes start leader election at the same time?

- We need to adapt algorithm slightly so that it can work whenever a leader is needed, and works for multiple leader
Strategy 2: Use a ring
(Algorithm by chang and roberts)

- Every node has a default state: *non-participant*
- Starting node sets state to *participant* and sends *election* message with id to *next*
Strategy 2: Use a ring
(Algorithm by chang and roberts)

• If node p receives \textit{election} message m

• If p is non-participant:
 – send $\max(m.id, p.id)$ to $p.next$
 – Set state to participant

• If p is participant:
 – If $m.id > p.id$:
 • Send $m.id$ to $p.next$
 – If $m.id < p.id$:
 • do nothing
Strategy 2: Use a ring
(Algorithm by chang and roberts)

• If node p receives election message m with m.id = p.id

• P declares itself leader
 – Sets p.leader = p.id
 – Sends leader message with p.id to p.next
 – Any other node q receiving the leader message
 • Sets q.leader = p.id
 • Forwards leader message to q.next
Strategy 2: Use a ring
(Algorithm by chang and roberts)

- Works in an asynchronous system
- Assuming nothing fails while the algorithm is executing

- Message complexity $O(n^2)$
 - When does this occur?
 - (hint: all nodes start election, and many messages traverse a long distance)

- What is the time complexity?
- What is the storage complexity?
Assignment office hours

• A lab based office hour:
 – Wednesday March 5, 3pm-5pm
 – Appleton tower 5.08

• For programming related questions/doubts about the assignment
Strategy 3: Use a ring – smartly (Hirschberg Sinclair)

• k-neighborhood of node p
 – The set of all nodes within distance k of p

• How does p send a message to distance k?
 – Message has a “time to live variable”
 – Each node decrements m.ttl on receiving
 – If m.ttl=0, don’t forward any more
Strategy 3: Use a ring – smartly (Hirschberg Sinclair)

• Basic idea:
 – Check growing regions around yourself for someone with larger id
Strategy 3: Use a ring – smartly (Hirschberg Sinclair)

• Algorithm operates in phases
• In phase 0, node p sends election message m to both p.next and p.previous with:
 – m.id = p.id and ttl = 1

• Suppose q receives this message
 – Sets m.ttl=0
 – If q.id > m.id:
 • Do nothing
 – If q.id < m.id:
 • Return message to p
Strategy 3: Use a ring – smartly
(Hirschberg Sinclair)

- Algorithm operates in phases
- In phase 0, node p sends election message m to both p.next and p.previous with:
 - m.id = p.id and ttl = 1

- Suppose q receives this message
 - Sets m.ttl=0
 - If q.id > m.id:
 - Do nothing
 - If q.id < m.id:
 - Return message to p

- If p gets back both message, it decides itself leader of its 1-neighborhood, and proceeds to next phase
Strategy 3: Use a ring – smartly (Hirschberg Sinclair)

• If p is In phase i, node p sends election message m to p.next and p.previous with:
 – m.id = p.id, and m.ttl = 2^i

• A node q on receiving the message (from next/previous)
 – If m.ttl=0: forward suitably to previous/next
 – Sets m.ttl=m.ttl-1
 – If q.id > m.id:
 • Do nothing
 – Else:
 • If m.ttl = 0: return to sending process
 • Else forward to suitably to previous/next

• If p gets both message back, it is the leader of its 2^i neighborhood, and proceeds to phase i+1
Strategy 3: Use a ring – smartly
(Hirschberg Sinclair)

• When $2^i \geq n/2$
 – Only 1 process survives: Leader

• Number of rounds: $O(\log n)$

• What is the message complexity?
Strategy 3: Use a ring – smartly (Hirschberg Sinclair)

In phase i

- At most one node initiates message in any sequence of 2^{i-1} nodes
- So, $n/2^{i-1}$ candidates
- Each sends 2 messages, going at most 2^i distance, and returning: $2*2*2^i$ messages
- $O(n)$ messages in phase i

There are $O(\log n)$

- Total of $O(n \log n)$ messages
Strategy 3: Use a ring – smartly (Hirschberg Sinclair)

• Assume synchronous operation
• Assume nodes do not fail during algorithm run

• What is time complexity?
• What is storage complexity?
Strategy 4: Bully Algorithm

• Assume:
 – Each node knows the id of all nodes in the system (some may have failed)
 – Synchronous operation

• Node p decides to initiate election
• p sends election message to all nodes with \(\text{id} > \text{p.id} \)
• If p does not hear “I am alive message” from any node, p broadcasts a message declaring itself as leader
• Any working node q that receives election message from p, replies with own id and “I am alive” message
 – And starts an election
• Any node q that hears a lower id node being declared leader, starts a new election
Strategy 4: Bully Algorithm

• Assume:
 – Each node knows the id of all nodes in the system (some may have failed)
 – Synchronous operation

• Works even when processes fail
• Works when (some) message deliveries fail.

• What are the storage and message complexities?