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AbstractWe consider the veri�cation of a particular class of in�nite-state systems,namely systems consisting of �nite-state processes that communicate via un-bounded lossy FIFO channels. This class is able to model e.g. link protocolssuch as the Alternating Bit Protocol and HDLC. For this class of systems,we show that several interesting veri�cation problems are decidable by giv-ing algorithms for verifying (1) the reachability problem: is a �nite set ofglobal states reachable from some other global state of the system, (2) safetyproperties over traces formulated as regular sets of allowed �nite traces, and(3) eventuality properties: do all computations of a system eventually reacha given set of states. We have used the algorithms to verify some idealizedsliding-window protocols with reasonable time and space resources. Our re-sults should be contrasted with the well-known fact that these problems areundecidable for systems with unbounded perfect FIFO channels.1 IntroductionDuring the last decade, the research on methods for algorithmic veri�cationof concurrent and parallel systems has expanded dramatically. Substantial�Supported in part by the Swedish Board for Industrial and Technical Development(NUTEK) as part of ESPRIT BRA project No. 6021 (REACT), and by the SwedishResearch Council for Engineering Sciences (TFR) under contract No. 92-814.



progress has been made in the veri�cation of �nite-state systems, for which ef-�cient algorithmic veri�cation methods have been developed and successfullyapplied to e.g. communication protocols and hardware structures ([BCM+90],[CES86], [Hol91], [VW86], etc.). For in�nite-state systems, e.g. systems thatoperate on data from unbounded domains, algorithmic veri�cation is moredi�cult. In general, veri�cation of in�nite-state systems requires a substan-tial manual e�ort, since most interesting veri�cation problems are undecid-able. Recently, algorithmic veri�cation methods have been developed forsome classes of in�nite-state systems, such as certain types of real-time sys-tems that operate on clocks [ACD90, Yi91, �C92], data-independent systems[JP93, Wol86], systems with many identical processes [CG87, GS92, SG90],context-free processes ([BS92, CHS92, CHM93]), and Petri nets ([Jan90]).In order to extend the applicability of algorithmic veri�cation, we consider itimportant to develop analogous techniques also for other classes of in�nite-state systems.A class of systems which has been important in the analysis of e.g. com-munication protocols consists of �nite-state processes that communicate viaunbounded FIFO channels [BZ83, Boc78]. Such systems are in�nite-statedue to the unboundedness of the channels, and it is well-known that mostinteresting veri�cation problems are undecidable for this class of systems[BZ83]. Several veri�cation methods have been developed for such systems[BZ83, CF87, GGLR87, Pac87, PP91, SZ91], but since the veri�cation prob-lem is undecidable, there is no completely automatic veri�cation methodwhich covers the whole class. In this paper, we consider a variant of thisclass where the FIFO channels are unreliable, in that they may nondeter-ministically lose messages. In spite of this restriction, we can model manyinteresting systems, e.g. link protocols such as the Alternating Bit Protocol[BSW69] and HDLC [ISO79]. These protocols and others are designed tooperate correctly even in the case that the FIFO channels are faulty andmay lose messages. In order to model and verify such systems, it is thereforesu�cient that there is an algorithm for verifying systems that communicatevia unbounded but lossy FIFO channels.In this paper, we consider algorithmic veri�cation of �nite-state systems thatcommunicate via unbounded but lossy FIFO channels. We show that sev-eral interesting veri�cation problems are decidable for such systems. Moreprecisely, we give algorithms for verifying the following classes of properties.1. The reachability problem: is a set of given states of such a systemreachable from some other state of the system.2. Safety properties: does a system satisfy a safety property over traces,formulated as a regular set of allowed �nite traces. This problem can2



be veri�ed via a transformation to the reachability problem.3. A simple class of eventuality properties: do all computations of a systemeventually reach a given set of states. This result has also been provenindependently by Finkel [Fin94]. The class of eventuality propertieswe consider here correspond to the class of guarantee properties in thehierarchy of temporal properties in [MP92]. We make no assumptionon fairness in the channels. Thus a system may fail to meet a certaineventuality property because the channels lose all their messages.Our algorithms show that the above problems are decidable for systems withlossy communication channels. This should be contrasted with the fact thethese problems are undecidable for systems with perfect FIFO channels.The main idea of the algorithm for deciding whether a set N of states isreachable, is to perform a search which analyzes the behavior \backwards"from the set N , trying to �nd a path to the initial state. Since channels areunbounded, this search is a priori unbounded, but two facts make the searchbounded. The �rst fact is that we do not have to analyze a state for which wehave already analyzed a \simpler" state. A state is \simpler" than anotherif the states di�er only in that the content of each channel in the �rst state isa (not necessarily contiguous) substring of the content of the same channelin the second state. The second fact is that by a result in language theory(Higman's theorem) only a �nite number of states can be generated if wediscard states that have \simpler" variants.We have presently not determined the complexity of the veri�cation problem.However, some experiments with sliding-window protocols indicate that non-trivial examples can be analyzed with reasonable time and space resources.An interesting consequence of our result is that our methods and resultsgeneralize directly to systems that use other sequence-like data structuresthat may lose elements. For instance, it follows that for Turing machineswith a tape that may nondeterministically lose symbols, properties such asthe halting problem are decidable.Related Work Considerable attention has been paid to the problem of an-alyzing systems that communicate over perfect unbounded FIFO channels.All interesting veri�cation problems for these systems are in general unde-cidable, since the channels may be used to simulate the tape of a TuringMachine [BZ83]. Decidability results have been obtained for limited sub-classes. Most problems are decidable if the channel alphabets are of size one(in which case the system may be simulated by Petri Nets [KM69, RY86]), orif the language of each channel is bounded (in which case the system becomes�nite-state [GGLR87, CF87]). 3



Algorithms for partial veri�cation, which may or may not succeed in analyz-ing a given system, have been developed by Purushotaman and Peng [PP91]and by Brand and Joyner [BZ83]. These works do not characterize a classof systems for which their method works. Finkel [Fin88] presents a limitedclass of systems for which veri�cation is decidable; this class does not covere.g. the Alternating Bit protocol. Sistla and Zuck [SZ91] present a veri�ca-tion procedure for reasoning about a certain set of temporal properties oversystems with FIFO channels. The method is not powerful enough to reasonabout arbitrary �nite state machines.Pachl [Pac87] shows that the reachability problem is decidable if the set ofreachable states of the system for each control state consists of a set of channelcontents that constitute a recognizable language. It can be proven that thisproperty holds for any system with lossy FIFO channels. In this way, oneobtains an alternative proof of decidability for the reachability problem.Wolper [Wol86] shows that by using an assumption of data-independence, theproblem of proving that a data-independent system satis�es the speci�cationof a perfect FIFO channel can be transformed into a veri�cation problem for�nite-state systems. This result is di�erent from ours and the above, sincewe prove properties about a system with FIFO bu�ers.Outline The remainder of the paper is organized as follows. In the nextsection, we present basic de�nitions of �nite state systems with lossy FIFOchannels. In Section 3 we use the de�nitions to describe the Alternating BitProtocol. In Section 4 we present the properties that we verify, and describehow to transform arbitrary safety properties to the reachability problem. InSection 5 we present algorithms for deciding these properties, and argue fortheir correctness. Section 6 contains a few empirical results from runningthe algorithm. In Section 7 we present conclusions and directions for futureresearch. In the appendix we give proofs for some of the lemmas in the paper.2 Systems with Lossy ChannelsIn this section, we present the basic de�nitions of �nite-state systems withunbounded but lossy FIFO channels. Intuitively, such a system has twoparts: a control part and a channel part. The channel part consists of aset of channels, each of which contains a sequence of messages from a �nitealphabet. The control part is a �nite-state labeled transition system. Typi-cally, the �nite-state part models the total behavior of a number of processesthat communicate over the channels. With each transition of the control partthere may be associated either some observable interaction with the environ-4



ment of the system, or an operation on the channels. This operation mayremove a message from the head of a channel or insert a message at the endof a channel. In addition, a channel can nondeterministically lose messagesat any time.For a set M we use M� to denote the set of �nite strings of elements in M .For x; y 2 M� we let x � y denote the concatenation of x and y. The emptystring is denoted by ". If x 6= ", then first(x) (last(x)) denotes the �rst(last) element of x. For sets C and M , a string vector from C to M is afunction C 7! M�. For a string vector w from C to M we use w[c := x] forthe string vector w0 such that w0(c) = x, and w0(d) = w(d), for d 6= c. Thestring vector which maps all elements in C to the empty string is denoted ".De�nition 2.1 A Lossy Channel System L is a tuple hS; s0; A; C;M; �i,whereS is a �nite set of control states,s0 2 S is an initial control state,A is a �nite set of actions,C is a �nite set of channels,M is a �nite set of messages,� is a �nite set of transitions, each of which is a triple of the formhs1; op; s2i, where s1 and s2 are control states, and op is a label ofone of the forms{ c!m, where c 2 C and m 2M ,{ c?m, where c 2 C and m 2M ,{ a, where a 2 A [ f�g.2Intuitively, the �nite-state control part of the lossy channel system hS; s0; A; C;M; �iis an ordinary labeled transition system with states S, initial state s0, andtransitions �. The channel part is represented by the set C of channels, eachof which may contain a string of messages in M . The set A denotes a setof observable interactions with the environment. Each transition in � mayeither perform an observable interaction in A, the unobservable action � , oran operation, where 5



� a transition of form hs1; c!m; s2i represents a change of the control statefrom s1 to s2 while appending the message m to the end of channel c,and where� a transition of form hs1; c?m; s2i represents a change of the control statefrom s1 to s2 while removing the message m from the head of channelc.The operational behavior of a lossy channel system is de�ned by formalizingthe intuitive behavior of the system as a labeled transition system with in-�nitely many states. Let L be the lossy channel system hS; s0; A; C;M; �i. Aglobal state  of L is a pair hs; wi, where s 2 S and w is a string vector fromC to M . The initial global state 0 of L is the pair hs0; "i. We shall de�nea relation �! as a set of triples h; a; 0i, where  and 0 are global states,and a 2 A [ f�g. We let  a�! 0 denote h; a; 0i 2�!. We de�ne �! tobe the smallest set such that1. if hs1; c!m; s2i 2 �, then hs1; wi ��! hs2; w[c := w(c) �m]i, i.e., thecontrol state changes from s1 to s2 and m is appended to the end ofchannel c.2. if hs1; c?m; s2i 2 �, and if w0 = w[c := m � w(c)], then hs1; w0i ��!hs2; wi, i.e., the control state is changed from s1 to s2 and m is removedfrom the head of channel c. Note that ifw(c) = ", or if first(w(c)) 6= m,then the transition hs1; c?m; s2i cannot be performed from the globalstate hs1; wi.3. if w(c) = x �m � y, then hs; wi ��! hs; w[c := x � y]i, i.e., the messagem is lost from the contents of channel c without changing the controlstate.4. if hs1; a; s2i 2 �, then hs1; wi a�! hs2; wi, i.e., the control state ischanged from s1 to s2 while the action a is performed.For global states  and 0, and a sequence � 2 A�, we write  �=) 0 todenote that there is a �nite sequence = 1 a1�! 2 a2�! � � � an�1�! n = 0where � is the sequence of non-� actions among a1; : : : ; an�1. We use  �! 0to denote that  a�! 0, for some a 2 A[ f�g, and  ��! 0 to denote thatthere is a � such that  �=) 0. A global state 0 is said to be reachable froma global state  if  ��! 0. A global state  is said to be reachable if  isreachable from the initial global state 0.6



3 Example: The Alternating Bit ProtocolIn this section we model the well-known Alternating Bit Protocol [BSW69] asa lossy channel system. The alternating bit protocol contains a Sender anda Receiver that communicate over two FIFO channels cM (used to transmitmessages from the Sender to the Receiver) and cA (used to transmit acknowl-edgments from the Receiver to the Sender). Both channels are faulty in thesense that they can lose but not reorder messages.The purpose of the protocol is to transmit messages from the Sender tothe Receiver in correct order, in spite of the fact that the channels can losemessages. Corruption of messages can also be taken into account by modelingit as loss (some mechanism will detect and discard a corrupted message).The operation of the protocol is the following:The Sender reads a pending message to be sent to the Receiver. It adds a se-quence number to the message, sends it over the channel cM to the Receiverand awaits an acknowledgment from the Receiver with the same sequencenumber. If it arrives, the procedure is repeated with the next pending mes-sage but with sequence numbers inverted. If no acknowledgment arriveswithin some time period the Sender retransmits the message. Retransmis-sions are repeated until a corresponding acknowledgment arrives.The Receiver receives messages with accompanying sequence numbers fromthe channel cM . When the message has the expected sequence number, themessage is delivered, and the Receiver looks for a message with invertedsequence number. Messages with non-expected sequence numbers are dis-carded. The Receiver sends acknowledgments to the Sender over the channelcA. An acknowledgment contains the sequence number of the last receivedmessage.In Figure 1 the Sender and the Receiver are represented by labeled transi-tion systems. In our model we have omitted the actual messages, i.e. onlysequence numbers are transmitted over the channels. The �nite state con-trol part of the lossy channel system is obtained as the combination of thesetwo transition systems. The protocol operates on the two channels cM andcA. This means that the model of the Alternating Bit Protocol is the lossychannel system hS; s0; A; C;M; �i whereS is the set of pairs of the form hi; ji, where 1 � i; j � 4,s0 is the state h1; 1i,A is the set fSnd;Rcvg, where Snd represents the sending of a messageby the environment to the protocol, and Rcv represents the reception7
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Typically, the set � may represent states with some undesired property, whichwe do not want to occur when the system executes. A special case of thereachability problem is whether a certain set of control states is reachable.Formally, a �nite set of control states represents an in�nite number of globalstates, but due to the fact that channels may lose messages, it is equivalentto pose the question whether it is possible to reach a control state in the setwith all channels empty. This set of global states is �nite; note however thatan algorithm for deciding the question must consider an in�nite state-spaceof global states.Safety Properties The reachability problem is related to so-called safetyproperties. An intuitive characterization of safety properties is that \nothingbad will ever happen". Thus if  is a \bad" global state, then the property\ is not reachable" is a safety property.A class of safety properties can be described by specifying sequences of ob-servable actions in A that are allowed to occur when the system executes.For instance, the property that Snd is the �rst action, that each Snd actionmay only be followed by a Rcv action, and that each Rcv action may onlybe followed by a Snd action can be formulated as the set of sequences(Snd Rcv)� [ (Snd Rcv)� Snd :A trace of a lossy channel system L is a sequence � 2 A� such that 0 �=) for some . We denote the set of traces of L by Traces(L). Letting � denotethe set of acceptable sequences of observable actions, safety properties oftraces of L can be formulated as follows.Instance: A lossy channel system L = hS; s0; A; C; �; F i and a set � � A�of strings over A.Question: Does Traces(L) � � hold?A positive answer to the question means that the system satis�es the propertyrepresented by �.If � is a regular set then there is a procedure for transforming the problem ofdeciding safety properties into the problem of deciding reachability [VW86,GW93]. The transformation proceeds as follows.1. Construct a �nite automaton M that accepts the complement of �.2. Form the product of L and M in which L and M synchronize overtransitions with actions in A. 9



3. The problem of deciding whether L satis�es the safety property repre-sented by � has now been transformed to the question whether a stateof the product in which the M-component is accepting is reachable.More precisely, we let a �nite automaton be a tuple hT; t0; A; �; F i, whereT is a set of states, t0 2 T is an initial state, A is a set of actions, � �(T � A� T ) is a transition relation, and F � T is a set of accepting states.The product of a lossy channel system L = hS; s0; A; C;M; �i and a �niteautomaton M = hT; t0; A; �; F i (note that the sets of actions are the samefor the lossy channel system and the �nite automaton), denoted LkM, is thelossy channel system hS�T; hs0; t0i; A; C;M; �0i where �0 is the set of triplesof form hhs1; t1i; op; hs2; t2ii such that either� op is of the form c!m, c?m, or � , and t1 = t2, and hs1; op; s2i is atransition in �, or� op 2 A, hs1; op; s2i is a transition in �, and ht1; op; t2i is a transition in�,The problem of decidingTraces(L) � �has then been transformed into the equivalent problem of decidingNo state of form hhs; ti; "i where t is an accepting state of M isreachable in LkM.Example 4.1 The safety property(Snd Rcv)� [ (Snd Rcv)� Sndis represented by the �nite automaton in Figure 2 which accepts the com-plement of the allowed sequences. No two read actions may be performedconsecutively, and no two write actions may be performed consecutively. Thisautomaton may be used as a speci�cation for the Alternating Bit protocol inSection 3.Eventuality Properties In this paper we shall consider a simple class ofeventuality properties:Instance: A lossy channel system L, and a set N of control states of L.Question: Do all sequences of transitions of L eventually reach a globalstate whose control component is in N?10
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Figure 2: Speci�cation of the Alternating Bit Protocol5 AlgorithmsIn this section we give algorithms for deciding the reachability problem andthe eventuality problem. Safety properties over traces can be veri�ed fromthe algorithm for reachability, as described in Section 4.For x1; x2 2M�, let x1 � x2 denote that x1 is a (not necessarily contiguous)substring of x2. If w1; w2 are string vectors from C to M , then w1 � w2denotes that w1(c) � w2(c) for each c 2 C. Let hs1; w1i � hs2; w2i denotethat s1 = s2 and w1 � w2.5.1 Deciding the Reachability ProblemThe main idea of our algorithm for deciding whether some global state ina set � is reachable is to perform a reachability analysis \backwards" fromthe set �, trying to �nd a path to the initial state. It turns out that itis inconvenient to use the direct inverse of the transition relation �!, e.g.since this will generate \backwards" paths that add messages to channelsin an uncontrolled manner. Instead we de�ne a new \backward" transitionrelation; on global states, which goes in a direction opposite that of�! butis not simply the inverse of �!. One di�erence is that the �!-transitionsthat are caused by message loss in channels are not mirrored in ;. In somecases 1 ; 2 denotes that the state 1 can be reached from 2 by �rstperforming a �!-transition and thereafter losing a certain message. Animportant property (described in Theorem 5.3) is that for any global states1 and 2, where 1 is of the form hs1; "i, we have 1 ��! 2 if and onlyif 2 �; 1. This means that we can decide the reachability problem by11



a backwards reachability analysis from the set �. This backward search isnot a priori bounded. In order to show that the search is �nite, we prove inLemma 5.5 that if 1 � 2, then for each;-path from 2 to the initial globalstate there is a shorter or equal-length ;-path from 1 to the initial state.This means that we do not need to analyze states for which \simpler" states(with respect to the relation �) have been analyzed. Finally, it follows fromHigman's theorem (Theorem 5.6) that this fact makes the number of statesthat must be analyzed �nite.De�nition 5.1 Let L = hS; s0; A; C;M; �i be a lossy channel system. De�ne; to be the smallest binary relation on global states such that1. if hs2; c!m; s1i 2 � then hs1; w[c := w(c) �m]i ; hs2; wi,2. if hs2; c!m; s1i 2 �, w(c) 6= ", and last(w(c)) 6= m, then hs1; wi ;hs2; wi,3. if hs2; c!m; s1i 2 �, and w(c) = ", then hs1; wi ; hs2; wi,4. if hs2; c?m; s1i 2 � then hs1; wi ; hs2; w[c := m � w(c)]i,5. if hs2; a; s1i 2 �, then hs1; wi ; hs2; wi.In case 2, we could have omitted the condition last(w(c)) 6= m. In such acase there would be two ; -transitions corresponding to hs2; c!m; s1i froma global state hs2; wi where last(w(c)) = m (corresponding to case 1 andcase 2). However in our algorithm for reachability (which we will describelater in this section) the transition generated by case 2 is always subsumedby the one generated from case 1, and hence we choose to omit it already inthe de�nition of ; .The relation between �! and ; is captured by the following lemma.Lemma 5.2 If 1 and 2 are global states of a lossy channel system, then(a) (1 ; 2) � �2 ��! 1�(b) for any global state 4 we have0B@ 1 �! 2^4 � 2 1CA � 93:0B@ 3 � 1^4 �; 3 1CAProof: (a) Suppose that 1 ; 2. Let 1 = hs1; w1i and 2 = hs2; w2i.There are �ve cases to check corresponding to the �ve cases in the de�nitionof ;. 12



1. If hs2; c!m; s1i 2 � and w1 = w2[c := w2(c) �m]. We have hs2; w2i ��!hs1; w1i.2. If hs2; c!m; s1i 2 �, w1(c) 6= ", last(w1(c)) 6= m, and w1 = w2. We havehs2; w2i ��! hs1; w1[c := w1(c) �m]i and hs1; w1[c := w1(c) �m]i ��!hs1; w1i.3. If hs2; c!m; s1i 2 �, w1(c) = ", and w1 = w2. We have hs2; w2i ��!hs1; w1[c := m]i and hs1; w1[c := m]i ��! hs1; w1i.4. If hs2; c?m; s1i 2 � and w2 = w1[c := m � w1(c)]. We have hs2; w2i ��!hs1; w1i.5. if hs2; a; s1i 2 � and w1 = w2. We have hs2; w2i a�! hs1; w1i.(b) Suppose that 1 �! 2 and 4 � 2. Let 1 = hs1; w1i, 2 = hs2; w2i, and4 = hs2; w4i, where w4 � w2. There are four cases to check correspondingto the four cases in the de�nition of �!. For each case we �nd w3 and de�ne3 to be hs1; w3i. In each case it can easily be checked that 3 � 1 and that4 �; 3.1. If hs1; c!m; s2i 2 � and w2 = w1[c := w1(c) �m], then if last(w4(c)) =m then take w3 such that w4 = w3[c := w3(c) �m], otherwise iflast(w4(c)) 6= m or w4(c) = " then take w3 = w4.2. If hs1; c?m; s2i 2 � and w1 = w2[c := m �w2(c)], then take w3 = w4[c :=m � w4(c)].3. If s1 = s2 and for some x; y we have w1(c) = x�m�y and w2(c) = x�y,then take w3 = w4 which makes 4 = 3.4. if hs1; a; s2i 2 � and w2 = w1, then take w3 = w4.From Lemma 5.2 we can infer that 1 �; 2 implies 2 ��! 1 (this followsfrom (a)), and that 1 ��! 2 implies that there is a state 3 with 3 � 1such that 2 �; 3 (this follows from (b)). In particular, we have thefollowing.Theorem 5.3 If 1 = hs1; "i and 2 are global states of a lossy channelsystem, then 1 ��! 2 i� 2 �; 1Proof: Follows directly from Lemma 5.2. 2The fact that backward reachabilty of a state can be simulated by backwardreachability of a \simpler" state is described by the following lemmas.13



Lemma 5.4 For any global states 1, 2, and 3 of a lossy channel system,we have 0B@ 1 ; 2^3 � 1 1CA � 94: 0B@ 4 � 2^3 ; 4 1CAProof: Let 1 = hs1; w1i, 2 = hs2; w2i, and 3 = hs1; w3i, where w3 �w1. The proof is divided into �ve cases, corresponding to the cases in thede�nition of ;. For each case, we describe how to �nd w4 and de�ne 4to be hs2; w4i. In each case it can easily be checked that 4 � 2, and that3 ; 4.1. hs2; c!m; s1i 2 � and w1 = w2[c := w2(c) �m]. There are three cases:(a) If there is a w03 such that w3 = w03[c := w03(c) �m], then takew4 = w03.(b) If w3(c) 6= " and last(w3(c)) 6= m, take w4 = w3.(c) If w3(c) = ", take w4 = w3.2. hs2; c!m; s1i 2 �, w1 = w2, w1(c) 6= ", and last(w1(c)) 6= m. The proofis similar to that of the previous case.3. hs2; c!m; s1i 2 �, w1 = w2, and w1(c) = ". This means that w3(c) = ".Take w4 = w3.4. hs2; c?m; s1i 2 �, w2 = w1[c := m � w1(c)]. Take w4 = w3[c :=m � w3(c)].5. hs2; a; s1i 2 �, w2 = w1. Take w4 = w3.De�ne the distance of a global state  (denoted dist()) as the minimalnumber of ;-transitions needed for coming from  to the initial state 0. Ifthe initial state is not reachable from  via ; then de�ne dist() =1.Lemma 5.5 If 1 and 2 are global states of a lossy channel system suchthat 1 � 2 then dist(1) � dist(2).Proof: Follows directly from Lemma 5.4. 2We are now ready to present the reachability algorithm. The algorithm(displayed in Figure 3) inputs the set � of global states, and should checkwhether � is reachable or not. The algorithm maintains a set W , initializedto �, of states that have not yet been analyzed, and a set V which containsinformation about the set of states which have been analyzed. The algorithm14



preserves the the following invariant: W [ V is reachable if and only if � isreachable, and if � is reachable then (9 2 W ) (80 2 V ) (dist() < dist(0)).Thus, if W becomes empty, then the algorithm terminates concluding that� is unreachable. Otherwise, the algorithm proceeds by analyzing each statein W in turn. When a state  in W is analyzed, three possibilities arise:1. if  is the initial state then terminate and say that � is reachable,2. if there exists a state 0 in V with 0 � , then simply discard  (sincethe invariant together with Lemma 5.5 imply that there is a 00 2 Wsuch that dist(00) < dist(0) � dist()),3. otherwise generate the ;-successors of , put these into W , and move from W to V . Furthermore, remove each member 0 of V for which � 0 (By Lemma 5.5 this does not a�ect the information containedin V ).The correctness of the algorithm follows directly from the invariant. Thereason why the algorithm always terminates is that only a �nite set of globalstates can be added to V . This can be explained as follows. Whenever anew element  is added to V it is ensured that 0 6� , for each 0 alreadyadded to V . This means that the sequence of global states added to V formsa sequence 1 2 3 � � �, such that i 6� j for all i < j. It follows fromHigman's theorem that there is no such sequence which is in�nite. Thisresult can be found e.g. as Theorem 6.1.2 in [Lot83], where it is attributedto Higman [Hig52]. A version which suits our purposes is the following.Theorem 5.6 (Higman's theorem) LetM be a �nite set. There is no in�nitesequence w1 w2 w3 � � � of elements in M�, such that wi 6� wj for all i < j.It is straightforward to generalize Higman's theorem to sequences 1 2 3 � � �of global states. 2There is a connection between our algorithm for deciding reachability andstandard proofs by invariants. When running the reachability algorithm withan unreachable input set �, then upon completion of the algorithm the setV gives a �nite characterization of the set of global states from which � isreachable. The characterization is described as a set V̂ , whereV̂ = f; 90: 0 2 V and 0 � gFor each global state , the set � is reachable from  if and only if  2 V̂ . Ifwe de�ne the set I to be the complement of V̂ , then I represents an invariantwhich can be used to prove that � is unreachable. Since � is unreachable,15



AlgorithmInput: A LCS and a �nite set � of global statesoutput: Is � reachable?var W , V : sets of global statesbeginW := �V := ;while W 6= ; doif 0 2 W thenexit(true)elseLet  2 W ;if (90 2 V )(0 � ) thenW := W � fgelseV := fg [ f0 : (0 2 V ) ^ ( 6� 0)gW := W [ f0 :  ; 0g � fgod (* while *)exit(false)end Figure 3: Algorithm for deciding reachability
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the initial global state 0 is a member of I. Note that I is larger than orequal to the set of the reachable states.Furthermore, since the channels can lose messages, any invariant in a lossychannel system (I in this case) is closed under the � relation. UsingHigman's Theorem it can be shown [Cou91] that any set I which is closedunder the � relation is regular and can be represented by a unique �niteset V of counter-examples, in the sense that the complement of I is equal toV̂ .This fact can be proved as follows. Let I be a set of strings over a �nitealphabet, which is closed under the � relation. Let I 0 be the complementof I. It is clear that I 0 is closed under the � relation. Let V be the set ofminimal elements of I 0, i.e.V = f; ( 2 I 0) ^ (6 90 2 I 0: 0 � )gBy Higman's theorem it follows that V is �nite, and hence the set V consistsof a �nite number of counter-examples characterizing the set I. This impliesthat I 0 (and hence I) is regular.5.2 ExampleConsider the Alternating Bit Protocol, described in Section 3, and the safetyproperty of Example 4.1. Using the method described in Section 4, we canreduce the problem of checking the safety property to an instance of thereachability problem, by forming the product of the lossy channel systemrepresenting the protocol and the �nite automaton (in Figure 2) representingthe complement of the safety property.The set of control states of the product can be described by a set of tripleshi; j; ki, where 1 � i; j � 4 and 1 � k � 3. The elements i, j, and k representthe states of the Sender, the Receiver, and the �nite automaton respectively.The problem is to check whether the set � = fhi; j; 3i; 1 � i; j � 4g of controlstates is reachable.When the reachability algorithm is applied to the above problem, it givesthe answer that � is unreachable. When the algorithm terminates, the set Vcontains the global states described in Table 1. For example, the global statesin V which have h1; 1; 1i as a control state are those which have either themessage 0 in channel cM and " in channel cA, or have " in channel cM and themessage 0 in channel cA. This means that from h1; 1; 1i it is not possible toreach � if the content of each of the channels belongs to the regular language1�. On the other hand if the content of either of the channels includes 0,then � is reachable from h1; 1; 1i. Similarly, the global states in V which17



Control State Channel cM Channel cAh1; 1; 1i 0 "h1; 1; 1i " 0h2; 1; 2i 01 "h2; 1; 2i " 0h2; 2; 2i 1 "h2; 2; 2i " 0h2; 3; 1i 1 "h2; 3; 1i " 01h3; 3; 1i 1 "h3; 3; 1i " 1h4; 1; 1i 0 "h4; 1; 1i " 10h4; 3; 2i 10 "h4; 3; 2i " 1h4; 4; 2i 0 "h4; 4; 2i " 1all other control states " "Table 1: The set V generated when applying the reachability algorithm tothe Alternating Bit Protocolhave h4; 1; 1i as a control state are those which have either 0 in channel cMand " in channel cA, or have " in channel cM and 10 in channel cA. This meansthat from h4; 1; 1i it is not possible to reach � if the content of channel cMbelongs to the regular language 1� and the content of channel cA belongsto the regular language 0�1�. On the other hand it is possible to reach � ifchannel cM contains the message 0 or if channel cA contains the string 10(not necessarily contiguously).In Figure 4, we give a graphic representation of the invariant set I for theAlternating Bit Protocol. Each node in the graph is de�ned by a 5-tuplehi; j; k; rM ; rAi, where hi; j; ki describes a control state as before, and rM andrA are regular expressions representing the contents of the channels cM andcA. Each node corresponds to a set of global states in I. For example, thenode h2; 1; 2; 1�0�; 1�i indicates that I contains the global state where thecontrol state is h2; 1; 2i, and the content of channel cM is a member of theregular language 1�0�, and the content of channel cA is a member of theregular language 1�. Furthermore, the labeled edges of the graph representtransitions among the global states in I. An edge means that, for a globalstate in the source node, we can perform the operation described by the18



label and obtain a global state in the target node. In fact, in this particularexample, the set I happens to be equal to the set of reachable global statesof the system.
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Figure 4: The set I for the Alternating Bit Protocol.5.3 ComplexityWe have not been able to analyze the worst-case bound on the number ofiterations in the reachability algorithm. The analysis is di�cult since ingeneral there is no bound on the length of sequences in Higman's theorem:for any natural number n there is the sequence mn; mn�1; : : : ; m of lengthn, where m is any member of the alphabet. However, in some special casesit is possible to give bounds under restrictions on the sequence. Fromthe de�nition of the;-relation, we know that the di�erence in channel sizesbetween a global state and any of its;-successors is at most one. This meansthat in the reachability algorithm, a global state in the setW is replaced onlyby global states whose channel sizes are larger by at most one. It could bepossible that these restrictions enable us to de�ne an upper bound on the19



number of iterations in terms of the sizes of the input global states and thealphabet.5.4 Deciding the Eventuality ProblemFor a lossy channel system L and a �nite set N of control states of L, wegive an algorithm for deciding whether each sequence of transitions eventuallyreaches a global state whose control part is in N . The algorithm is obtainedby performing a simple reachability analysis (using the relation �!) fromthe initial state. Starting from the initial state 0, a tree of reachable globalstates is constructed. A branch of the tree need not be expanded further ifit contains a state whose control part is in N . The algorithm can now endin one of two ways:1. If all branches of the tree end in a state whose control part is in N ,then the eventuality property holds.2. If a state 0 is a descendant of a state  and  � 0, then a loop inthe execution has been discovered, which means that the eventualityproperty does not hold.Using Theorem 5.6, we can also for this algorithm prove that the reachabilitytree is �nite and that the algorithm therefore terminates.6 Empirical ResultsAs an empirical experiment, we have analyzed some sliding-window protocolsMaxSeq No. of control states No. of iterations Size of V Veri�cation time (secs)2 48 136 56 0.013 216 1049 273 0.14 640 4579 856 0.535 1500 14408 2100 1.96 3024 37883 4404 6.87 5488 86559 8281 228 9216 179982 14368 64Table 2: Performance of the algorithm on di�erent sliding window protocols20



[Tan81], using a model where the sender and the receiver communicate viatwo unbounded and lossy channels; one for transmitting messages from thesender to the receiver and one for transmitting acknowledgments from thereceiver to the sender. Each protocol has a parameter MaxSeq, whereMaxSeq � 2. The messages and acknowledgments are assigned sequencenumbers in the set f0; : : : ;MaxSeq � 1g. The size of the sender window isMaxSeq � 1, while the size of the receiver window is one. In our model wehave omitted the actual messages, i.e. only sequence numbers are transmittedover the channels. For these protocols, we have veri�ed the safety proper-ties that the traces are included in the traces of a bu�er with a capacity ofMaxSeq � 1.Notice that if MaxSeq = 2, the sliding window protocol described abovereduces to the Alternating Bit Protocol (Figure 1), and the speci�cationreduces to that described in Figure 2.Table 2 illustrates the performance of a draft implementation of the algo-rithm in the language C for di�erent values of MaxSeq. The second columnshows the number of control states in the product of the lossy channel systemdescribing the protocol and the �nite automaton representing the speci�ca-tion. This number is the product of of the number of states of the Sender(MaxSeq2), the number of states of the Receiver (2 � MaxSeq), and thenumber of states of the speci�cation (MaxSeq+1). The third column showsthe number of iterations of the loop when applying the algorithm of Figure 3,the fourth column shows the size of the set V upon termination, and the lastcolumn shows the veri�cation time on a Sun SPARCstation 10. As describedin [Kin93], the veri�cation time is dependent on the data structures used forthe implementation of the sets W and V in the reachability algorithm (seeFigure 3). Table 2 describes the results of an implementation where the setW is implemented as a queue and the set V is implemented as a hash table.7 ConclusionIn this paper, we have shown that several types of safety and liveness prop-erties of systems of �nite-state processes that communicate over unboundedbut lossy FIFO channels are decidable. We have performed empirical studiesthat show that the reachability algorithm is practical for verifying idealizedmodels of sliding window protocols of moderate size.Our results generalize to other types of sequences that can lose elements, e.g.\lossy stacks", \lossy tapes" (of e.g. Turing machines). It follows that thehalting problem for Turing machines with \lossy tapes" is decidable.There is also another way to prove that the reachability problem is decid-21
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