0. Course Overview

@ V. Distribution and Operating Systems

@ Protection mechanisms; Processes and threads; Networked OS:; Distributed
and Network File Systems (NFSs)

Distributed Systems - Fall 2009 V-1

Operating Systems for Distributed Systems

@ Network Operating System
@ one instance running per computer in a network

@ operating system manages local resources as well as access to network
infrastucture

@ network file systems
@ rlogin
@ telnet
@ examples
@ Windows (98/NT/2000...)
@ Unix (Solaris, ...)
@ Linux
@ Distributed Operating System
@ single image system
@ complete transparency for the user where programs run
@ OS has control over all nodes in system
@ not practically in use
@ compatability with existing applications
@ emulations offer very bad performance
@ example
@ Amoeba (Tannenbaum et al.)

Distributed Systems - Fall 2009 V-2

Operating Systems for Distributed Systems

@ General Architecture in Practical Use

@ network operating system + middleware layer

OS: kernel, Os1
libraries & Processes, threads,
servers communication, ...
Computer &
network hardware
Node 1

Applications, services

Middleware

© Addison-Wesley Publishers 2000

0S2
Processes, threads,
communication, ...

Computer &
network hardware

Node 2

Platform

Distributed Systems - Fall 2009

Operating Systems for Distributed Systems

@ Desiderata for Network Operating Systems
@ provide support for middleware layer to work effectively

@ encapsulation
@ provide transparent service interface to resources of the computer

@ protection
@ protect resources from illegitimate access

@ concurrent processing
@ users/clients may share resources and access concurrently

Distributed Systems - Fall 2009 V-4

Operating Systems for Distributed Systems

@ Process
@ software in execution
@ unit of resource management for operating system
@ execution environment
@ address space

@ thread synchronization and communication resources (e.g.,
semaphores, sockets)

@ computing resources (file systems, windows, etc.)
@ threads
@ schedulable activities attached to processes

@ arise from the need for concurrent activities sharing resources within
one process

@ concurrent input/output with problem computation

@ servers: concurrent processing of client requests, each request
handled by one thread

@ processes vs. threads
@ threads are “lightweight” processes
@ processes expensive to create, threads easier to create and destroy
@ process instantiation
@ one thread will be instantiated as well, may instantiate offsprings

Distributed Systems - Fall 2009 V-5

Operating Systems for Distributed Systems

Process manager

Communication
manag er

Thread manager Memory manager

Supervisor © Addison-Wesley Publishers 2000

@ Core Operating System Functionality
@ process manager
@ maintains processes (creation, termination)
@ thread manager
@ creation, synchronization and scheduling
@ communication manager
@ communication between threads
@ in different processes
@ on different computers

Distributed Systems - Fall 2009 V-6

Operating Systems for Distributed Systems

Process manager

Communication
manag er

Thread manager Memory manager

Supervisor © Addison-Wesley Publishers 2000

@ Core Operating System Functionality
@ memory manager
@ management of physical and virtual memory
@ supervisor
@ dispatching of interrupts, system call traps and exceptions
@ control of memory management unit and hardware caches
@ processor and floating point unit register manipulations

Distributed Systems - Fall 2009 V-7

Protection Mechanisms

@ Protection against illegitimate access
@ clients performing operations need to have right to do so
@ only specified operations may be performed on an object
» Kernel

@ core part of operating system that has complete access rights to any
resource

@ processor modes
@ user
@ supervisor
@ kernel always executes in supervisor mode
some operations are only allowed in supervisor mode

@ Kkernel sets up address spaces to protect against illegitimate memory
accesses

@ collection of ranges of virtual addresses (memory locations)
@ process cannot access memory locations outside it’s address space
@ switching between processes entails switching of address spaces
@ may involve non-negligible amount of work, performance implications

Distributed Systems - Fall 2009 V-8

Processes and Threads

@ Address Spaces

@ regions of memory accessible to
threads of that process

@ subdivided into regions
@ |owest address and length

@ read/write/execute permissions
for threads in process

@ direction of growth
@ stack
@ for subroutines

@ sometimes one stack region per
thread

@ text
@ region to map files into memory
@ shared region

@ regions of virtual memory
mapped to identical physical
memory for different processes

@ enables inter-process
communication

Auxiliary
regions

Text

© Addison-Wesley Publishers 2000

Distributed Systems - Fall 2009

Processes and Threads

@ Process creation
@ choice of target host (only for distributed operating systems)
@ creation of an execution environment
@ contents of newly allocated address space
@ initialized “empty”
@ initialized as a (partial) copy of parent’s address space

@ example: Unix fork command: child process shares text region
with parent, has own copies of stack and heap (an extension
allows choices which regions are shared, and which ones are
inherited)

@ copy-on write (in Mach operating system)
@ inherited region initially shared

@ only when one process attempts to write, an interrupt handler
will start copying the shared region to a new instance

Shared
frame
A's page > - B's page
table table

© Addison-Wesley Publishers 2000 a) Before write b) After write

Distributed Systems - Fall 2009 V-10

Processes and Threads

s Performance considerations: handling server requests
@ processing: 2 ms
|O delay (no caching): 8 ms
single thread
@ 10 ms per requests, 100 requests per second
@ two threads (no caching)
@ 8 ms per request, 125 requests per second
@ two threads and caching
@ 75% hit rate
@ mean IO time per request: 0.25 * 8ms = 2ms
@ 500 requests per second
@ increased processing time per request: 2.5 ms
@ 400 requests per second

[%]

[]

Distributed Systems - Fall 2009 V- 11

Processes and Threads

Thread 2 makes
requests to server

Receipt & Input-output
queumg /
Thread™ e —
generateso o o
results
Requeé(
N threads
Client
Server
d/orkers per-corchtion threads per- object threads
Y oO—p
2V O/ A remote ~'remote \VO / roin;?:tti
°® O objects o —p Q objects Y »Q.»CA_)
A N\ A\
o 2 «—> o NG-
© Addison-Wesley Publishers 2000
a. Thread-per-request b. Thread-per-connection c. Thread-per-object

@ Threads and Servers
@ worker pool

@ pool of server threads serves requests in queue

@ possible to maintain priorities per queue
@ thread per request

@ thread lives only for the duration of request handling
@ maximizes throughput (no queuing)

@ expensive overhead for thread creation and destruction
Distributed Systems - Fall 2009

V-12

Processes and Threads

Thread 2 makes
requests to server

Recejpt & Input-output
queumg /
Thread™i 0 e
geneltrateo o o
results
Reque{
Nthreads
Client
Server

per-connection threads

Oworkers Q
® o—>p
‘ Vo / N remote

~!remote
® O objects o —p Q objects
A N /

a. Thread-per-request b. Thread-per-connection

@ Threads and Servers
@ thread per connection/per object
@ compromise solution

@ no overhead for creation/deletion of threads

per-object threads

. 4—

\| /O / remote

© Addison-Wesley Publishers 2000

c. Thread-per-object

@ requests may still block, hence throughput is not maximal

Distributed Systems - Fall 2009 V-13

Processes and Threads

Execution environment Thread

Address space tables Saved processor registers

Communication interfaces, open files Priority and execution state (such as
BLOCKED)

Semaphores, other synchronization Software interrupt handling information

objects

List of thread identifiers Execution environment identifier

Pages of address space resident in memory; hardware cache entries

© Addison-Wesley Publishers 2000

@ Threads vs. multiple processes/execution environments

@ creating a new thread is much less expensive than creating new execution
environment

@ creating new thread:
@ allocate region of thread's stack and
@ set registers and processor status
@ creating new execution environment
@ create address space table, communication interfaces

@ new process starts with "empty" cache, therefore more cache misses
than for new thread

@ experiment: new process under Unix 11ms, new thread under Topaz
kernel: 1 ms

Distributed Systems - Fall 2009 V-14

Processes and Threads

Execution environment Thread

Address space tables Saved processor registers

Communication interfaces, open files Priority and execution state (such as
BLOCKED)

Semaphores, other synchronization Software interrupt handling information

objects

List of thread identifiers Execution environment identifier

Pages of address space resident in memory; hardware cache entries

© Addison-Wesley Publishers 2000

@ Threads vs. multiple processes/execution environments
@ switching between threads more efficient than switching between processes
@ threads
@ scheduling (deciding which thread to run next)

@ context switching (saving processor's register state, loading new
register contents)

@ domain transitions
@ if new thread is member of a different execution environment
@ cache misses more severe than in-domain switching

@ experimental results
@ process switch in Unix: 1.8ms, thread switch in Topaz: 0.4 ms

Distributed Systems - Fall 2009 V-15

Processes and Threads

Execution environment Thread

Address space tables Saved processor registers

Communication interfaces, open files Priority and execution state (such as
BLOCKED)

Semaphores, other synchronization Software interrupt handling information

objects

List of thread identifiers Execution environment identifier

Pages of address space resident in memory; hardware cache entries

© Addison-Wesley Publishers 2000

@ Threads vs. multiple processes/execution environments
@ Easy sharing of data amongst processes in one execution environment
@ no need for message passing
@ communication via shared memory
@ No protection against malevolent threads

@ one thread can access other thread's data, unless a type-safe
programming language is being used

Distributed Systems - Fall 2009 V-16

Processes and Threads

@ Java Thread class

Thread(ThreadGroup group, Runnable target, String name)
Creates a new thread in the SUSPENDED state, which will belong to group and be
identified as name; the thread will execute the run() method of target.

setPriority(int newPriority), getPriority()
Set and return the thread’s priority.

run()

A thread executes the run() method of its target object, if it has one, and otherwise its
own run() method (Thread implements Runnable).

start()
Change the state of the thread from SUSPENDED to RUNNABLE.

sleep(int millisecs)
Cause the thread to enter the SUSPENDED state for the specified time.

yield()
Enter the READY state and invoke the scheduler.

destroy()
Destroy the thread.

© Addison-Wesley Publishers 2000

Distributed Systems - Fall 2009 V-17

Processes and Threads

@ Thread Groups
@ every thread belongs to one group, assigned at thread creation time

@ thread groups useful to shield various applications running in parallel on one
Java Virtual machine

@ thread in one group may not interrupt thread in another group
@ e.g., an application may not interrupt the windowing (AWT) thread

s Java Thread Synchronization
@ each thread’s local variables and methods are private to it
@ thread has own stack

@ thread does not have private copies of static (class) variables or object
instance variables

@ mutual exclusion via monitor concept
@ abstract data type first implemented in Ada
@ in Java: synchronized keyword

@ any object can only be accessed through one invokation of any of its
synchronized methods

@ an object can have synchronized and non-synchronized methods
@ example

@ synchronized addTo () and removeFrom () methods to serialize
requests in worker pool example

Distributed Systems - Fall 2009 V-18

Processes and Threads

e Java Thread Synchronization
@ threads can be blocked and woken up
@ thread awaiting a certain condition calls an object’'s wait () method

@ other thread calls notify () ornotifyAll () to awake one or all
blocked threads

@ example
@ worker thread discovers no requests to be processed
@ calls wait () on instance of Queue
@ when IO thread adds request to queue
@ calls notify () method of queue to wake up worker

threadJOZn (lnt mllllSeCS) © Addison-Wesley Publishers 2000
Blocks the calling thread for up to the specified time until thread has terminated.

thread.interrupt()
Interrupts thread: causes it to return from a blocking method call such as sleep().

object.wait(long millisecs, int nanosecs)
Blocks the calling thread until a call made to notify() or notifyAll() on object wakes
the thread, or the thread is interrupted, or the specified time has elapsed.

object.notify(), object.notifyAll()
Wakes, respectively, one or all of any threads that have called wait() on object.

Distributed Systems - Fall 2009 V-19

Architecture of Networked Operating Systems

Monoalithic Kernel Microkernel
Key.

Server: O Kernel code and data: Dynamically loaded server program:
© Addison-Wesley Publishers 2000

@ Monolithic Kernel vs. Microkernel
@ goal: separation of concerns
@ e.g., separate resource management mechanisms from policies

@ example: separate context switching mechanism from policy deciding

which process to schedule next

@ possible architecture: kernel performs only basic mechanisms, policies
loaded dynamically by invoking services outside kernel

@ monolithic kernel
@ all essential functions implemented inside kernel
@ example: Unix

@ microkernel

@ only basic functionality in kernel, services dynamically loaded
@ servers run in user (unprivileged) mode

Distributed Systems - Fall 2009 V - 20

Architecture of Networked Operating Systems

Middleware
Language Language OS emulation
support support subsystem
subsystem subsystem

Microkernel

Hardware

The microkemnel supports middleware via subsystems® Addison-Wesley Publishers 2000

@ Microkernel and Middleware
@ microkernel a layer between hardware, services and middleware
@ for performance reasons, middleware may directly access microkernel
routines
@ otherwise, access through
@ programming language APls
@ OS emulation calls
@ e.g., Unix calls emulated on Mach distributed operating system

Distributed Systems - Fall 2009 V - 21

Architecture of Networked Operating Systems

Monoalithic Kernel Microkernel
Key.

Server: O Kernel code and data: Dynamically loaded server program:

© Addison-Wesley Publishers 2000

@ Monolithic Kernel vs. Microkernel
@ microkernel-based
@ advantage
@ extensibility
@ maintainability (modularity)
@ small kernel likely to be bug-free
@ disadvantage
@ invoking services involves context switches
@ essential system services executing in user mode
@ monolithic kernel
@ advantage
@ efficiency
@ disadvantage

! . . |

Distributed Systems - Fall 2009 \V -922

File Systems

@ File System
@ operating system interface to disk storage
@ File System Attributes (Metadata)

File length

Creation timestamp

Read timestamp

Write timestamp

Attribute timestamp

Reference count

Owner

File type

Access control list

© Addison-Wesley Publishers 2000

Distributed Systems - Fall 2009 V-23

File Systems

@ Operations on Unix File System

filedes = open(name, mode)
filedes = creat(name, mode)

status = close(filedes)

count = read(filedes, buffer, n)
count = write(filedes, buffer, n)

pos = Iseek(filedes, offset,
whence)

status = unlink(name)

status = link(namel, name2)

status = stat(name, buffer)

Opens an existing file with the given name.

Creates a new file with the given name.

Both operations deliver a file descriptor referencing the open
file. The mode 1s read, write or both.

Closes the open file filedes.

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually transferred
and advance the read-write pointer.

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

Removes the file name from the directory structure. If the file
has no other names, it is deleted.

Adds a new name (name?) for a file (namel).
Gets the file attributes for file name into buffer.

© Addison-Wesley Publishers 2000

Distributed Systems - Fall 2009

Distributed File System

@ Distributed File System

@ file system emulating non-distributed file system behaviour on a physically
distributed set of files, usually within an intranet

@ requirements
@ transparency
@ access transparency: hide distributed nature of file system by

@

providing a single service interface for local and distributed files

@ programs working with a non-distributed file system should work
without major adjustments on a distributed file system

location transparency: uniform, location independent name space

mobility transparency: file specifications will remain invariant if a file
is physically moved to a different location within the dfs

performance transparency: load increase within normal bounds
should allow a client to continue to receive satisfactory performance

scaling transparency: expansion by incremental growth

@ allow concurrent access
@ allow file replication
@ tolerate hardware and operating system heterogeneity

Distributed Systems - Fall 2009 V - 25

Distributed File System

@ Distributed File System
@ requirements

@ fault tolerance: continue to provide correct service in the presence of
communication or server faults

@ at-most-once semantics for file operations

@ at-least-once semantics for indempotent file operations

@ replication (stateless, so that servers can be restarted after failure)
@ consistency

@ one-copy update semantics

@ all clients see contents of file identically as if only one copy of
file existed

@ if caching is used: after an update operation, no program can
observe a discrepancy between data in cache and stored data

@ security
@ access control
@ client authentication
@ efficiency
@ |latency of file accesses
@ scalability (e.g., with increasing number of concurrent users)

Distributed Systems - Fall 2009 V - 26

Architecture

Client computer Server computer

Application Application Directory service
program program

Flat file service
Client module

= = =

© Addison-Wesley Publishers 2000

@ Flat File Service
@ performs file operations
@ uses “unique file identifiers” (UFIDs) to refer to files
@ flat file service interface
@ RPC-based interface for performing file operations
@ not normally used by application level programs

s Directory Service
@ mapping of UFIDs to “text” file names, and vice versa
@ Client Module

")
Distributed Systems - Fall 2009 \V -27

Architecture

Read(Fileld, i, n) -> Data If 1 <i <Length(File): Reads a sequence of up to n items

— throws BadPosition from a file starting at item i and returns it in Data.
Write(Fileld, i, Data) If 1 <i<Length(File)+1: Writes a sequence of Data to a
— throws BadPosition file, starting at item #, extending the file 1f necessary.
Create() -> Fileld Creates a new file of length 0 and delivers a UFID for it.
Delete(Fileld) Removes the file from the file store.

GetAttributes(Fileld) -> Attr Returns the file attributes for the file.

SetAttributes(Fileld, Attr) Sets the file attributes (only those attributes that are not
shaded in).

© Addison-Wesley Publishers 2000

s Flat File Service Interface
@ comparison with Unix
@ every operation can be performed immediately

@ Unix maintains file pointer, reads and writes start at the file pointer
location

@ advantages: fault tolerance
@ with the exception of create, all operations are indempotent
@ can be implemented as a stateless, replicated server

Distributed Systems - Fall 2009 V - 28

Architecture

@ Access Control

@ at the server in dfs, since requests are usually transmitted via unprotected
RPC calls

@ mechanisms

@ access check when mapping file name to UFID, returning cryptographic
“capability” to requester who uses this for subsequent requests

@ access check at server with every file system operation
@ Hierachical File System
@ files organized in trees
@ reference by pathname + filename
@ File Groups
@ groups of files that can be moved between servers
@ file cannot change group membership
@ in Unix: filesystem
@ identification: must be unique in network
@ |P address of creating host
@ date of creation

Distributed Systems - Fall 2009 V - 29

SUN Network File System

Client computer Server computer

Application Application
program program

UNIX
system calls—
UNIX kernet—
UNIX kerne™— | virtual file system Virtual file system
y al ¥ mote] ¥
9

UNIX N 5 % NFS &= NFS UNIX

system|| S 2| clent | server stlslteem

4 Sk NFS

% protocol

@ Architectu re of NFS VerSion 3 © Addison-Wesley Publishers 2000

@ access transparency
@ no distinction between local and remote files

@ virtual file system keeps track of locally and remotely available
filesystems

@ file identifiers: file handles

@ filesystem identifier (unique number allocated at creation time)
@ |-node number

Distributed Systems - Fall 2009 V -30

SUN Network File System

@ Selected NFS Server Operations - | -

lookup(dirfh, name) -> fh, attr

create(dirfh, name, attr) ->
newfh, attr

remove(dirfh, name) status

getattr(fh) -> attr

setattr(fh, attr) -> attr

read(fh, offset, count) -> attr, data
write(fh, offset, count, data) -> attr
rename(dirth, name, todirfh, toname)

-> status

link(newdirfh, newname, dirfh, name)
-> status

Returns file handle and attributes for the file name in the directory
dirfh.

Creates a new file name in directory dirfh with attributes attr and
returns the new file handle and attributes.

Removes file name from directory dirfh.

Returns file attributes of file f. (Similar to the UNIX staf system
call.)

Sets the attributes (mode, user id, group id, size, access time and
modify time of a file). Setting the size to 0 truncates the file.

Returns up to count bytes of data from a file starting at offset.
Also returns the latest attributes of the file.

Writes count bytes of data to a file starting at offset. Returns the
attributes of the file after the write has taken place.

Changes the name of file name in directory dirfh to toname in
directory to todirfh

Creates an entry newname in the directory newdirfh which refers to
file name in the directory dirfh.

© Addison-Wesley Publishers 2000

Distributed Systems - Fall 2009

V - 31

SUN Network File System

@ Selected NFS Server Operations - Il -

symlink(newdirfh, newname, string) Creates an entry newname in the directory newdirfh of type

-> status
readlink(fh) -> string
mkdir(dirfh, name, attr) ->

newfh, attr

rmdir(dirfh, name) -> status

readdir(dirfh, cookie, count) ->
entries

statfs(fh) -> fsstats

symbolic link with the value string. The server does not interpret
the string but makes a symbolic link file to hold it.

Returns the string that is associated with the symbolic link file
identified by fh.

Creates a new directory name with attributes atfr and returns the
new file handle and attributes.

Removes the empty directory name from the parent directory dirfh.
Fails if the directory is not empty.

Returns up to count bytes of directory entries from the directory
dirfh. Each entry contains a file name, a file handle, and an opaque
pointer to the next directory entry, called a cookie. The cookie is
used in subsequent readdir calls to start reading from the following
entry. If the value of cookie is 0, reads from the first entry in the
directory.

Returns file system information (such as block size, number of
free blocks and so on) for the file system containing a file fA.

© Addison-Wesley Publishers 2000

Distributed Systems - Fall 2009

V -32

SUN Network File System

@ Access Control/Authentication
@ NFS requests transmitted via Remote Procedure Calls (RPCs)
@ clients send authentication information (user / group IDs)
@ checked against access permissions in file attributes
@ potential security loophole

@ any client may address RPC requests to server providing another client’s
identification information

@ introduction of security mechanisms in NFS
@ DES encryption of user identification information
@ Kerberos authentication

Distributed Systems - Fall 2009 V -33

SUN Network File System

Server 1 Client Server 2
/ (root) / (root) /(root)

AN AN AN
AN A

people students x . staff users

72\ N REDZANN

big jon bob ... jim ann jane joe

© Addison-Wesley Publishers 2000

@ Mounting of Filesystems

@ making remote file systems available to a local client, specifying remote host
name and pathname

@ mount protocol (RPC-based)
@ returns file handle for directory name given in request

@ |ocation (IP address and port number) and file handle are passed to
Virtual File system and NFS client

@ hard-mounted (mostly used in practice)

@ client suspended until operation completed

@ gpplication may not terminate gracefully in failure situations
@ soft-mounted

@ error message returned after small number of retries

Distributed Systems - Fall 2009 V-134

SUN Network File System

@ Caching in server and client indispensable to achieve necessary
perfomance
@ Server caching
@ disk caching as in non-networked file systems
@ read operations: unproblematic
@ write operations: consistency problems
@ write-through caching

@ store updated data in cache and on disk before sending reply to
client

@ relatively inefficient if frequent write operations occur
@ commit operation
@ caching only in cache memory
@ write back to disk only when commit operation for file received

Distributed Systems - Fall 2009 V -35

SUN Network File System

@ Caching indispensable to achieve necessary perfomance
@ Client caching
@ caching of read, write, getattr, lookup and readdir operations

@ potential inconsistency: the data cached in client may not be identical to
the same data stored on the server

@ time-stamp based scheme used in polling server about feshness of a
data object (presumption of synchronized global time, e.g., through NTP)
@ Tc: time cache was last validated
@ Tm, v iMe when block was last modified at the server as
recorded by client/server
@ t: freshness interval
@ freshness condition
@ (T-Tc<t) (Tm,,=TM
@ if (T-Tc < t) (can be determined without server access), then
entry presumed to be valid
@ if not (T-Tc <t), then TM
getattr call
e if Tm,,, = TM,,..,, then data presumed valid, else obtain data
from server and update Tm__,,

@ note: scheme does not guarantee consistency, since recent updates may

server)

needs to be obtained by a

server

Distributed Systems - @ 2popviSible, one copy updatevsesnantics only approximated

SUN Network File System

@ Caching indispensable to achieve necessary perfomance

@ Client caching

@ perfomance factors: how to reduce server traffic, in particular for
getattr

@ receipt of TM

then update all Tm_ . values related to data object

server?’ client

derived from the same file
@ piggyback current attribute values on results of every file operation
@ adaptive algorithm for t

@

@
" |
'

t too short: many server requests

t too large: increased chance of inconsistencies

typical values: 3 to 30 secs for files, 30 to 60 secs for directories
in Solaris, t is adjusted according to frequency of file updates

Distributed Systems - Fall 2009

SUN Network File System

@ Caching indispensable to achieve necessary perfomance

@ (Client caching - write operations
@ mark modified cache page as “dirty” and schedule page to be flushed to
server (asynchronously)
@ flush happens with closing of file, when sync is issued,
@ or when asynchronous block input-output (bio) daemon is used and
active
@ when read, then read-ahead: when read occurs, bio daemon
sends next file block
@ when write, then bio daemon will send block asynchronously
to server
@ bio daemons: performance measure reducing probability that client
blocks waiting for
* read operations to return, or
* write operations to be committed at the server

Distributed Systems - Fall 2009 V - 38

Andrew File System

@ Andrew File System (AFS)
@ gtarted as a joint effort of Carnegie Mellon University and IBM

@ today basis for DCE/DFS: the distributed file system included in the Open
Software Foundations’s Distributed Computing Environment

@ some UNIX file system usage observations, as pertaining to caching

@ infrequently updated shared files and local user files will remain valid for
long periods of time (the latter because they are being updated on
owners workstations)

@ allocate large local disk cache, e.g., 100 MByte, that can provide a large
enough working set for all files of one user such that the file is still in this
cache when used next time

@ assumptions about typical file accesses (based on empirical evidence)

r

& & & @

usually small files, less than 10 Kbytes

reads much more common than writes (appr. 6:1)

usually sequential access, random access not frequently found
user-locality: most files are used by only one user

burstiness of file references: once file has been used, it will be used
in the nearer future with high probability

Distributed Systems - Fall 2009 V -39

Andrew File System

@ Andrew File System (AFS)
@ design decisions for AFS

@ whole-file serving: entire contents of directories and files transfered from
server to client (AFS-3: in chunks of 64 Kbytes)

@ whole file caching: when file transfered to client it will be stored on that
client’s local disk

Distributed Systems - Fall 2009 V - 40

Andrew File System

@ AFS architecture: Venus, network and Vice

Workstations Servers
User Venus ~_
program Vice
UNIX kernel |
[uNiXkernet |
_\|u3er Venus —. ok e e
program
UNIX kernel |
Vice
—\’User Venus ~_
program | UNIX kernel |
UNIXkernel | E e © Addison-Wesley Publishers 2000

@ AFS system call intercept, handling by Venus

User

program 4
UNIXfile Non-local file
system calls operations

UNIX kernel
UNIX file system

Local
disk © Addison-Wesley Publishers 2000

Venus

Distributed Systems - Fall 2009 V - 41

Andrew File System

@

User process UNIX kernel Venus Net Vice
open(FileName, If FileName refers to a
mode) f;i;ﬁﬁg‘;‘;ﬁlﬂg@tgl’ace Check list of files in
ocal cache. If not
Venus. present or there is no
valid callback promis¢
send a request for the
file to the Vice server
that is custodian of thg
volume containing the] ™ Transfer a copy of the
file. file and a callback
promiseto the
workstation. Log the
Place the copy of the 14| callback promise.
file in the local file
Open the local file and| system, enter its local
return the file name in the local cachg
descriptor to the list and return the loca
application. name to UNIX.
read(FileDescriptor, | Perform a normal
Buffer, length) | UNIX read operation
on the local copy.
write(FileDescriptor,| Perform a normal
Buffer, length) | UNIX write operation
on the local copy.
close(FileDescriptor)] Close the local copy
and notify Venus that If the local h
the file has been closed b N ﬁca cgpy E(lls
een changed, send a Replace the file

copy to the Vice serve

that is the custodian of
the file.

contents and send a

callback to all other
clients holdingcallback

promises on the file.

Implementation of file system calls - callbacks and callback
promises

© Addison-Wesley Publishers 2000

Distributed Systems - Fall 2009

Andrew File System

@ Callback mechanism

@ ensures that cached copies of files are updated when another client performs
a close operation on that file

@ callback promise
@ token stored with cached file
@ status: valid or cancelled

@ when server performs request to update file (e.g., following a close), then it
sends callback to all Venus processes to which it has sent callback promise

@ RPC from server to Venus process

@ Venus process sets callback promise for local copy to cancelled
@ Venus handling an open

@ check whether local copy of file has valid callback promise

@ if canceled, fresh copy must be fetched from Vice server

Distributed Systems - Fall 2009 V - 43

Andrew File System

@ Callback mechanism
@ Restart of workstation after failure

@ retain as many locally cached files as possible, but callbacks may have
been missed

@ Venus sends cache validation request to the Vice server
@ contains file modification timestamp

@ if timestamp is current, server sends valid and callback promise is
reinstantiated with valid

@ if timestamp not current, server sends cancelled
@ Problem: communication link failures

@ callback must be renewed with above protocol before new open if a time
T has lapsed since file was cached or callback promise was last validated

@ Scalability
@ AFS callback mechanism scales well with increasing number of users
@ communication only when file has been updated
@ in NFS timestamp approach: for each open

@ since majority of files not accessed concurrently, and reads more
frequent than writes, callback mechanism performs better

Distributed Systems - Fall 2009 V - 44

Andrew File System

» File Update Semantics

@ to ensure strict one-copy update semantics: modification of cached file must
be propagated to any other client caching this file before any client can
access this file

@ rather inefficient
@ callback mechanism is an approximation of one-copy semantics
@ guarantees of currency for files in AFS (version 1)
@ after successful open: latest(F, S)
@ current value of file F at client C is the same as the value at server S
@ after a failed open/close: failure(S)
@ open close not performed at server
@ after successful close: updated(F, S)
@ client’s value of F has been successfully propagated to S

Distributed Systems - Fall 2009 V - 45

Andrew File System

s File Update Semantics in AFS version 2

@ Vice keeps callback state information about Venus clients: which clients have
received callback promises for which files

@ lists retained over server failures

@ when callback message is lost due to communication link failure, an old
version of a file may be opened after it has been updated by another client

@ limited by time T after which client validates callback promise (typically, T=10
minutes)

@ currency guarantees
@ after successful open:
@ latest(F, S, 0)

@ copy of F as seen by client is no more than 0 seconds out of
date

@ or (lostCallback(S, T) and inCache(F) and latest(F, S, T))
@ callback message has been lost in the last T time units,
@ the file F was in the cache before open was attempted,
@ and copy is no more than T time units out of date

Distributed Systems - Fall 2009 V - 46

Andrew File System

@ Cache Consistency and Concurrency Control

@ AFS does not control concurrent updates of files, this is left up to the
application

@ deliberate decision, not to support distributed database system
techniques, due to overhead this causes

@ cache consistency only on open and close operations

@ once file is opened, modifications of file are possible without knowledge
of other processes’ operations on the file

@ any close replaces current version on server

@ all but the update resulting from last close operation processed at
server will be lost, without warning

@ application programs on same server share same cached copy of file,
hence using standard UNIX block-by-block update semantics

@ although update semantics not identical to local UNIX file system, sufficiently
close so that it works well in practice

Distributed Systems - Fall 2009 \V -47

Enhancements

@ Spritely NFS
@ goal: achieve precise one-copy update semantics
@ abolishes stateless nature of NFS -> vulnerability in case of server crashes
@ introduces open and close operations

@ open must be invoked when application wishes to access file on server,
parameters:

@ modes: read, write, read/write

@ number of local processes that currently have the file open for read
and write

@ close
@ updated counts of processes

@ server records counts in open files table, together with IP address and port
number of client

@ when server receives open: checks file table for other clients that have the
same file open

@ if open specifies write,
@ request fails if any other client has file open for writing,

@ otherwise other read clients are instructed to invalidate local cache

copy
@ if open specifies read,

@ sends callback to other write clients forcing them to modify their
caching strategy to write-through

Distributed Systems - Fanwuses*al#ot@rreadﬂmn@vreadﬁmmmfsﬁmhmg*

Enhancements

@« WebNFS

@ access to files in WANSs by direct interaction with remote NFS servers
@ permits partial file accesses

@ http or ftp would require entire files to be transmitted, or special software
at the server end to provide only the data needed

@ access to “published” files through public file handle
@ for access via path name on server, usage of lookup requests
@ reading a (portion of) a file requires
@ TCP connection to server
@ lookup RPC
@ read RPC
@ NFS version 4
@ similarly for WANs
@ usage of callbacks and leases

@ recovery from server faults through transparent moving of file systems from
one server to another

@ usage of proxy servers to increase scalability

Distributed Systems - Fall 2009 V - 49

	0. Course Overview
	Operating Systems for Distributed Systems
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Protection Mechanisms
	Processes and Threads
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Architecture of Networked Operating Systems
	Slide 21
	Slide 22
	File Systems
	Slide 24
	Distributed File System
	Slide 26
	Architecture
	Slide 28
	Slide 29
	SUN Network File System
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Andrew File System
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Enhancements
	Slide 49

