
The UNIVERSITY of EDINBURGH

SCHOOL of INFORMATICS

CS4/MSc

Distributed Systems

Björn Franke

bfranke@inf.ed.ac.uk

Room 2414

(Lecture 12: Failures and Fault Tolerance,

13th November 2006)

1



Omission Failures

When a process or channel fails to do something that it is expected to it is termed an

omission failure.

Process omission failures: A process makes an omission failure when it crashes

— it is assumed that a crashed process will make no further progress on its

program. A crash is considered to be clean if the process either functions correctly

or has halted. A crash is termed a fail-stop if other processes can detect with

certainty that the process has crashed.

Communication omission failures: Communication omission failures may occur

in the sending process (send-omission failures), the receiving process (receive-

omission failures) or the channel (channel omission failures).

Sender Receiver

outgoing
message
buffer

incoming 
message
buffercommunication channel

2



Arbitrary Failures

• The term “arbitrary” or “byzantine failure” is used to refer to the type of

failure in which any error may occur.

• In a process, arbitrary behaviour may include setting incorrect data values, returning

a value of incorrect type, stopping or taking incorrect steps.

• In a channel, arbitrary behaviour may include duplication or corruption of messages.

• Most protocols include mechanisms to overcome arbitrary failures in a channel.

For example, checksums to detect corruption and sequence numbers to detect

duplication.

• Arbitrary failures in a process are less easy to detect and can have a profound

impact on a system in which several processes need to cooperate.

• For example, consider the behaviour of the leader election algorithms if one of the

processes behaved erratically and did not follow the protocol of the algorithm.

3



Synchronous Systems and Timing Failures

Recall that a synchronous distributed system is one in which each of the following

are defined:

• upper and lower bounds on the time to execute each step of a process;

• a bound on the transmission time of each message over a channel;

• a bound on the drift rate of the local clock of each process.

If one of these bounds is not satisfied in a synchronous system then a timing failure

is said to have occurred.

Few real systems are synchronous (they can be constructed if there is guaranteed

access to resources) but they provide a useful model for reasoning about algorithms

— timeouts can be used to detect failed processes. In an asynchronous system a

timeout can only indicate that a process is not responding.

4



Fault Tolerance

Unfortunately it is not possible to avoid failures. Instead we must aim to build systems

in which we minimize the impact of failures when they do occur. Some mechanisms

which can be used include:

Atomicity and Rollback A transaction is a sequence of computational steps

which are treated as atomic. In transaction processing, mechanisms are included

to allow rollback if the complete transaction cannot be committed due to failure

or error.

Replication Having several copies of a service available within a system means that

failure of any one server may be hidden from an application.

Persistence Process crash may also be masked by a persistent service, such as that

provided in CORBA, in which data stored on disk may be used to restore the state

of a server which is automatically restarted.

5



Transactions

A transaction

• runs on shared entities such as databases, files or remote objects;

• is a unit of consistency, meaning that it transforms the entity from one consistent

state to another consistent state; and

• has effects which are either made permanent (committed) or cancelled (aborted)

so that the entity reverts back to its original state.

• To cope with failures and concurrency issues transaction systems must guarantee

the ACID properties:

– Atomicity

– Consistency

– Isolation

– Durability

6



ACID Implications — Recoverability

The requirements of atomicity and durability mean that entities must be recoverable.

An entity is recoverable if when the server process crashes (due to hardware fault

or software error) the changes due to completed transactions are not lost. Furthermore

when the server is replaced by a new server (or, equivalently, restarted) the entity can

be restored.

This implies that the state of each entity must be recorded in permanent storage,

for example, written to disk. Moreover this must be done by the time that the server

acknowledges the completion of a client’s transaction.

7



Transaction Coordinator
Each transaction is created and managed by a coordinator which should implement

the following operations (client-side):

openTransaction() starts a new transaction and returns a unique transaction ID

(TID) trans. This identifier is used in other operations in the transaction.

closeTransaction(trans) ends a transaction; the return value is used to indicate

the success or failure. Instigates the saving of all recoverable objects accessed by

the transaction. A return value of commit indicates that the transaction has been

committed; a return value of abort indicate that it has been aborted.

abortTransaction(trans) is used when the client wants to abort the transaction.

All recoverable objects accessed by the transaction will be rolled back to their

state before the transaction started.

All the client’s operations between the openTransaction() and the closeTransaction(trans)/

abortTransaction(trans) calls are operations of the transaction.

8



Server Process Crashes

A transaction can also be aborted by the server process as the result of a process

crash. We assume in this situation that the server will be restored or replaced after an

unexpected failure.

• The new (restored) server process aborts any uncommitted transactions which

were in progress when the crash occurred. It also starts a recovery procedure

which reverts all objects to the values produced by the most recently committed

transaction.

• The client will be made aware of the server crash when an operation returns an

exception after a timeout. If the server is restored while the transaction is still in

progress the client is again informed via an exception as the transaction will no

longer be valid.

Servers can assign expiry times to transactions in order to detect client crashes. Any

transaction which has not committed by its expiry time will be aborted by the server.

9



Distributed Transactions

• A transaction is distributed if it invokes operations in several different servers.

• One of the servers takes on the role of coordinator to ensure that the atomicity

property is kept and that either all the servers commit or they all abort.

• This process is managed by a commit protocol, the most common of which is

the two-phase commit protocol.

• Each server applies concurrency control locally to its own objects to ensure that

the local effects are serially equivalent.

• However additional procedures are needed to ensure that distributed transactions

are globally serialised.

• To enhance concurrency it is often useful to organise transactions in terms of

nested transactions: transactions within transactions, with subtransactions

able to proceed in parallel.

10



Role of Coordinator

• A client starts a transaction by sending an openTransaction request to a coor-

dinator in any server.

• The coordinator returns the transaction ID which now contains a server identifier

(IP address) in addition to the transaction number assigned by the server.

• The coordinator will keep the role of coordinator with respect to that transaction

throughout its lifetime, and in the end will be responsible for committing or

aborting it.

• Other servers which manage objects accessed by the transaction are termed partic-

ipants and each must be involved in the decision to commit or abort. Each has

a reference to the coordinator.

• During the course of the transaction the coordinator records a list of references to

the participants that have been involved, via the join method that each partici-

pant invokes on the coordinator whenever it becomes involved in a transaction.

• Each participant must manage its own recoverable objects.

11



Coordinator Example

T

Client

participant

BranchX

BranchY

BranchZ

b.withdraw(3);

a.withdraw(4);

c.deposit(4);
d.deposit(3);

participant

participant

B

C

D

A

b.withdraw(T,3);

T = openTransaction
      a.withdraw(4);
      c.deposit(4);
      b.withdraw(3);
      d.withdraw(3);
      closeTransaction

join

join

join

closeTransaction

openTransaction

Coordinator

Although separate for clarity here, the coordinator would be situated in one of the

servers involved in the transaction (BranchX say).

12



Two-phase Commit Protocol

• When an distributed transaction comes to an end either all its operations are

carried out or none of them (atomicity).

• Since events at each participant (which will not necessarily be known at the

coordinator) may mean that a transaction has to be aborted, the commitment

of a transaction proceeds in two steps.

• Thus each server can abort its part of the transaction due to local conditions, and

then force the whole transaction to be aborted.

• In the first phase of the protocol each participant votes for the transaction to be

committed or aborted.

• Each participant is allowed only one vote, so a vote to commit is binding even in

the event of a subsequent failure at the server.

• A participant is said to be in a prepared state for a transaction if it will

eventually be able to commit it.

• In the second phase of the protocol every participant in the transaction carries out

the joint decision.

13



Two-phase Commit Protocol (2)

Phase 1

1. Coordinator sends a canCommit? request to each participant.

2. When a participant receives a canCommit? request it replies with its vote (Yes or

No). If voting Yes it prepares to commit by saving objects in permanent storage.

If voting No it aborts immediately.

Phase 2

3 The coordinator collects votes (including its own).

- If there are no failures and all votes are Yes coordinator decides to commit

and sends everyone a doCommit request.

- Otherwise the coordinator decides to abort and sends doAbort request to each

participant that voted Yes.

4 Participants that voted Yes are waiting for a message from the coordinator. When

a participant receives a doCommit or doAbort request it acts accordingly and in

the case of commit sends a haveCommitted message to the coordinator.

14



Two-phase Commit Protocol (3)

committed

status

prepare to commit

Coordinator Participant

step

1
2

3
4 

step

prepare to commit
(uncertain)

status

committed

done

canCommit?

Yes

haveCommitted

doCommit

Without errors this is quite straightforward but it must also work correctly when some

of the servers fail, messages are lost or servers are temporarily unable to communicate.

A participant can use the getDecision method of the coordinator if it is left at

step 2.

15



Transactions in CORBA

• In CORBA transactions are supported by the Object Transaction Service.

• IDL interfaces allow client transactions to include not just multiple accesses to a

single object but also multiple objects at multiple servers.

• The client is provided with operations to specify the beginning and end of a

transaction, as explained on the earlier slide.

• The TID is implicitly passed as an additional argument in each included remote

method invocation, i.e. those made between calls to start the transaction and those

to complete/abort it.

• The client ORB maintains a context for each transaction, which it propagates with

each remote method invocation in that transaction.

• CORBA objects can be made transactional by making their interfaces extend an

interface called TransactionalObject.

16



Concensus Algorithms

• In a general concensus problem we assume that there are N processes Pi, i =

1, . . . , N , each of which starts in an undecided state.

• As a group they must agree on some value V . Each process proposes a single

value vi.

• The processes communicate, sending their values to each other.

• Each process then sets the value of a decision variable di.

• Once di has been set, process Pi enters the decided state and cannot change di.

• In a failure-free system, the decision can be made on the basis of some previously

decided function, for example majority(v1, . . . , vn).

• In an asynchronous system in which omission failures can occur the algorithm may

not terminate.

• In a system in which arbitrary failures can occur, a failed process may propagate

incorrect values.

17



Requirements of Concensus Algorithms

Every run of a concensus algorithm should satisfy the following three properties:

Termination: Eventually every correct process sets its decision variable.

Agreement: All correct processes set their decision variables to the same value, that

is, if Pi and Pj are both correct and both have entered the decided state, then

di = dj, (i, j, = 1, 2, . . . , N).

Integrity: If the correct processes all proposed the same value, then any correct

process in the decided state has chosen that value.

Different forms of integrity are sometimes used for variations of the problem. For

example, a weaker form states that the decision value chosen should be one proposed

by one of the correct processes.

18



Byzantine Generals Problem

The byzantine generals problem is a variation on the consensus problem. We assume

that there is a set of generals, who have to collectively agree to attack or retreat. One

general is the commander; the remainder are the lieutenants. The commander issues an

order, which the lieutenants then discuss amongst themselves by exchanging messages,

reporting the instruction they have been given. A “failed” general is treacherous and

may send erroneous messages.

P1 (Commander)

P2 (Lieutenant) P3 (Lieutenant)

1:v 1:v

2:1:v

3:1:u

1:w 1:x

2:1:w

3:1:x
P3 (Lieutenant)P2 (Lieutenant)

P1 (Commander)

19



Interactive Consistency Problem

The interactive consistency problem is another variation on the consensus problem.

Here we assume that each process proposes a value to be included in a result vector,

the decision vector. The goal of the algorithm is for the correct processes to agree

on this vector. For example, this might be used in order for a set of processes to obtain

a consistent set of information about their respective states.

It can be shown that the consensus problem, the byzantine generals problem and

the interactive consistency problem are all equivalent in the sense that if we can find

a solution for one of them we can apply the solution to all of them (with suitable

modification).

It can also be shown that solving the consensus problem is equivalent to solving

reliable and totally ordered multicast.

20



Consensus in a Synchronous System (≤ f faults)

Algorithm for process Pi in G; algorithm proceeds in f+1 rounds

On initialization

Values(1,i):= {vi}; Values(0,i) = {};

In round r ( 1 <= r <= f+1 )

B-multicast(G, Values(r,i) - Values(r-1,i));

// Send only values that have not been sent

Values(r+1,i):= Values(r,i) ;

while (in round r)

{

On B-deliver(vj) from some Pj

Values(r+1,i) := Values(r+1,i) + vj;

}

After (f+1) rounds

Assign di = minimum(Values(f+1,i));

21



Byzantine Generals in a Synchronous System

• It has been shown that it is impossible to solve the byzantine generals problem

(and the other consensus problems) in an asynchronous system.

• In a synchronous system a limit must be put on the number of processes which

may fail.

• It is impossible to solve the byzantine generals problem if too large a proportion

of the processes are allowed to be faulty: N ≤ 3f .

• In particular, in the case of three processes and one faulty, the problem has no

solution.

• This can be improved upon if processes sign their messages.

• Even in this case the algorithm is costly in terms of the number of messages sent

and only justified when the threat is significant.

• For unsigned messages, an algorithm needs f + 1 rounds where f is the number

of faults which may occur.

22



Solution with one faulty process

The correct generals reach agreement in two rounds of messages:

1. In the first round, the commander sends a value to each of the lieutenants.

2. In the second round, each of the lieutenants send the value it receives to its peers.

When both rounds are finished the correct lieutenants simply apply a majority function

to determine the value

• If the commander is faulty, all the lieutenants faithfully report the values they

received but there will be no agreement (distinguished symbol ⊥ ).

• If one of the lieutenants is faulty, the correct lieutenants will receive N−2 replicas

of the correct value, plus one incorrect one: the majority function will determine

the correct value.

23


