
Distributed Systems — Summary

Allan Clark

School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/ds
Autumn Term 2012

Review — Introduction

Definition of Distributed Systems
I We debated over the definition of a distributed system and

decided that the distinguishing features were:
I Independent computers
I Coordination achieved only through message passing

I There is also the notion of transparency of distribution, that is
that the distributed system should appear to the users as a
single computer

I We decided that this was a nice feature but not an essential
one

I We distinguished the study of distributed systems from the
study computer networks by noting:

I Computer networking is the study of how to send messages
between remote computers

I Distributed systems is the study of how to use that capability
to get work done

Review — Introduction

Challenges
I We identified several challenges involved in designing and

building distributed systems:

1. Heterogeniety
2. Openness
3. Security
4. Scalability
5. Handling of failures
6. Concurrency
7. Transparency

Review — Fundamental Concepts

I A distributed algorithm was defined as the steps to be taken
at each process — in particular the sequence of steps taken
globally is not defined

I We defined a synchronous system as one in which we have
known upper and lower bounds for:

I the time taken for each process to execute each step in the
computation

I Time taken for message delivery
I The clock drift rate from real time for each process

I An asynchronous system has no such bounds

I We noted that all asynchronous systems could be made
synchronous by assuming very large bounds

I The defining feature of a synchronous system is that the
bounds were useful

I Synchronous systems allow for simpler algorithms but
determining useful bounds is often difficult

Review — Fundamental Concepts

Models

I We create models of our distributed systems in order to make
explicit all relevant assumptions

I Make generalisations about what is possible given those
assumptions

I The interaction model allows us to determine logical properties
of the algorithm, such as termination, correctness and other
properties more dependent on the application

I The performance model allows us to improve on the abstract
performance available from the interaction model by
combining with performance data of the underlying machines
and network mediums

I The failure model allows us to permit (or exclude) classes of
errors and reason about the effect of those errors on the
operation or performance of our algorithm

I The security model is used to assess risk of information
leakage/distortion even given the use of cryptography

Review — Fundamental Concepts

Network Issues

I Latency is defined as the time it takes for data to first arrive
at the destination after the send is initiated

I data transfer rate is how much data per unit of time may be
transfered

I message delivery time = latency + message length
data transfer rate

I latency affects small frequent messages which are common for
distributed systems

Reliability

Left 1 2 3 4 5 Right

Left 1 2 3 4 5 Right

Left 1 2 3 4 5 Right

Left 1 2 3 4 5 Right

Left 1 2 3 4 5 Right

Red denotes a node at which error detection/correction occurs

I If the probability of a message getting through any channel is
0.5 then completing the trip is 0.56 = 0.016

I Fortunately communication channels are generally more
reliable

I (9999
10000)6 = 0.9994 > 999

1000

UDP and TCP

I Two internet protocols provide two alternative transmission
protocols for differing situations with different characteristics

I User Datagram Protocol — UDP
I Simple and efficient message passing
I Suffers from possible omission failures
I Provides error detection but no error correction

I Transmission Control Protocol – TCP
I Built on top of UDP
I Provides a guaranteed message delivery service
I But does so at the cost of additional messages
I Has a higher latency as a stream must first be set up
I Provides both error detection and correction

I IP Multicast has UDP-like failure semantics (maybe)

Review — Fundamental Concepts

Marshalling

I Marshalling is the process of flattening out a complex data
structure into a series of bytes which can be sent in a message

I CORBA, Java Serialisation, XML and JSON

I Some come with instructions to the receiver on how to
re-construct the flattened, others require pre-agreement on
the types of the communicated data structures

I XML more general, JSON becoming popular because
programmers are “fed-up” of parsing

Review — Time and Global State

Synchronising Clocks
I We noted that even in the real world there is no global notion

of time
I We thought that perhaps that didn’t matter because we are

all travelling at slow speeds relative to each other
I However our clocks are not true clocks they are mechanical

and as such are subject to drift and skew
I We nevertheless described algorithms for attempting the

synchronisation between remote computers
I Cristian’s method
I The Berkely Algorithm
I Pairwise synchronisation in NTP

I Despite these algorithms to synchronise clocks it is still
impossible to determine for two arbitrary events which
occurred before the other.

I We therefore looked at methods to impose a meaningful order
on remote events and this took us to logical orderings

Review — Time and Global State

Logical Orderings and States
I Logical orderings based on the intuitive and simple idea of the

“happens-before” relation:
I e1 → e2 if e1 and e2 occur at the same process and e1 occurs

before e2, or:
I e1 is the sending of some message and e2 is the receiving of

that same message, or:
I There exists some event e1.5 such that: e1 → e1.5 → e2

I Lamport and Vector clocks were introduced:
I Lamport clocks are relatively lightweight provide us with the

following e1 → e2 =⇒ L(e1) < L(e2)
I Vector clocks improve on this by additionally providing the

reverse implication V (e1) < V (e2) =⇒ e1 → e2

I Meaning we can entirely determine whether e1 → e2 or
e2 → e1 or the two events are concurrent.

I But do so at the cost of message length and scalability

I The concept of a true history of events as opposed to runs
and linearisations was introduced

Global State — Chandy and Lamport — Reachability

I We looked at Chandy and Lamport’s algorithm for recording a
global snapshot of the system

I Crucially we defined a notion of reachability such that the
snapshot algorithm could be usefully deployed in ascerting
whether some stable property has become true.

Review — Time and Global State

Distributed Debugging
I Finally the use of consistent cuts and linearisations was used

in Marzullo and Neiger’s algorithm
I Used in the debugging of distributed systems it allows us to

ascertain whether some transient property was possibly true at
some point or definitely true at some point.

I Suppose we have a monitor M and two processes P1 and P2
I We start with P1(x = 100) and P2(y = 50)
I M receives a message from P1, x = 50
I M receives a message from P2, y = 100
I The monitor then records four global states:

1. x = 100, y = 50
2. x = 50, y = 50
3. x = 100, y = 100
4. x = 50, y = 100

I Both states 2 and 3 could not have occurred, but we do not
know which occurred

I If we wish to know whether the sum was ever 200 then we say
“possibly” but not “definitely”

Review — Time and Global State

Distributed Debugging

I The purpose of a snapshot algorithm was to record a global
state that is logically consistent with some state which was
actually experienced, but there is no attempt to record a state
which was “actually experienced”

I Distributed debugging on the other hand hopes to record such
“actually experienced” states, and is conservative in the sense
that it considers more states than may actually have occurred

Review — Coordination and Agreement

Mutual Exclusion and Election
I We looked at the problem of Mutual Exclusion in a distributed

system
I Giving four algorithms:

1. Central server algorithm
2. Ring-based algorithm
3. Ricart and Agrawala’s algorithm
4. Maekawa’s voting algorithm

I Each had different characteristics for:

1. Performance, in terms of bandwidth and time
2. Guarantees, largely the difficulty of providing the Fairness

property
3. Tolerance to process crashes

I We then looked at two algorithms for electing a master or
nominee process; ring-based and bully algorithms

I Then we looked at providing multicast with a variety of
guarantees in terms of delivery and delivery order

Review — Coordination and Agreement

General Consensus

I We then noted that these were all specialised versions of the
more general case of obtaining consensus

I We defined three general cases for consensus which could be
used for the above three problems

I We noted that a synchronous system can make some
guarantee about reaching consensus in the existance of a
limited number of process failures

I But that even a single process failure limits our ability to
guarantee reaching consensus in an asynchronous system

I In reality we live with this impossibility and try to figure out
ways to minimise the damage

Review — Distribution and Operating Systems

Operating System Characterisations

I Distributed Operating Systems are an ideal allowing processes
to be migrated to the physical machine more suitable to run it

I However, Network Operating Systems are the dominant
approach, possibly more due to human tendancies than
technical merit

I We looked at microkernels and monolithic kernels and noted
that despite several advantages true microkernels were not in
much use

I This was mostly due to the performance overheads of
communication between operating system services and the
kernel

I Hence a hybrid approach was common

Review —- Distribution and Operating Systems

Concurrency, processes and threads

I We looked at processes and how they provide concurrency, in
particular because such an application requires concurrency
because messages can be received at any time and requests
take time to complete, time that is best spent doing
something useful

I but noted that separate processes were frequently ill-suited for
an application communicating within a distributed system

I Hence threads became the mode of concurrency offering
lightweight concurrency.

I Multiple threads in the same process share an execution
environment and can therefore communicate more efficiently
and the operating system can switch between them more
efficiently

Review — Distribution and Operating Systems

Operating System Costs and Virtualisation

I We also looked at the costs of operating system services on
remote invocation

I Noting that it is a large factor and any design of a distributed
system must take that into account — in particular the choice
of protocol is crucial to alleviate as much overhead as possible

I Finally we looked at system virtualisation and noted that it is
becoming the common-place approach to providing
cloud-based services

I Virtualisation also offers some of the advantages of a
microkernel including increased protection from other users’
processes

Review — Peer-to-Peer Systems

Motivations and Napster
I We began with looking at the motivations behind the

development of peer-to-peer systems
I Break the reliance of the system on a central server which may

be vulnerable from attack, both technical and bureaucratic
I Utilising the resources of those using the service such that

capacity grows with the number of users
I Providing anonymity to content providers

I The now defunct pioneering system Napster
I Napster relied on a central server, but that server hosted no

content, bandwidth to the central server was limited as well
because no content was therefore downloaded from the central
server

I Instead the central server was merely used by remote peers to
locate content and setup independent connections between
peers

I Ultimately though the reliance on a central server proved
enough fodder for the entertainment industry’s lawyers and
Napster was shutdown

Review — Peer-to-Peer Systems

Peer-to-Peer Frameworks

I Napster however proved the feasibility of the concept and
several services grew into the space left behind by Napster

I Such services do not rely on any single central server and have
so far proved resilient to legal attacks

I However we focused our attention on efforts to provide a
generic framework for building peer-to-peer applications

I Such frameworks currently focus on providing a distributed
hash table, storing objects and replicas at multiple peers for
later retrieval

I Distributed Object Location and Routing systems are an
extension providing a more convenient API, in particular for
objects which may be updated

Review — Peer-to-Peer Systems

Structured vs Unstructured
I Two related problems for the use of a peer-to-peer system:

1. initially finding the resource you are interested in and thus
obtaining its logical address (GUID)

2. Routing to the logical address (GUID) once it is known

I Analogous to internet addresses which first translate the text
url into an integer address and then route to that address

I For internet addresses it is efficient to do this in two stages,
because once you have the integer address you can access the
resource more efficiently and you may do this many times

I For file-sharing, once the file is found, that likely constitutes
the one and only time that that particular user will access that
particular resource

I Hence relying on unstructured search is reasonable
I Even the search is less structured than domain name lookup

since domain names are an exact one-to-one mapping, file
searches are not

Review — Security

I Although we noted that human error is a large cause of
security breaches our concern here was technical security,
which was mostly achieved through the use of cryptography

I Our assumption is that the network, atop which our
distributed system is constructed, is insecure. Messages may
be, deleted, read, duplicated, modified and inserted

I A man-in-the-middle attack is one in which the attacker
makes independent connections with two victims and relays
the messages between them.

I You can apply this to beat a master in a blind game of Chess
(or Go, etc)

I Set up two games against two masters making sure you are
black in one and white in the other

I Mirror each players moves to the opposite board
I You will win one game and lose the other

I Usually though the man-in-the-middle masquerades as each of
the two

Review — Security

Cryptography

I Modern cryptography makes use of algorithms which distort a
message such that it is difficult/infeasible to recover the
original message without knowledge of the key

I Shared secret-key algorithms are symmetric and make use of
the same key to both encrypt and decrypt the message

I A message is secure provided that no one else
knows/discovers the shared secret key

I Such that: D(K , E (K , M)) = M

I Public/private key algorithms are not symmetric. One key is
used to encrypt the message whilst a corresponding key is
used to decrypt the encrypted message:

I If Ke and Kd are a key-pair: D(Kd , E (Ke , M)) = M

I Generally a person publishes their public key and anyone can
send a secure message to them by encrypting it with the
public key

Review — Security

Hybrid Protocols
I If Alice sends a message to bob {M}KBpub

= E (KBpub, M)
I Bob can decrypt this M = D(KBpriv , {M}KBpub

, but to reply
with M ′ Bob must use Alice’s public key:
{M ′}KApub

= E (KApub, M ′)
I Alice can decrypt this with her private key:

M ′ = D(KApriv , {M ′}KApub
)

I This has the attractive advantage that no pre-agreed shared
secret is required. Alice and Bob can be on opposite sides of
the world and still communicate in secret without risk that the
sharing of a shared secret key was eavesdropped

I However public key encryption algorithms are 100/1000 times
slower than shared secret key encryption, if Alice and Bob are
to have a prolonged communication this is slow

I Alternatively M could have been a new shared secret key
I This uses public-key crytography to set up shared secret-key

cryptography giving the benefits of both kinds

Security — Review

Digital Signature

I Rather than encrypt a message with Bob’s public key Alice
can instead encrypt a message with her own private key

I Doing so means that to decrypt the message requires Alice’s
public key which is generally available, so the message is
insecure

I However, since a message decrypted with Alice’s public key
must have been encrypted with Alice’s secret key we know for
sure that Alice must have encrypted (and sent) the message

I So as to avoid encrypting an entire document, Alice may
compute a digest (similar to a checksum) of the document
and encrypt the digest and attach it to the document

I Digital signatures fulfil well the properties of Authentication
and Unforgeable but can fail to be Non-repudiable

Review — Security

Certificates

I All public-key cryptography, including digital signatures, suffer
from the problem of authenticating a public key

I That is, being sure that the public key, or the entity providing
the public key, really is that of the entity advertised

I I can claim to be Microsoft
I Just as easily I can give you a public key, claim that that key is

Microsoft’s public key, and that I am therefore Microsoft

I Certificates are essentially digital signatures attached to public
keys (or other digital signatures)

I Of course certificates may also be falsely claimed in the same
way however one “certification authority” may certify many
public-keys/digital signatures, such that the receiver need only
trust the certification authority to enable trust of many others

I For example https signatures

Review — Security

Key Iteration

I If the attacker knows a plaintext/ciphertext pair (M/Me), it
can simply try all possible keys Kposs until Me = E (Kposs , M)

I This represents a problem for public key cryptography since
the attacker can generate as many plaintext/ciphertext pairs
as they require

I It means that keys must be long enough
I In addition the message must be long enough, suppose the

message was just two bytes long, there are only 65,536
possible messages, and the attack knows the encryption key
(ie. the public key)

I The attacker can therefore simply iterate over all possible
messages, encrypting them with public key to see if they get
the same ciphertext

I Suppose an encrypted message Me is heard by the attacker,
which they know was encrypted with the public key Kp

I The attacker simply tries all possible M ′ until E (Kp, M ′) = Me

Any Questions

End of the Course!
Thank you for your Attention!
Good luck with your Exams!

Any Questions?

