
Distributed Systems — Peer-to-Peer

Allan Clark

School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/ds
Autumn Term 2012

Peer-to-Peer Systems

Overview

I This section of the course will discuss peer-to-peer systems

I We will look at the motivations for a such a system

I The limitations of a such a system

I Characterstics of such systems and hence the suitable types of
applications for peer-to-peer systems

I As well as how to provide middleware frameworks for creating
peer-to-peer applications which have the additional difficulty
that they must be application agnostic

Peer-to-Peer Systems

Google’s Daily Processing of Bytes

I Apparently Google (as of around 2009) processes around 24
petabytes of data every day

I This is quite a lot

I How much?

Peer-to-Peer Systems

Rice Bytes

I Let’s imagine that a single byte is represented by a single
grain of rice

Peer-to-Peer Systems

Rice Bytes
I A kilobyte, 1K or 1024 bytes then is a 1024 grains of rice, or

about a bowl

Peer-to-Peer Systems

Rice Bytes
I A megabyte then, represented as rice, is a sack of rice:

Peer-to-Peer Systems

Rice Bytes

I Next up is 1024 megabytes, commonly referred to as a
gigabyte

I This is represented as two large shipping containers full of rice

I 1 shipping unit = 1 TEU (twenty-foot equivalent unit)

I We could feed everyone in Edinburgh two bowls of rice

Peer-to-Peer Systems

Rice Bytes

I So what is a 1024 gigabytes?
I Less well known, but it is a terabyte
I With this many grains of rice we would require 2048 shipping

containers
I It is also enough rice to feed a meal to everyone in the

European Union (about 500 million people), twice

This particular ship has a capacity of 1618 TEU

Peer-to-Peer Systems

Rice Bytes

I The largest container ships are the Mærsk fleet

I Each can carry 15,500 TEU (containers)

I A petabyte is equivalent to 2097152 containers

I Hence we would need 135 of the largest ever container ship.

I Enough to feed everyone on the planet 146 bowls of rice or
cover New York City with about a metre of rice

Peer-to-Peer Systems

Rice Bytes

I The largest container ships are the Mærsk fleet

I Each can carry 15,500 TEU (containers)

I A petabyte is equivalent to 2097152 containers

I Hence we would need 135 of the largest ever container ship.

I Enough to feed everyone on the planet 146 bowls of rice or
cover New York City with about a metre of rice

Peer-to-Peer Systems

I That’s one petabyte, Google gets through 24 or so a day

I Or 1920 bowls of rice for every one of the 7 billion people on
the planet today

I Or covering New York City to a depth of 24 metres in rice

thanks to: http://noiseinmyhead.wordpress.com/2008/06/26/visualizing-huge-amounts-of-data/

http://noiseinmyhead.wordpress.com/2008/06/26/visualizing-huge-amounts-of-data/

Peer-to-Peer Systems

Centralised Servers

I Providing a service via a single centralised named server is an
obvious architecture

I It simplifies much of the design

I But it has an obvious flaw, as the number of clients grows so
too does the work done by the centralised server

I Even if we had more computer capacity, we may be limited by
the available physical bandwidth to that particular site

Peer-to-Peer Systems

A Plausible Solution

I Peer-to-peer systems arose from the realisation that users
could contribute some of their own resources to the growing
system

I Meaning that as the number of users grows, so too does the
number of available resources

I Clay Shirky termed this: exploiting the resources “on the edge
of the Internet”

I These resources can be:
I storage
I compute cycles
I bandwidth
I content
I human presence

I

Peer-to-Peer Systems

Google Down

I In a very timely fashion Google was unreachable for around
3-5% of the Internet on Monday evening PST.

I Recall the Routing Information Protocol, it is essentially a
trust based protocol

I If a particular router claims to be able to route packets to a
particular network which it cannot, some other routers may
believe

I If so they start sending packets to a network which will be
unable to deliver them

I Hence some hosts, will find the target network unreachable

Peer-to-Peer Systems

Border Gateway Protocol

I The RIP is a highly simplified version of what is used
throughout the Internet

I Often referred to as BGP or Border Gateway Protocol

I Being more complex allows it to be more robust, but at the
same time “route leakage” can occur

I This is when the faulty route is leaked out, such that gateways
and routers further afield start to route via the faulty route

I In this case, California couldn’t reach Google (located in
California) because of a faulty route originating from an ISP
in Indonesia

I This was likely due to a “fat fingered” address than a
malicious attempt to subvert Google

Peer-to-Peer Systems

Common Features:

1. Their design ensures that each user contributes resources to
the system

2. Although their resources may differ, all nodes have the same
functionality, capabilities and responsibilities

3. Their correct operation does not depend on the existence of
any centrally administered systems

4. They can be designed to offer a limited degree of anonymity
to the providers and users of resources

5. A key issue for their efficient operation is the choice of an
algorithm for the placement of data (resources) across many
hosts and subsequent access to it in a manner that balances
the workload and ensures availability without adding undue
overheads

Peer-to-Peer Systems

Unreliability of Providers

I The owners of the computers sharing resources in a
peer-to-peer system may be a variety of individuals and
organisations

I None of them provide any level of service guarantee, in
particular nodes join and leave the system at will

I Leading to unpredictable availability of any particular
process/node

I Meaning that the provision of any particular resource should
not depend upon the continued availability of any particular
node

I Preparing for this requires redundancy in a way which may
help against malicious attack or unpredicted outages

I The required redundancy may even help with performance

I As a last resort, we may simply have to put up with
unavailability of certain resources

Peer-to-Peer Systems

Popular Uses

I These features mean that a corporations hoping to collect
revenue from a service have shied from such systems

I It is difficult to make any kind of service level guarantees

I However peer-to-peer have been very popular for file-sharing
systems mostly because such systems do not pretend to offer
any particular level of service, they operate a strictly “maybe”
policy

I In addition a relatively large level of service can be obtained
from very little outlay

I Academics have therefore also been somewhat drawn to
peer-to-peer systems

Peer-to-Peer Systems

Distributed Computation

I Peer-to-peer systems are generally associated with the sharing
of data resources and the bandwidth required to access those
shared data resources, but we noted other resources

I The famous SETI@Home project aims to use individuals’ spare
computing cycles to perform part of the larger computation of
analysing received radio signals for intelligent communication

I SETI@Home is an interesting example as it does not require
communication between individual nodes

I That is, each segment may be analysed in isolation

I A brand of computation that is termed “embarrasingly
parallelisable”

I Utilising the Internet’s vast array of computers for a broader
range of tasks will depend upon the development of a
distributed platform which supports communication between
participating nodes

Peer-to-Peer Systems

Distributed Computation

I There is a further threat to the platform of distributed
computing

I Climate Change

I When distributed computing first became popular it was seen
as a very green use of otherwise idle (but switched on)
computers

I Computers at the time used roughly the same amount of
energy to remain switched and idle as when doing some
calculation

I Hence using those idle computers to do anything remotely
useful was seen as a great re-use of resources

I Today though, computers use much less energy when idle and
hence running them at full power to perform a large
computation is seen as a waste of energy unless that
computation is somewhat important

Peer-to-Peer Systems

Three generations

I Although peer-to-peer systems have existed since at least the
1980s, they first really became popular when always-on
broadband became generally available (start of this century)

I We can identify three generations of peer-to-peer systems:

1. Napster music exchange — relied in part on a central server
2. File sharing systems — with greater fault tolerance and no

reliance on a central server, examples include:
I Gnutella
I DirectConnect
I Kazaa
I Emule
I Bittorrent
I FreeNet

3. The emergence of middleware layers for peer-to-peer systems
— making possible the application independent provision of
resources

Peer-to-Peer Systems

Napster

I Napster was an early offering in peer-to-peer style systems

I Offering the ability for users to share data files it quickly
became popular with those sharing music files

I However Napster was shut down as a result of:
I People sharing copyrighted music
I This lead the owners of the copyrighted material to instigate

legal proceedings against the Napster service operators
I This in turn caused the Napster service to be shut down

Napster

Napster’s Modus Operandi
I Napster relied upon a central index of files available for

download
I Each new peer that joined the network, communicated to the

central service a list of all available files
I When a user had a request for a particular file the following

steps where executed:
1. A file location request is made by a user to the centrally

managed Napster index
2. The Napster server responds to the request with a list of peers

who have the requested file available
3. The user then requests that file from one of the list of peers
4. The peer from which the file is requested then delivers the file

directly to the requesting user, without central server
intervention

5. Finally, once the requested file is received by the user it
informs the centrally managed Napster server such that the
index of files may be updated

I That is, the requesting user now has the particular file

Napster

Key point

I The indexing system was not distributed (though it was
replicated)

I The distributed resources were both the available files
I In terms of the fact that they are stored on peer computers

and not any centrally managed machines
I Additionally in that they originated from the users themselves
I And finally the bandwidth available at each peer, since files are

delivered straight from peer to peer without going via a central
server

Peer-to-Peer Systems

Legal Proceedings

I Napster argued that they were not liable for the copyright
infringement because they were not part of the copying
process

I The argument ultimately failed as the index servers were
viewed as an essential part of the copying process

I The index servers were at known network addresses, meaning
that their owners could not retain anonymity

I Hence they could be targeted by lawsuits

Peer-to-Peer Systems

Napster Lessons and legacy

I Napster performed load balancing, directing user requests to
users closer (in terms of network hops) to the requesting user

I Thus avoiding all users requesting a file from the same user

I Napster used a replicated, unified index of all available music
files, this didn’t represent a huge limitation since there was
little requirement for the replicated indexes to be consistent

I But it could be a limitation for another application

I Napster also took advantage of the fact that music files are
immutable data resources, they do not get updated

I No guarantees were made about the availability of any
particular file. A user made a request which may or may not
be satisfied

Napster Lessons and legacy

I Napster then was ultimately shutdown

I But many derivative file-sharing networks live on

I Independence from any centrally managed server makes legal
action far harder to pursue and ultimately less potent

I Whatever your views on the sharing of c© material it is not
particularly difficult to imagine “legitimate” uses

I Many people around the world are opressed in particular
without right to the freedom of expression

I Many countries for example do not allow access to Facebook
or Twitter

I During the “Arab Spring” the use of sites such as Twitter and
Facebook are well known to have been crucial

I Both were blocked by several governments in an attempt to
quash an uprising

Peer-to-Peer Systems

Peer-to-Peer Middleware

I With the third generation of peer-to-peer systems came about
the development of middleware on top of which peer-to-peer
systems could be built

I Developing middleware is more problematic than a single
application because we cannot take advantage of any
application specific assumptions

I Such as the file sharing assumption that there need be no
guarantee of the availability of any particular file

Peer-to-Peer Middleware

Indexing

I Restricting ourselves for the moment to providing access to
data resources, a key problem is the indexing of available files
to hosts at which those files are available

I Napster, used a central server with a known address

I Gnutella and other second generation peer-to-peer file-sharing
systems use a partioned and distributed index

I Both systems made the assumption that different users could
have different results when requesting access to a specific
resource

Peer-to-Peer Middleware

Functional Requirements

I The aim of peer-to-peer middleware is to simplify the
construction of services implemented over widely distributed
hosts

I Any node must therefore be able to locate and communicate
with any individual resource which is made available

I The system must be able to cope with the arbitrary addition
or removal of resources and hosts

I As with all middleware, peer-to-peer middleware (if it is to be
widely adopted) must offer a simple/appropriate programming
interface

Peer-to-Peer Middleware

Non-functional Requirements

I Global Scalability — the very idea of peer-to-peer systems is
to both cope with and exploit large numbers of users.
Peer-to-peer systems must therefore be able to support
applications that access millions of objects on hundreds of
thousands of hosts

I A peer-to-peer system should be able to take advantage of the
ability for service provision to grow dynamically as the number
of users increase

I In the previous part of the course we saw how system
virtualisation can aid a central service in dynamically adjusting
service provision but for a peer-to-peer system this should not
be necessary

Peer-to-Peer Middleware

Non-functional Requirements

I Load Balancing — The performance of any system exploiting
large numbers of hosts, even if those hosts were co-located,
depends upon being able to distribute the load across those
hosts evenly.

I This can be achieved to some extent by randomly placing
resources and replicating heavily used resources

Web searches for “Nate Silver”

Peer-to-Peer Middleware

Non-functional Requirements
I Optimisations for local interactions — The “network

distance” between peers has a large impact on the latency of
individual interactions. Additionally network traffic is highly
impacted if there are many distant interactions

I We saw an example of this for Napster, that attempted to
return to a requesting user, provider hosts which were
“network near” to the requesting host

Peer-to-Peer Middleware

Non-functional Requirements
I Accomodating highly adaptable host availability — Most

peer-to-peer systems are constructed such that hosts are free
to join or leave at any time. Some studies of peer-to-peer
networks have shown large turnover in participating hosts.
Re-distribution of load when hosts join and leave is a major
technical challenge

I Note that it may even be that all members interested in a
particular resource leave, but that that resource should not
disapear

I Consider a peer-to-peer social network, say a peer-to-peer
Facebook

I A single user’s profile must be retained even when not only
that user has left but also all the friends of that particular user

Peer-to-Peer Middleware

Non-functional Requirements
I Security of Data — Particularly in an environment of

heterogeneous trust.
I File sharing systems do not by their very nature require much

of security of data, the whole point is that data is shared
I Consider again the peer-to-peer version of Facebook
I A single user’s profile must be stored on several machines, but

should only be available to a group of authorised users (that
user’s friends)

Peer-to-Peer Middleware

Non-functional Requirements
I Anonymity and Deniability — Anonymity is a legitimate

concern for many applications
I In particular situations demanding a resistance to censorship.
I “whistleblowing” on a company or group

I A related requirement is that hosts demand a root to
deniability if they are to be used to store/forward data
originating from other users. Otherwise the risk in involving
oneself in a peer-to-peer network is high. Here the use of a
large number of hosts can actually be an advantage. The key
phrase is “plausible deniability”

I Key disclosure laws — some countries inforce that the user
supply a key to law enforcement/government representatives
for any encrypted data (or enforce mandatory decryption)

I In the UK at least three people have been prosecuted and
convicted for refusing to supply decryption keys

I The defence is to “prove” that one does not possess the
encryption key or that the data is random

Peer-to-Peer Systems

Obvious Solution

I Recall that we want a service such that: Any node is able to
locate and communicate with any individual resource which is
made available

I The obvious solution is to maintain a database at each node
of all resource (objects) of interest

I This isn’t going to work though for several reasons:

1. It does not scale
2. It involves a heavy amount of traffic to relay all updates to all

nodes
3. Not all nodes are always available, hence re-joining the

network would have a heavy cost associated with it

I Knowledge of the locations of all objects must be partitioned
and distributed throughout the network

I A high degree of replication is required to counteract the
intermittent availability of hosts

Peer-to-Peer Systems

Telephone Trees

I Not so common now since we have convenient broadcast of
messages via text or email

I The goal is to broadcast some message to a group of people,
I generally these were the parents of a group of children
I the message related to say the ETA back from some group

excursion

I Each parent knew the phone numbers of up to four others

I When they received a call giving information, it was then their
duty to inform the “branches” of which they knew

I This was, in a sense, a routing overlay, built upon the routing
mechanism already in place for the telephone system

I Although of course in this case it was used for broadcasting
rather than locating a resource

Peer-to-Peer Systems

GUIDs

I Peer-to-Peer systems usually store multiple copies of any
given resource object as a redundancy guard against
unavailability of a single copy

I Each object is associated with a GUID (globally unique
identifier)

I Each person in the phone-tree did not need to know the
names, addresses, or anything about those individuals to
which they should forward the call

I They only required to know their GUID, which was in this
case their phone number

I GUIDs should be opaque, that is, they reveal nothing about
the object to which it refers or its location (see later)

I In this sense they are nothing like a postal address
I More like your mobile phone number

Peer-to-Peer Systems

GUIDS — small aside

I The Open Software Foundation recommends an algorithm for
generating GUIDs

I V1 of this algorithm used, as a part of the GUID, the network
card MAC address

I Meaning that the creator of a GUID (and hence a document
to which it is attached) could be determined from the GUID
alone

I This fact was used to David L. Smith the person who released
the Melissa virus into the wild

I He was sentenced to 10 years (serving 20 months) and fined
$5000

I V4 of the algorithm does not do this

Peer-to-Peer Systems

Routing Overlays

I A distributed algorithm known as a routing overlay takes
responsibility for routing requests to some node which holds
the object

I The object of interest may be placed at, and subsequently
relocated at any node in the network

I It is termed an overlay since it implements in the client a
routing algorithm that is quite separate from the routing of
individual IP packets

I The routing overlay ensures that any node can access any
object through a sequence of nodes, by exploiting the
knowledge at each of them to locate the destination object

Routing Overlays

Main Tasks of the Routing Overlay
I Routing of Requests to Objects

I A client wishing to perform some act upon a particular object
must send that that request, with the GUID attached, through
the routing overlay

I Insertion of Objects
I A node wishing to insert a new object, must compute a new

GUID for that object and announce it to that routing overlay
such that that object is available to all nodes

I Deletion of Objects
I When an object is deleted the routing overlay must make it

unavailable for other clients

I Node addition and removal
I Nodes may join and leave the service at will. The routing

overlay must organise for new nodes to take over some of the
responsibilities of other (hopefully nearby) nodes

I When a node leaves, the routing overlay must distribute its
responsibility to remaining nodes

Overlay Routing

Distributed Hash Tables
I A distributed hash table has three operations:

1. put(GUID, data): stores data at all nodes responsible for the
object identified by GUID

2. remove(GUID): deletes all references to GUID and the
associated data

3. get(GUID) : retrieves the data associated with GUID from one
of the nodes responsible for it

I Note then that operations may be subject to mutual-exclusion
style race conditions

I A count of something for example involves first retrieving the
current count and storing the incremented count. These two
operations could clearly be interleaved by two concurrent
processes

Peer-to-Peer Systems

Distributed Object Location and Routing
I DOLR has the following operations:

1. publish(GUID): Makes the node performing the publish the
host for the object corresponding to GUID. The GUID should
be computed from the object (or a part of it).

2. unpublish(GUID): Makes the object corresponding to GUID
unavailable.

3. sendToObj(msg , GUID, [n]): Sends a message to the target
object. This could be a request to update the object, or more
likely, a request to open a connection in order to transfer the
data associated with the object.

I [n] is optional and specifies the number of replicas that the
delivery of the same message should reach

Overlay Routing

Replication

I In order that an object remains available across node addition
and removal, storage of an object must occur at more than
one node

I For a Distributed Hash Table, some replication factor r is
chosen (an appropriate choice gives a very high probability of
continuous availability)

I The object is then replicated at r nodes which are the r nodes
numerically closest to the host node

I For the Distributed Object Location and Routing protocol,
locations for the replicas of data objects are decided outwith
the routing layer.

I The DOLR layer is notified of these host address of each
replica using the publish operation

Peer-to-Peer Systems

Readable Object Identifiers
I GUIDs, nice though they are, are not human readable
I Client applications must therefore obtain the GUIDs for

resources using some human-readable name or search request
I Ideally, such a lookup is also stored in a peer-to-peer manner
I This avoids a centralised service a la Napster and the

associated disadvantages of such a centralised service
I Bittorrent is an interesting example, it uses individual web

pages to publish “stub” files
I The stub file includes the object’s GUID and:
I The URL of a tracker which holds an up-to-date list of network

addresses willing to provide the requested object
I Note that it essentially uses existing search engines as the

search facilities
I Websites with particular object “stub” files may be “attacked”,

but:
I There may be many of them
I Each web site may only host a small number, perhaps only a

single, stub file

Peer-to-Peer Systems

Pastry

I Implements a Distributed Hash Table

I Can be used for any application for which objects are stored
and retrieved

I generally more useful if the objects are immutable or updated
rarely

I Squirrel is an application built upon Pastry, it is a peer-to-peer
web-cache system

I This works well as although the objects may be updated it is
not crucial that all replicas are consistent

Pastry

Pastry Routing Overlay

I In Pastry each object and node is given an opaque 128-bit
GUID

I In a network with N participating nodes the Pastry routing
algorithm will deliver a message to an object or node within
O(logN) steps

I If the GUID identifies a currently inactive node then the
message is delivered to the node with a GUID numerically
closest to the target GUID

I Each step along the route involves the use of an underlying
transport protocol, usually UDP.

I Each such step, transfers the message from the current node
to a node which is numerically closer to its destination

I Closer here though is in the entirely artificial GUID space and
may in fact involve routing the message geographically more
distant to the target node than the current node

Peer-to-Peer Systems

Routing Overlay — Ring based
I Each node stores a vector L of size 2× l containing the GUIDs

and IP addresses of nodes whose GUIDs are numerically
closest on each side: l nodes above and l nodes below

I The vector L is known as the leaf set, and leaf sets are
updated when nodes join or leave the network

I The GUID space is treated as circular, so GUID 0’s lower
neighbour is 2128 − 1 and vice versa

I Any node with GUID D upon receiving a message for D ′:
I If D ′ is in L then M can be directly forwarded to the target

node
I Otherwise M is forwarded to the GUID in L numerically closest

to D ′. Which will be either the left most or the right most
node in L

I It is the right most, if D ′ > D and D ′ − D < 2128−1
2

or

D > D ′ and D − D ′ > 2128−1
2

I And the left most node otherwise

I To deliver a message we require at most N
2×l hops

Routing Overlay

Ring-Based

0 2^128 - 1

Routing Node

l = 2, Leaf Set

Peer-to-Peer Systems

Routing Overlay — Using Routing Tables

I Each node maintains a tree-structured routing table giving
GUIDs and IP addresses for a set of nodes spread throughout
the entire range 0 . . . 2128 − 1

I However the routing table for node with GUID D will have an
increased density of coverage for GUIDs which are numerically
close to D

Peer-to-Peer Systems

GUID Routing Table
The routing table for a node with GUID 90B . . .

0 0 1 2 3 4 5 6 7 8 9 A B C
n0 n1 n2 n3 n4 n5 n6 n7 n8 nA nB nC

1 90 91 92 93 94 95 96 97 98 99 9A 9B 9C
n91 n92 n93 n94 n95 n96 n97 n98 n99 n9A n9B n9C

2 900 901 902 903 904 905 906 907 908 909 90A 90B 90C
n900 n901 n902 n903 n904 n905 n906 n907 n908 n909 n90A n90C

. . . the table has as many rows as there are hexadecimal digits in a 128 bit number, 32

I 128 bit GUIDs are examined as a string of 32 hexadecimal digits

I Each row has 15 entries (curtailed here for space)

I One for each value that does not match the current node’s prefix

I The entry in each cell is the IP address of a node with a GUID with
the prefix corresponding to the row and column

Pastry

The Pastry Routing Algorithm
I To handle a message M addressed to GUID D at node A,

where R[p, i] is the element at column i , row p of the routing
table at node A:

1. If(L−l < D < Ll)
2. Forward M to the element Li of the leaf set with the

GUID closest to D or the current node A
3. else
4. Find p, the length of the longest common prefix of D

and A, and i , the (p + 1)th hexadecimal digit of D
5. If (R[p, i] 6= null)
6. Forward M to R[p, i]
7. else
8. Forward M to any node in L (or R) with a

common prefix of length p but a GUID that is numerically
closer

I The lines in grey implement the previous ring-based algorithm,
hence we can be sure that the algorithm will succeed in
routing each message

Pastry Routing Algorithm

I Each table must have the property that:
I The GUID of the node addressed in R[p, i] has a common

prefix with the target GUID D of length at least p + 1
I Provided of course that D[p] = i

I Another way of saying this is, should we have the cell: | 16A2C
n |

I Then n addresses a node with a GUID with the prefix 16A2C
I Note that we would not have such a cell if the current node

had the prefix 16A2C
I Hence each time a message is forwarded it is forwarded to a

node with a GUID that has longer matching prefix than the
current node, so eventually it must be forwarded to the correct
node

0 0 1 2 3 4 5 6 7 8 9 A B C
n0 n1 n2 n3 n4 n5 n6 n7 n8 nA nB nC

1 90 91 92 93 94 95 96 97 98 99 9A 9B 9C
n91 n92 n93 n94 n95 n96 n97 n98 n99 n9A n9B n9C

2 900 901 902 903 904 905 906 907 908 909 90A 90B 90C
n900 n901 n902 n903 n904 n905 n906 n907 n908 n909 n90A n90C

. . . the table has as many rows as there are hexadecimal digits in a 128 bit number, 32

Pastry Overlay Routing

Host Integration

I When a host joins the network it must follow a specific
protocol to obtain its table and leaf nodes as well as updating
others

I The new node first computes a suitable GUID for itself

I The joining node should have the address of at least one
existing node, it contacts this (or finds a nearer neighbour,
where nearer is in reference to actual network distance)

I Suppose our new node has GUID X and its first contact has
GUID A. The node sends a join request message to A giving
X as its destination GUID

I The node A then forwards this request message to the node
with the numerically closest GUID to X , let’s call it Z

I Of course A does not in general know what that node is, it
simply forwards on the join message as though routing to
node X

Host Integration

Building the Routing table for X

I The key point is that a node (Z) must be able to tell that it is
the currently closest (numerically) GUID to X

I It can know this due to its own leaf set

I As the join message is forwarded (ultimately to Z), the
forwarding nodes help build up the routing table of X

I Note that the first row of X does not really depend upon the
GUID X , so it can simply copy the first row of A.

I It must update it slightly since X and A do not necessarily
share the same first digit

I In place RA[0, i] where i = A[0] is the first digit of A, there will
be no address, so in slot for X we can simply place the address
of A

I Additionally RX [0, j] where j = X [0] is the first digit of X can
be left empty even though RA[0, j] may not be

Host Integration

Concrete example of X and A

I Suppose the GUID of X is number 1(0000 . . . 1)

I The GUID of A is number 2127(1000 . . . 0)

I The first row of A in positions 2 . . . F are perfectly valid

I The value that A has for prefix 0 is worthless to X , but that’s
okay because in that position X will have no address (it’s the
red entry in the first row for X because it is the prefix of X)

I A has no entry in column 1 (it’s A’s red entry in the first
row), but that’s okay because we know a good address to fill
in that column in X ’s first row, the value is the address of A.

Host Integration

Routing of the Join message
I The second row of A’s table though is probably not relevant
I During its travels to the node numerically closest to X , (Z),

the join message passes through some nodes B, C . . . Y
I Each node B, C . . . Y through which the join message passes,

transmit relevant parts of their routing tables and leaf sets to
D

I Because of the routing algorithm the second row of B ′s table
will be relevant for X , so it simply sends X its second row,
and also forwards the message on to C

I Now the third row of C should be applicable for X since it
shares the same prefix of at least length 2.

I In fact C may have been in row n of B’s table and hence can
send X rows 2 . . . n

I When the message finally arrives at Z , we should have built
up most of X ’s new routing table, and all we require is a good
leaf set

Host Integration

Routing of the Join message

I Z is the numerically closest GUID to X
I Suppose X > Z :

I The left hand side of X ’s leaf set is the left hand side of Z ’s
but Z itself

I The right hand side is exactly the right hand side of Z ’s
original leaf set

I Z however should update the right hand side of its leaf set to
include X as the closest and optionally remove the right most
node from the leaf set.

I Finally then once X has received and built up its own routing
table and leaf nodes, it sends this information to all the nodes
in its leaf node set and routing table such that they may
update their accounts appropriately

I Incorporating this new node into the network requires the
transmission of O(logN) messages

Pastry Overlay Routing

Host Removal

I A host may fail or leave at any time

I When this happens we must repair the routing tables and leaf
sets so as not to contain the departed node

I We will assume that neighbouring nodes can detect a failed
node via periodic polling and consider mostly the case of a
node which departs intentionally

I Assume either way that a node D detects, or is alerted by the
departing node itself, that node X has left the network

I Node D, looks for a close node L′ in its own leaf set and
requests a copy of the leaf set of L′

I The leaf set which L′ sends D should overlap that of D and in
particular contain a node suitable to replace that of X

I Other neighbouring nodes are then informed of the failure and
they perform a similar procedure

Pastry Overlay Routing

Fault Tolerance
I Nodes may gracefully leave the system, but they may also fail,

in a peer-to-peer system this could represent the user
switching off or killing the process

I Failed nodes are detected through a system of “heartbeat”
messages sent by non-failed nodes to their leaf sets

I However, failed node notification will not propagate through
the network quick enough to eliminate routing failures

I If the application in question requires reliable delivery of
messages then a reliable protocol must be built upon the
routing overlay

I Recall at the start of the course we discussed reliable (TCP)
communication and unreliable (UDP) communication

I One reason to use unreliable communication is that the
application built ontop of the communication may be required
to perform its own ommission/error detection/correction

I This is one such example

Pastry Overlay Routing

Fault Tolerance

I Where such a re-try mechanism is used it should allow the
Pastry routing overlay time to adapt to an error

I However, as it stands this may not overcome all errors and
certainly will not help in the presence of a malicious node

I To overcome this, an element of randomness is introduced
into the routing algorithm

I To forward a message a node P, might choose not to
immediately send it it to the node in P’s routing table with
the longest matching prefix, but instead, with a small
probability, send to a node higher up the routing table.

0 0 1 2 3 4 5 6 7 8 9 A B C
n0 n1 n2 n3 n4 n5 n6 n7 n8 nA nB nC

1 90 91 92 93 94 95 96 97 98 99 9A 9B 9C
n91 n92 n93 n94 n95 n96 n97 n98 n99 n9A n9B n9C

2 900 901 902 903 904 905 906 907 908 909 90A 90B 90C
n900 n901 n902 n903 n904 n905 n906 n907 n908 n909 n90A n90C

. . . the table has as many rows as there are hexadecimal digits in a 128 bit number, 32

Pastry Overlay Routing

Locality

I The routing table has an address associated for each possible
digit in the i th position which does not match the current
node’s i th digit

I Each such address has a GUID with a prefix of length i − 1
which matches the current node’s

I In a well populated overlay, and in particular in the early rows
of the table, there will be many such choices

I Each choice is made based on a metric which measures
network locality

I Usually IP hops, or round-trip time

I This cannot guarantee optimal routings but has been shown
in simulations to produce routes that are only 30-50% longer

I It also helps route around failed nodes which have large
round-trip times

Peer-to-Peer Systems

Tapestry

I Tapestry is similar in goals to Pastry

I The Tapestry infrastructure uses a distributed hash table
routing mechanism similar to the one described for Pastry

I However, the exposed Tapestry API is that of a DOLR
(Distributed Object Location and Routing) interface

I Recall: DOLR has the following operations:

1. publish(GUID): Makes the node performing the publish the
host for the object corresponding to GUID. The GUID should
be computed from the object (or a part of it).

2. unpublish(GUID): Makes the object corresponding to GUID
unavailable.

3. sendToObj(msg , GUID, [n]): Sends a message to the target
object. This could be a request to update the object, a request
to open a connection in order to transfer the data associated
with the object.

I [n] is optional and specifies the number of replicas that the
delivery of the same message should reach

Peer-to-Peer Systems

Tapestry

I Because replication is handled by the application rather than
Tapestry itself, this gives applications additional flexibility in
how to handle replication

I For example a file-sharing system may not need to explicitly
handle replication since it done implicitly whenever a user
copies an existing resource

I It is possible that absolutely no replication (of at least some
resources) is necessary or desired

I For example an online game could operate with each player
hosting their own current state

I When the player leaves, the state need not persist
I Though the player’s account may persist, this would be an

example where some, but not all of resources are replicated

Tapestry

I Each object and routing node has a 160-bit identifier (GUID)
associated with it

I In addition each (published) object is associated with exactly
one “root node”

I The root node maintains a table mapping object GUIDs to
the addresses of all replicas

I The root node will be the node with a GUID numerically
closest to the GUID associated with the object

I When a node invokes publish(GUID) the message is routed to
the object’s associated root node

I When a sendToObj(GUID, msg , [n]) message is invoked that
too is routed to the root node of the object

I The root node may then choose how many and which replicas
to send that message to

I The decision obviously being application dependent

Peer-to-Peer Systems

Tapestry Routing

Peer-to-Peer Systems

Structured or Unstructured

I Structured peer-to-peer networks have a specific distributed
data structure maintaining the routing overlay

I The structure imposed means that the peer-to-peer networks
are efficient, offering some bound on, say, the number of
messages required to route a message to an object

I Pastry for example relied upon the logical ring of GUID ids,
and the routing tables made up distributed ‘trees’

I However this is paid for in the cost of maintaining the
distributed data structure underneath the peer-to-peer network

I An alternative is an unstructured peer-to-peer network

Peer-to-Peer Systems

Unstructured

I An unstructured peer-to-peer network does not rely on any
distributed data structure

I Instead it relies upon an ad-hoc system of adding peers as
they become available

I Each node joins the network by following some simple, local
rules.

I A joining node must establish connectivity with a set of
‘neighbours’

I It knows that the neighbours will also be connected to their
own neighbours and so on

I Connectivity to everyone follows from a ‘Kevin Bacon’ style
arrangement, except that there is no special node

Unstructured Peer-to-Peer

Locating an object

I In an unstructured peer-to-peer network then, it is
straightforward and inexpensive to join and leave a network

I However locating an object must be done by searching the
resulting “mish-mash” of connections

I This approach then cannot guarantee to locate any specific
object

I It is also possible that excessive amounts of traffic are used in
locating and using objects

I Still, unstructured peer-to-peer networks have been shown to
work

I In fact they are the dominant paradigm used in the Internet
today

Peer-to-Peer Systems

Unstructured dominance
I I Gnutella

I Limewire
I Freenet
I Bittorrent

I All examples of unstructured peer-to-peer networks

I Many studies have estimated the overall proportion of Internet
traffic which is peer-to-peer

I They vary widely in their estimates from some 20% to over
70%

I Safe to say it is a significant proportion, it’s hard to say what
is taken up with unnecessary transfer of data

Unstructured peer-to-peer systems

Unnecessary Data Transfer

I A variety of reasons, including inefficiency of the peer-to-peer
system in question which may not be satisfying requests,
dropping messages, or simply not pairing up providers with
consumers in a network-efficient manner

I We may also get a lot of dropped connections because peers
may leave at any time — file splitting is used to mitigate this

I Broken files, incorrectly labelled files etc

I Due to the uncertainty of availability many users “download
now, consider later”

I Content may not be offered in the size desired, eg a whole
album as opposed to single song which is desired

Structured vs Unstructured

Comparison
I Structured

I Advantages

1. Guaranteed to locate (existing) objects
2. Relatively low message overhead

I Disdvantages

1. Need to maintain complex overlay structures
2. Slow to adapt to highly dynamic networks
3. Software is difficult to upgrade if it updates the distributed

data structures used

I Unstructured
I Advantages

1. Self-organising and naturally resilient to node failure
2. Different versions of software can often interoperate with little

engineering effort

I Disdvantages

1. Offers no guarantees on locating objects even if they exist
2. Can generate large amounts of messaging overhead

Unstructured Peer-to-Peer

Searching

I When file-sharing, a major problem is the location of desirable
files

I We will stick to the problem of file-sharing but the same
problem exists for many other similar applications

I Whether we are using a structured or unstructured
peer-to-peer network we may still require to do some search to
find an appropriate GUID

I The search strategies we look at now are applicable in a
number of places, but we will specialise the case to search for
a file in an unstructured peer-to-peer network

Peer-to-Peer Systems

File Searching

I The problem of searching for a particular file (or one of a set
which is appropriate) becomes the problem of searching the
entire network

I Näıvely done this could flood the network with many search
requests

I A simple strategy is that a search request is sent to the
nearest neighbours, each of whom respond with success or
forward the search on to their neighbours

I Similar to IP multicast, each such search request has a
time-to-live variable which is decremented each time the
request is forwarded

I The approach though does not scale well

Peer-to-Peer Systems

Improvements
I Expanded Ring Search

I If there is an effective replication strategy in place, many
searches may complete successfully locally

I This is particularly true of file-sharing networks where the most
popular files are those which are searched for the most often

I Expanded ring search does the same as the näıve version but
starts with a very small time-to-live variable

I If that search fails, it tries again with a larger time-to-live
variable

I and so on, up to some limit

Peer-to-Peer Systems

Improvements
I Random Walks

I A search agent can be set off in search of the desired file
I The agent is of course not an actual agent but simply a

message
I When the message arrives at a node, the successfully found file

can be sent directly back to the originator of the random walk
agent

I If not, it is forwarded to one other peer, the choice of peer is
made randomly

I A peer wishing to search may set off several random “agents”
concurrently

I Again they are generally equipped with a time-to-live counter

Peer-to-Peer Systems

Improvements
I Gossiping

I A node sends a request to a neighbour with a given probability
I Hence a request spreads probabilistically through the network
I The Gossiping name alludes to the way in which a search

spreads through the network as a rumour spreads through
social networks

I Sometimes these are called epidemic protocols, because the (in
the case) search spreads through the network like a virus

Peer-to-Peer Systems

Improvements
I Ultra-Peers

I In a pure peer-to-peer network all peers are treated equally
I An ultra-peers system makes the observation that we may

treat peers as equals but that does not reflect reality
I A few selected peers are designated ultra-peers, generally

because they have extra resources and some commitment to
extended availability within the peer-to-peer system

I These ultra-peers are heavily connected with each other, and
ordinary peers connect themselves to one or more ultra-peers

I This can offer dramatic improvements in terms of the number
of hops required for exhaustive search

I The ultra-peers are the Kevin Bacons of the peer-to-peer
system

Peer-to-Peer Systems

Query Routing Protocol

I In this system peers exchange information about the
files/resources they have available

I For example each peer may gather together a set of words in
the file names of their available files.

I These words are then sent to the associated ultra-peer

I The ultra-peer collates all these into a single table of available
‘words’ and exchanges this information with its neighbouring
ultra-peers

I So when a (text based) search query is made each ultra-peer
knows which search paths are likely to obtain positive results

Peer-to-Peer Systems

Peerson

I Peerson (www.peerson.net) is a distributed peer-to-peer
social network akin to Facebook

I Encryption is utilised heavily in order to provide security of
user data

I This is in contrast to centralised servers which may encrypt
stored data, but then the keys are stored in the same place

I In Peerson encryption keys are required to access any files
(parts of a user’s profile)

I The user has control over who may obtain those keys

www.peerson.net

Peer-to-Peer Systems

Summary
I We began with looking at the motivations behind the

development of peer-to-peer systems
I Break the reliance of the system on a central server which may

be vulnerable from attack, both technical and bureaucratic
I Utilising the resources of those using the server such that

capacity grows with the number of users
I Providing anonymity to content providers

I The now defunct pioneering system Napster
I Napster relied on a central server, but that server hosted no

content, bandwidth to the central server was limited as well
because no content was therefore downloaded from the central
server

I Instead the central server was merely used by remote peers to
locate content and setup independent connections between
peers

I Ultimately though the reliance on a central server proved
enough fodder for the entertainment industry’s lawyers and
Napster was shutdown

Peer-to-Peer Systems

Summary

I Napster however proved the feasibility of the concept and
several services grew into the space left behind by Napster

I Such services do not rely on any single central server and have
so far proved resilient to legal attacks

I However we focused our attention on efforts to provide a
generic framework for building peer-to-peer applications

I Such frameworks currently focus on providing a distributed
hash table, storing objects and replicas at multiple peers for
later retrieval

I Distributed Object Location and Routing systems are an
extension providing a more convenient API, in particular for
objects which may be updated

Peer-to-Peer Systems

Summary

I In general though peer-to-peer systems have and continue to
be used mostly for file sharing

I In particular the sharing of immutable files such as music files
and video files

I Objects tend to be visited exactly once by a user and hence
unstructured networks flourish as the additional structure
provided by a distributed data structure cannot be put to
great use

I The low cost and dynamic service provision mean that they
are continued ot be offered by those with small budgets

I Large corporations such as Microsoft, Apple, Google,
Facebook and Twitter are yet to embrace peer-to-peer
applications

Any Questions

Any Questions?

