
Distributed Systems — Distribution and
Operating Systems

Allan Clark

School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/ds
Autumn Term 2012

Distribution and Operating Systems

Overview

I This part of the course will be chiefly concerned with the
components of a modern operating system which allow for
distributed systems

I We will examine the design of an operating system within the
context that we expect it to be used as part of a network of
communicating peers, even if only as a client

I In particular we will look at providing concurrency of
individual processes all running on the same machine

I Concurrency is important because messages take time to send
and the machine can do useful work in between messages
which may arrive at any time

I An important point is that in general we hope to provide
transparency of concurrency, that is each process believes that
it has sole use of the machine

I Recent client machines such as smartphones, have, to some
extent, shunned this idea

Distribution and Operating Systems

Operating Systems

I An Operating System is a single process which has direct
access to the hardware of the machine upon which it is run

I The operating system must therefore provide and manage
access to:

I The processor
I System memory
I Storage media
I Networks
I Other devices, printers, scanners, coffee machines etc

http://fotis.home.cern.ch/fotis/Coffee.html

http://fotis.home.cern.ch/fotis/Coffee.html

Distribution and Operating Systems

Operating Systems
I As a provider of access to physical resources we are interested

in the operating system providing:
I Encapsulation: Not only should the operating system provide

access to physical resources but also hide their low-level details
behind a useful abstraction that applications can use to get
work done

I Concurrent Processing: Applications may access these physcial
resources (including the processor) concurrently, and the
process manager is responsible for achieving concurrency
transparency

I Protection: Physical resources should only be accessed by
processes with the correct permissions and then only in safe
ways. Files for example can only be accessed by applications
started by users with the correct permissions.

Distribution and Operating Systems

Encapsulation
I For example application programmers work with “files” and

“sockets” rather than “disk blocks” and “raw network access”
I Application programmers work as though the system memory

was limitless (though not costless) and the operating system
provides the concept of virtual memory to emulate the
existance of more memory

Distribution and Operating Systems

Concurrent Processing

I Through encapsulation applications operate as though they
had full use of the computer’s hardware

I It is the task of the operating system not only to maintain this
pretence but also fully utilise the machine’s hardware

I In general Input/Output requests take a relatively long time
to process, for example saving to persistent storage

I When a particular program makes such a request it is placed
in the “BLOCKED” state and another process is given use of
the machine’s CPU

I In this way the machine’s CPU should never be idle whilst
some process wishes to do some useful processesing

I The operating system also must provide ways for separate
processes to communicate with one another

Distribution and Operating Systems

Protection

I The aim of protection within an operating system is to make
sure that a single process cannot unduly disrupt the running
of other processes or the physical resources that they share

I The process from which we require protection may be either
faulty or deliberately malicious

I There are two kinds of operations from which the operating
system can protect the physical resources

1. Unauthorised access
I As an example using the file system, the operating system

does not allow a process to update (write to) a file for which
the owner (a user) of the process does not have write access to

2. Invalid operations
I An example again using the file system would be that a

process is not allowed to arbitrarily set the file pointer to some
arbitrary value

Distribution and Operating Systems

Kernel Mode

I Most processors have two modes of operation: Kernel mode
and User mode, also known as: priviledged mode and
unpriviledged mode

I Generally operating system writers try to write code so that as
little as possible is run in Kernel mode

I Even other parts of the operating system itself may be run in
User Mode, thus providing protection even from parts of the
operating system

I Although there is sometimes a performance penalty for
operating in User Mode as there is a penalty for a so-called
system call

I There have been some attempts to avoid this, such as Typed
Assembly Language, in which such code is type-safe and
hence can be trusted (more) to run in Kernel mode.

Distribution and Operating Systems

Operating System Components

I Process Manager: Takes care of the creation of processes.
Including the scheduling of each process to physical resources
(such as the CPU)

I Thread Manager: Thread, creation, synchronisation and
scheduling.

I Communication Manager: Manages the communication
between separate processes (or threads attached to separate
processes).

I Memory Management: Management of physical and virtual
memory. Note this is not the same as automatic memory
management (or garbage collection) provided by the runtime
for some high-level languages such as Java.

I Supervisor: The controller for interrupts, system call traps and
other kinds of exceptions (though not, generally, language
level exceptions).

Distribution and Operating Systems

Monolithic vs Microkernel
I A monolithic kernel provides all of the above services via a

single image, that is a single program initialised when the
computer boots

I A microkernel instead implements only the absolute minimum:
Basic virtual memory, Basic scheduling and Inter-process
communication

I All other services such as device drivers, the file system,
networking etc are implemented as user-level server processes
that communicate with each other and the kernel via IPC

I www.dina.dk/~abraham/Linus_vs_Tanenbaum.html
Historical spat between Andrew Tanenbaum and Linus
Torvalds (and others) on the merits of Minix (a microkernel)
and Linux (a monolithic kernel)

I Linux and Minix are both examples of a Network Operating
System. Also mentioned in the above is Amoeba, an example
of a Distributed Operating System

www.dina.dk/~abraham/Linus_vs_Tanenbaum.html

Monolithic vs Microkernel

The Microkernel Approach
I The major advantages of the microkernel approach include:

I Extensibility — major functionality can be added without
modifying the core kernel of the operating system

I Modularity — the different functions of the operating system
can be forced into modularity behind memory protection
barriers. A monolithic kernel must use programming language
features or code conventions to attempt to ensure this

I Robustness — relatively small kernel might be likely to contain
fewer bugs than a larger program, however, this point is rather
contentious

I Portability — since only a small portion of the operating
system, its smaller kernel, relies on the particulars of a given
machine it is easier to port to a new machine architecture

I Not just an architecture, a different purpose, such as
mainframe server or a smartphone

Distribution and Operating Systems

The Monolithic Approach

I The major advantage of the monolithic approach is the
relative efficiency with which operations may be invoked

I Since services share an address space with the core of the
kernel they need not make system calls to access core-kernel
functionality

I Most operating systems in use today are a kind of hybrid
solution

I Linux is a monolithic kernel, but modules may be dynamically
loaded and unloaded at run time.

I Mac OS X and iOS are built around the Darwin core, which is
based upon the XNU hybrid kernel that includes the Mach
micro-kernel.

Distribution and Operating Systems

Network vs Distributed Operating Systems
I Network Operating Systems:

I There is an operating system image at each node
I Each node therefore has control over which processes run at

that physcial location
I A user may invoke a process on another node, for example via

ssh, but the operating system at the user’s node has no
control over the processes running at the remote node

I Distributed Operating Systems:
I Provides the view of a single system image maintaining all

processes running at every node
I A process, when invoked, or during its run, may be moved to a

different node in the network
I Generally the reason for this is that the current node is more

computationally loaded than the target node
I It could also be that the target node is physically closer to

some physical resource required by the process
I The idea is to maximise the configuration of processes to

nodes in a way which is completely transparent to the user

Distribution and Operating Systems

Network vs Distributed Operating Systems

I Today there are no distributed operating systems in general
use

I Part of this may be down mostly to momentum
I In a similar way to CISC vs RISC processors back in the 90s

I Part of it though is likely due to users simply preferring to
maintain some control over their own resources

I In particular everyone believes their applications to be of
higher priority than their neighbours’

I In contrast the Network Operating System provides a good
balance as stand-alone applications can be run on the users’
own machine whilst the network services allow them to
explicitly take advantage of other machines when appropriate

Processes

I A process within a computer system is a separate entity which
may be scheduled to be run on a CPU by the operating system

I It has attached to it an execution environment consisting of:
its own code, its own memory state and higher-level resources
such as open files and windows

I Each time the kernel performs a context-switch, allowing a
different process to run on the CPU, the old execution
environment is switched out and is replaced with the new one

I Several processes, or execution environments, may reside in
memory simultaneously.

I However each process believes it has sole use of memory and
hence accesses to memory go through a mapping, which maps
the accessed address to the address at which it currently,
physically resides

I In this way the OS can move execution environments about in
memory and even out to disk

Distribution and Operating Systems

Processes and Threads

I Traditionally processes were used by computers to perform
separate tasks

I Even a single application could be split into several related
processes that communicated amongst each other

I However, for many purposes these separate processes meant
that sharing between related activities was awkward and
expensive

I For example a server application might have a separate
process to handle each incoming request (possibly setting up a
connection)

I But each such process was running the same code and
possibly using the same resources to handle the incoming
requests (such as a set of static web-pages for example)

Distribution and Operating Systems

Threads
I Hence separate processes were inappropriate for such tasks
I An early work-around was for the application to write its own

basic ‘sub-process scheduler’
I For example allowing a request object time to run before

‘switching’ to the next request object
I But this was throwing out a lot of the advantages of

operating system level separate processes
I So threads were introduced as a lightweight - operating

system provided, alternative
I Now a process consists of its address-space, and a set of

threads attached to that process
I The operating system can perform less expensive context

switches between threads attached to the same process
I And threads attached to the same process can access the

same memory etc, such that communication/synchronisation
can be much cheaper and less awkward

Processes and Threads

Shared Memory
I A server application generally consists of:

I A single thread, the receiver-thread which receives all the
requests, places them in a queue and dispatches those requests
to be dealt with by the

I worker-threads

I The worker-thread which deals with the request may be a
thread in the same process or it may be a thread in another
process

I There must be a portion of shared memory though, for the
queue resides in memory owned by the receiver-thread

I A thread in the same process automatically has access to the
same part of memory

I If separate processes are used then there must be a portion of
shared memory such that the worker-thread can access any
request which the receiver-thread has dispatched to it

Threads

A server utilising threads

I Imagine a server application, suppose that the receiver-thread
places all incoming requests in a queue accessible by the
worker-thread(s)

I Let us suppose that each request takes 2ms of processing and
8ms of Input/Output

I If we have a single worker thread then the maximum
throughput of serviced requests is 100 per-second, since each
request takes 2ms + 8ms = 10ms

Threads

A server utilising threads
I Now consider what happens if there are two threads:

I The second thread can process a second request whilst the
first is blocked waiting for Input/Output

I Under the best conditions each thread may perform its 2ms of
processing whilst the other thread is blocked waiting for
Input/Output

I In calculating throughput then we can assume that the 2ms of
processing occurs concurrently with the proceeding request

I Hence on average each request takes 8ms meaning the
maximum throughput is 1000/8 = 125 requests per-second

Threads

Threading and the Cache

I The cache of the processor is a small piece of hardware which
stores recently accessed elements of memory

I Separate processes have separate memory address spaces
I Hence when a process switch occurs the cache is flushed

I Separate threads belonging to the same process however share
the same execution environment

I Hence when switching between threads belonging to the same
process no flush of the cache is performed

I It’s possible then that using threads can reduce the processing
time for each individual request, since any access to memory
may result in a cache hit even if the current request hasn’t
accessed the same part of memory

Server Threads

Possible Strategies
I There are three general threading strategies in use for servers

1. A thread per request
2. A thread per connection
3. A thread per server object

I Which one is used depends on the application and in particular
whether connections are long-lived and “busy” or not

I/O

Thread per
request

Thread per
connection

Thread per
object

I/O

I/O Receiving
Thread

Worker
thread

Remote object

Thread strategies

I In the thread per-request many threads are created and
destroyed, meaning that there is a large amount of thread
maintenance overhead

I This can be overcome to some extent by re-using a thread
once it has completely finished with a request rather than
killing it and starting a new one.

I In the thread per-connection and thread per-object strategies
the thread maintenance over-head is lower

I However, the risk is that there may be low utilisation of the
CPU, because a particular thread has several waiting requests,
whilst other threads have nothing to do

I That one thread with many requests may require to wait for
some I/O to be completed, whilst the remaining threads sit
idle because they have no waiting requests.

I If you have many concurrent connections (or objects) this may
not be a concern

Threads vs Processes

Main Arguments for Threads

I Creating a new thread within an existing process is cheaper
than creating a new process

I Switching to a new thread within the same process is cheaper
than switching to a thread within a different process

I Threads within the same process can share data and other
resources more efficiently and conveniently than threads
within separate processes

Main Arguments for Processes

I Threads within the same process are not protected from each
other

I In particular they share memory and therefore may
modify/delete an object still in use by another thread

Rebuttal

I However modern type-safe languages can provide similar
safety guarantees

Threads Implementation

Operating Systems Support vs User Library

I Most major operating systems today support multi-threaded
processes allowing the operating system to schedule threads

I Alternatively the OS knows only of separate processes and
threading is implemented as a user-level library

I Such an implementation suffers from the following drawbacks:

1. The threads within a process cannot take advantage of a
multi-processor

2. When a thread makes a blocking system call (e.g., to access
input/output), the entire process is blocked, thus the threaded
application cannot take advantage of time spent waiting for
I/O to complete

3. Although this can be mitigated by using kernel level
non-blocking I/O, other blocks such as a page-fault will still
block the entire process

4. Relative prioritisation between processes and their associated
threads becomes more awkward

Threads Implementation

Operating Systems Support vs User Library
I In contrast the thread implementation as a user-level library

has the following advantages:

1. Some operations are faster, for example switching between
threads does not automatically require a system call

2. The thread-scheduling module can be customised for the
particular application

3. Many more user-level threads can be supported than can be by
the kernel

Distribution and Operating Systems

Threads in the Client

I Threads are clearly useful for the server what about the client?

I Imagine a web-browser which visits a particular page, the first
request is returned with the HTML for the page in question

I Within that HTML may be a number of image tags

I

I The client must then make a further request for each image
(some images might not even be hosted at the same server —
hotlinking)

I But it doesn’t particularly matter in which order these requests
are made, or, crucially, in which order they are received

I Hence the web-browser can spawn a thread for each image
and request them concurrently

Threads in the Client

process
marshall
send

receive
unmarhsal
process
marshall
send

receive
unmarshall
process

receive
unmarshall
process
marshall
send

receive
unmarshall
process
marshall
send

process
marshall
send
process
marshall
send

receive
unmarshall
process

receive
unmarshall
process

receive
unmarshall
process
marshall
send
receive
unmarshall
process
marshall
send

Time

Time
Saved

Serial Requests Concurrent Requests

Distribution and Operating Systems

Communication Primitives

I Some operating systems provide kernel level support for
high-level communication primitives such as remote
procedure-call, remote method invocation and group
communication

I Although this can increase efficiency due a decrease in the
required number of systems calls, such communication
abstractions are usually left to the middleware

I Operating systems tend to provide the well known sockets
abstraction for connection-based communication using TCP
and connectionless communication using UDP

I Middleware provides the higher-level communication
abstractions since it is then more flexible, different
implementations and protocols can be updated more readily
than for an entire operating system

Distribution and Operating Systems

Remote Invocation — Performance

I A null invocation is an invocation to a remote procedure
which takes zero arguments, executes a null procedure and
returns no values

I The time taken for a null invocation between user processes
connected by a LAN is of the order of a tenth of a millisecond

I By comparison, using the same sort of computer, a local
procedure call takes a small fraction of µ-second — let’s say
at most 0.0001 milliseconds

I Hence, over the LAN it is around 1000 times slower

I For the null invocation we need to transfer a total of around
100 bytes — over Ethernet it is estimated that the total
network time for this is around 0.01 milliseconds

Distribution and Operating Systems

Remote Invocation — Performance

I The observed delay then is 0.0001 + 0.01 + x = 0.1 where x is
the delay accounted for by the operating system and user-level
remote procedure-call code

I x = 0.0899 — or 89% of the delay

I This was a rough calculation but clearly the operating system
and RPC protocol code is responsible for much of the delay

I The cost of a remote invocation increases if we add
arguments and return values, but the null invocation provides
a measure of the latency

I The latency can be important since it is often large in
comparison to the remainder of the delay

I In particular we frequently wish to know if we should make
one remote invocation with large arguments/results or many
smaller remote invocations

Distribution and Operating Systems

Latency

I Message transmission time = latency + length
data transfer rate

I Though longer messages may require segmentation into
multiple messages

I Latency affects small frequent message passing which is
common for distributed systems

Distribution and Operating Systems

Virtualisation

I The goal of system virtualisation is to provide multiple virtual
machines running on top of the actual physical machine
architecture

I Each virtual machine has its own instance of an operating
system

I The operating system on each virtual machine need not be
the same

I In a similar way in which each operating system schedules the
the individual processes the virtualisation system manages the
allocation of physical resources to the virtual machines which
are running atop it

Virtualisation

Why?

I The system of user processes already provides some level of
protection for each user against the actions of another user

I System virtualisation offers benefits in terms of increased
security and backup

I A user can be charged for the time that their virtual machine
is run on the actual physical machine

I It’s a good way of running a co-location service, since the user
can essentially pay for the virtual machine performance that is
required/used rather than a single physical machine

I Sharing a machine is difficult, in particular the upgrade of
common libraries and other utilities, but system virtualisation
allows each user’s machine/process to exist in a microcosm
separate to any other user’s processes

Virtualisation Use Cases

Server Farms

I An organisation offering several services can assign a single
virtual machine to each service

I Virtual machines can then be dynamically assigned to physical
servers

I Including the ability to migrate a virtual machine to a
different physical server — something not quite so easy to do
for a process

I This allows the organisation to reduce the cost of investment
in physical servers

I And can help reduce energy requirements as fewer physical
servers need be operating in times of low-demand

Virtualisation Use Cases

Cloud Computing

I More and more computing is now being done “in the cloud”

I This is both in terms of “platform as a service” and “software
as a service”

I The first can be directly offered via virtualisation as the user
can be provided with one or more virtual machines

I Interesting blog post of a developer who ditched his macbook
for an ipad and a Linode instance

I http://yieldthought.com/post/12239282034/
swapped-my-macbook-for-an-ipad

http://yieldthought.com/post/12239282034/swapped-my-macbook-for-an-ipad
http://yieldthought.com/post/12239282034/swapped-my-macbook-for-an-ipad

Virtualisation Use Cases

Dynamic Resource Demand

I Developers of distributed applications may require the efficient
dynamic allocation of resources

I Virtual machines can be easily created and destroyed with
little overhead

I For example online multiplayer games, may require additional
servers when the number of hosted games increases

Testing Platforms

I A completely separate use is a single desktop developer of a
multiplatform application

I Such a developer can easily run instances of popular operating
systems on the same machine and easily switch between them

Virtualisation

Is it my turn to run?

I It is interesting now to note that there are several hierarchical
layers of scheduling

I The virtualisation layer decides which virtual machine to run

I The operating system then decides the execution environment
of which process to load

I The operating system then decides which thread within the
loaded execution environment to run

I If user-level threads are implemented on top of this then the
user-level thread library decides which thread object to run

Distribution and Operating Systems

Summary

I Distributed Operating Systems are an ideal allowing processes
to be migrated to the physical machine more suitable to run it

I However, Network Operating Systems are the dominant
approach, possibly more due to human tendancies than
technical merit

I We looked at microkernels and monolithic kernels and noted
that despite several advantages true microkernels were not in
much use

I This was mostly due to the performance overheads of
communication between operating system services and the
kernel

I Hence a hybrid approach was common

Distribution and Operating Systems

Summary

I We looked at processes and how they provide concurrency, in
particular because such an application requires concurrency
because messages can be received at any time and requests
take time to complete, time that is best spent doing
something useful

I but noted that separate processes were frequently ill-suited for
an application communicating within a distributed system

I Hence threads became the mode of concurrency offering
lightweight concurrency.

I Multiple threads in the same process share an execution
environment and can therefore communicate more efficiently
and the operating system can switch between them more
efficiently

Distribution and Operating Systems

Summary

I We also looked at the costs of operating system services on
remote invocation

I Noting that it is a large factor and any design of a distributed
system must take that into account — in particular the choice
of protocol is crucial to alleviate as much overhead as possible

I Finally we looked at system virtualisation and noted that it is
becoming the common-place approach to providing
cloud-based services

I Virtualisation also offers some of the advantages of a
microkernel including increased protection from other users’
processes

Any Questions

Any Questions?

US Presidential Election

As a distributed system
I For those of you that don’t know, the US presidential election

is tomorrow November the 6th
I Each state has allocated to it a number of “electoral college”

votes based on the size of the population of the state
I Each state then votes and allocates all of the state’s electoral

college votes to the party with the highest vote share in the
state

US Presidential Election

Popular Vote

I I am not arguing that this is a good system

I Why not just take the popular vote?

I That is, count up all the votes in the entire election and the
party/candidate with the most votes wins the election?

I Mostly historical reasons, arguably accuracy reasons

I

Candidate George W. Bush Al Gore

EC Votes 271 266

Popular Vote 50,456,002 50,999,897

Percentage 47.9 48.4

US Presidential Election

Efficiency

I

Candidate George W. Bush Al Gore

Alaska 167,398 79,004

New York 2,403,374 4,107,697

New Mexico 286,417 286,783

Florida 2,912,790 2,912,253

I In highly partisan states counting need not be accurate

I In highly contested states, maybe we better have a recount

I Note that this means the popular vote may be incorrect,
whilst the electoral college vote less likely so

I A statewide vote may order a recount if a candidate wins by
less than 1000 votes

I Nationally we might require a margin of at least 100, 000
votes to forego a recount

I A national recount is more expensive than a statewide recount

US Presidential Election

Robustness

I We term each state as either Democrat or Republican

I But as the previous table shows most states are split quite
closely

I New Hampshire — fivethirtyeight.com projections:
DEM REP MARGIN

Polling average 48.9 46.3 Obama +2.6
Adjusted polling average 49.0 46.2 Obama +2.8
State fundamentals 50.4 44.4 Obama +6.0
Now-cast 49.1 46.0 Obama +3.1
Projected vote share ±3.7 51.2 48.0 Obama +3.2
Chance of winning 80% 20%

I With the electoral college votes each state’s influence is
known and limited

I Hence a corrupted state can have only a known and limited
effect on the final outcome

fivethirtyeight.com

US Presidential Election

Robustness

I This year may see another robustness result come significantly
in to play

I Hurricane Sandy has devastated parts of the north east coast

2008 Electoral College Results Map

US Presidential Election

Robustness

I Suppose we had three states, each with a single EC vote

I Each has a population of 1000 voters:

I

State Dem Votes Rep Votes

Left Carolina 700 300
North Fencia 550 450
Right Carolina 300 700

Total Pop Vote 1550 1450
Total EC 2 1

US Presidential Election

Robustness

I Now suppose Left Carolina is hit by a hurricane the week
before the election, and only 500 people vote

I

State Dem Votes Rep Votes

Left Carolina 350 150
North Fencia 550 450
Right Carolina 300 700

Total Pop Vote 1200 1300
Total EC 2 1

I I’m not arguing that this is a good electoral system

I Just that it has some redeeming qualities

I and that those qualities could be put to use in some
distributed algorithm for an application in which the final
result need not necessarily be exactly correct, but not horribly
wrong

US Presidential Election

Robustness

I Now suppose Left Carolina is hit by a hurricane the week
before the election, and only 500 people vote

I

State Dem Votes Rep Votes

Left Carolina 350 150
North Fencia 550 450
Right Carolina 300 700

Total Pop Vote 1200 1300
Total EC 2 1

I I’m not arguing that this is a good electoral system

I Just that it has some redeeming qualities

I and that those qualities could be put to use in some
distributed algorithm for an application in which the final
result need not necessarily be exactly correct, but not horribly
wrong

