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Coordination and Agreement

Overview

I In this part of the course we will examine how distributed
processes can agree on particular values

I It is generally important that the processes within a
distributed system have some sort of agreement

I Agreement may be as simple as the goal of the distributed
system

I Has the general task been aborted?
I Should the main aim be changed?

I This is made more complicated than it sounds, since all the
processes must, not only agree, but be confident that their
peers agree.

I We will look at:
I mutual exclusion to coordinate access to shared resources
I The conditions necessary in general to guarantee that a global

consensus is reached
I Perhaps more importantly the conditions which prevent this



Coordination and Agreement

No Fixed Master

I We will also look at dynamic agreement of a master or leader
process i.e. an election. Generally after the current master has
failed.

I We saw in the Time and Global State section that some
algorithms required a global master/nominee, but there was
no requirement for that master/nominee process to be fixed

I With a fixed master process agreement is made much simpler

I However it then introduces a single point of failure

I So here we are generally assuming no fixed master process



Coordination and Agreement

Synchronous vs Asynchronous

I Again with the synchronous and asynchronous

I It is an important distinction here, synchronous systems allow
us to determine important bounds on message transmission
delays

I This allows us to use timeouts to detect message failure in a
way that cannot be done for asynchronous systems.

Coping with Failures
I In this part we will consider the presence of failures, recall

from our Fundamentals part three decreasingly benign failure
models:

1. Assume no failures occur
2. Assume omission failures may occur; both process and

message delivery omission failures.
3. Assume that arbitrary failures may occur both at a process or

through message corruption whilst in transit.



A Brief Aside

Failure Detectors

I Here I am talking about the detection of a crashed process

I Not one that has started responding erroneously

I Detecting such failures is a major obstracle in designing
algorithms which can cope with them

I A failure detector is a process which responds to requests
querying whether a particular process has failed or not

I The key point is that a failure detector is not necessarily
accurate.

I One can implement a “reliable failure detector”

I One which responds with: “Unsuspected” or “Failed”



Failure Detectors

Unreliable Failure Detectors

I An “unreliable failure detector” will respond with either:
“Suspected” or “Unsuspected”

I Such a failure detector is termed an “unreliable failure
detector”

A simple algorithm

I If we assume that all messages are delivered within some
bound, say D seconds.

I Then we can implement a simple failure detector as:

I Every process p sends a “p is still alive” message to all failure
detector processes, periodically, once every T seconds

I If a failure detector process does not receive a message from
process q within T + D seconds of the previous one then it
marks q as “Suspected”



Failure Detectors

Reliable and Unreliable

I If we choose our bound D too high then often a failed process
will be marked as “Unsuspected”

I A synchronous system has a known bound on the message
delivery time and the clock drift and hence can implement a
reliable failure detector

I An asynchronous system could give one of three answers:
“Unsuspected”, “Suspected” or “Failed” choosing two
different values of D

I In fact we could instead respond to queries about process p
with the probability that p has failed, if we have a known
distribution of message transmission times

I e.g., if you know that 90% of messages arrive within 2
seconds and it has been two seconds since your last expected
message you can conclude there is a:



Failure Detectors

Reliable and Unreliable

I NOT a 90% chance that the process p has failed.

I We do not know how long the previous message was delayed

I Even if so, Bayes theorem tells that, in order to calculate the
probability that p has failed given that we have not received a
message we would also require the probability that p fails
within the given time increment without prior knowledge.

I Bayes: P(a|b) = P(b|a)×P(a)
P(b)

I here a = p has failed and b = the message has failed to be
delivered

I Further the question arises what would the process receiving
that probability information do with it?

I 1. if (p > 90) ...
2. else ...



Coordination and Agreement

Mutual Exclusion

I Ensuring mutual exclusion to shared resources is a common
task

I For example, processes A and B both wish to add a value to a
shared variable ‘a’.

I To do so they must store the temporary result of the current
value for the shared variable ‘a’ and the value to be added.

I

Time Process A Process B
1 t = a + 10 A stores temporary
2 t’ = a + 20 B stores temporary
3 a = t’ (a now equals 25)
4 a = t (a now equal 15)

I The intended increment for a is 30 but B’s increment is
nullified



Coordination and Agreement

Mutual Exclusion

new-next = i.next

(i-1).next = new-next

new-next = (i+1).next

i.next = new-next

Shamelessly stolen from Wikipedia

I A higher-level example is the concurrent editing of a file on a
shared directory

I Another good reason for using a source code control system



Coordination and Agreement

Distributed Mutual Exclusion

I On a local system mutual exclusion is usually a service offered
by the operating system’s kernel.

I But for a distributed system we require a solution that
operates only via message passing

I In some cases the server that provides access to the shared
resource can also be used to ensure mutual exclusion

I But here we will consider the case that this is for some reason
inappropriate, the resource itself may be distributed for
example



Distributed Mutual Exclusion

Generic Algorithms for Mutual Exclusion
I We will look at the following algorithms which provide mutual

exclusion to a shared resource:

1. The central-server algorithm
2. The ring-based algorithm
3. Ricart and Agrawala — based on multicast and logical clocks
4. Maekawas voting algorithm

I We will compare these algorithms with respect to:

1. Their ability to satisfy three desired properties
2. Their performance characteristics
3. How fault tolerant they are



Generic Algorithms for Mutual Exclusion

Assumptions and Scenario
I Before we can describe these algorithms we must make

explicit our assumptions and the task that we wish to achieve
I Assumptions:

1. The system is asynchronous
2. Processes do not fail
3. Message delivery is reliable: all messages are eventually

delivered exactly once.
I Scenario:

I Assume that the application performs the following sequence:
1. Request access to shared resource, blocking if necessary
2. Use the shared resource exclusively — called the critical

section
3. Relinquish the shared resource

I Requirements:
1. Safety: At most one process may execute the critical section at

any one time
2. Liveness: Requests to enter and exit the critical section

eventually succeed.



Generic Algorithms for Mutual Exclusion

Assumptions and Scenario

I The Liveness property assures that we are free from both
deadlock and starvation — starvation is the indefinite
postponement of the request to enter the critical section from
a given process

I Freedom from starvation is referred to as a “fairness” property

I Another fairness property is the order in which processes are
granted access to the critical section

I Given that we cannot ascertain which event of a set occured
first we instead appeal to the “happened-before” logical
ordering of events

I We define the Fairness property as: If e1 and e2 are requests
to enter the critical section and e1 → e2, then the requests
should be granted in that order.

I Note: our assumption of request-enter-exit means that process
will not request a second access until after the first is granted



Generic Algorithms for Mutual Exclusion

Assumptions and Scenario

I Here we assume that when a process requests entry to the
critical section, then until the access is granted it is blocked
only from entering the critical section

I In particular it may do other useful work and send/receive
messages

I If we were to assume that a process is blocked entirely then
the Fairness property is trivially satisfied



Generic Algorithms for Mutual Exclusion

Assumptions and Scenario

I Here we are considering mutual exclusion of a single critical
section

I We assume that if there are multiple resources then either:
I Access to a single critical section suffices for all the shared

resources, meaning that one process may be blocked from
using one resource because another process is currently using a
different resource or

I A process cannot request access to more than one critical
section concurrently or

I Deadlock arising from two (or more) processes holding each of
a set of mutually desired resources is avoided/detected using
some other means

I We also assume that a process granted access to the critical
section will eventually relinquish that access



Generic Algorithms for Mutual Exclusion

Desirable Properties — Recap
I We wish our mutual exclusion algorithms to have the three

properties:

1. Safety — No two processes have concurrent access to the
critical section

2. Liveness — All requests to enter/exit the critical section
eventually succeed.

3. Fairness — Requests are granted in the logical order in which
they were submitted



Distributed Mutual Exclusion Algorithms

Central Server Algorithm
I The simplest way to ensure mutual exclusion is through the

use of a centralised server
I This is analogous to the operating system acting as an arbiter
I There is a conceptual token, processes must be in possesion of

the token in order to execute the critical section
I The centralised server maintains ownership of the token
I To request the token; a process sends a request to the server

I If the server currently has the token it immediately responds
with a message, granting the token to the requesting process

I When the process completes the critical section it sends a
message back to the server, relinquishing the token

I If the server doesn’t have the token, some other process is
“currently” in the critical section

I In this case the server queues the incoming request for the
token and responds only when the token is returned by the
process directly ahead of the requesting process in the queue
(which may be the process currently using the token)



Distributed Mutual Exclusion Algorithms

Central Server Algorithm

I Given our assumptions that no failures occur it is straight
forward to see that the central server algorithm satisfies the
Safety and Liveness properties

I The Fairness property though is not

I Consider two processes P1 and P2 and the following sequence
of events:

1. P1 sends a request r1 to enter the critical section
2. P1 then sends a message m to process P2

3. P2 receives message m and then
4. P2 sends a request r2 to enter the critical section
5. The server process receives request r2
6. The server process grants entry to the critical section to

process P2

7. The server process receives request r1 and queues it

I Despite r1 → r2 the r2 request was granted first.
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Distributed Mutual Exclusion Algorithms

Ring-based Algorithm

I A simple way to arrange for mutual exclusion without the
need for a master process, is to arrange the processes in a
logical ring.

I The ring may of course bear little resemblance to the physical
network or even the direct links between processes.

1 2 3 4 1 2 3 4

8 7 6 5 8 7 6 5



Distributed Mutual Exclusion Algorithms

Ring-based Algorithm

I The token passes around the ring continuously.
I When a process receives the token from its neighbour:

I If it does not require access to the critical section it
immediately forwards on the token to the next neighbour in
the ring

I If it requires access to the critical section, the process:

1. retains the token
2. performs the critical section and then:
3. to relinquish access to the critical section
4. forwards the token on to the next neighbour in the ring



Distributed Mutual Exclusion Algorithms

Ring-based Algorithm

I Once again it is straight forward to determine that this
algorithm satisfies the Safety and Liveness properties.

I However once again we fail to satisfy the Fairness property



Ring-based Algorithm

P1 2 token
3 4

8 7 6 P2

I Recall that processes may send messages to one another
independently of the token

I Suppose again we have two processes P1 and P2 consider the
following events

1. Process P1 wishes to enter the critical section but must wait
for the token to reach it.

2. Process P1 sends a message m to process P2.
3. The token is currently between process P1 and P2 within the

ring, but the message m reaches process P2 before the token.
4. Process P2 after receiving message m wishes to enter the

critical section
5. The token reaches process P2 which uses it to enter the critical

section before process P1



Distributed Mutual Exclusion Algorithms

Multicast and Logical Clocks

I Ricart and Agrawala developed an algorithm for mutual
exclusion based upon mulitcast and logical clocks

I The idea is that a process which requires access to the critical
section first broadcasts this request to all processes within the
group

I It may then only actually enter the critical section once each
of the other processes have granted their approval

I Of course the other processes do not just grant their approval
indiscriminantly

I Instead their approval is based upon whether or not they
consider their own request to have been made first



Distributed Mutual Exclusion Algorithms

Multicast and Logical Clocks

I Each process maintains its own Lamport clock

I Recall that Lamport clocks provide a partial ordering of events
but that this can be made a total ordering by considering the
process identifier of the process observing the event

I Requests to enter the critical section are multicast to the
group of processes and have the form {T , pi}

I T is the Lamport time stamp of the request and pi is the
process identifier

I This provides us with a total ordering of the sending of a
request message {T1, pi} < {T2, pj} if:

I T1 < T2 or
I T1 = T2 and pi < pj



Multicast and Logical Clocks

Requesting Entry

I Each process retains a variable indicating its state, it can be:

1. “Released” — Not in or requiring entry to the critical section
2. “Wanted” — Requiring entry to the critical section
3. “Held” — Acquired entry to the critical section and has not

yet relinquished that access.

I When a process requires entry to the critical section it
updates its state to “Wanted” and multicasts a request to
enter the critical section to all other processes. It stores the
request message {Ti , pi}

I Only once it has received a “permission granted” message
from all other processes does it change its state to “Held” and
use the critical section



Multicast and Logical Clocks

Responding to requests
I Upon receiving such a request a process:

I Currently in the “Released” state can immediately respond
with a permission granted message

I A process currently in the “Held” state:

1. Queues the request and continues to use the critical section
2. Once finished using the critical section responds to all such

queued requests with a permission granted message
3. changes its state back to “Released”

I A process currently in the “Wanted” state:

1. Compares the incoming request message {Tj , pj} with its own
stored request message {Ti , pi} which it broadcasted

2. If {Ti , pi} < {Tj , pj} then the incoming request is queued as if
the current process was already in the “Held” state

3. If {Ti , pi} > {Tj , pj} then the incoming request is responded
to with a permission granted message as if the current process
was in the “Released” state



Multicast and Logical Clocks

Safety, Liveness and Fairness

I Safety — If two or more processes request entry concurrently
then whichever request bares the lowest (totally ordered)
timestamp will be the first process to enter the critical section

I All others will not receive a permission granted message from
(at least) that process until it has exited the critical section

I Liveness — Since the request message timestamps are a total
ordering, and all requests are either responded to immediately
or queued and eventually responded to, all requests to enter
the critical section are eventually granted

I Fairness — Since lamport clocks assure us that e1 → e2

implies L(e1) < L(e2):
I for any two requests r1, r2 if r1 → r2 then the timestamp for r1

will be less than the timestamp for r2
I Hence the process that multicast r1 will not respond to r2

until after it has used the critical section
I Therefore this algorithm satisfies all three desired properties



Distributed Mutual Exclusion Algorithms

Maekawas voting algorithm

I Maekawa’s voting algorithm improves upon the
multicast/logical clock algorithm with the observation that
not all the peers of a process need grant it access

I A process only requires permission from a subset of all the
peers, provided that the subsets associated with any pair of
processes overlap

I The main idea is that processes vote for which of a group of
processes vying for the critical section can be given access

I The processes that are within the intersection of two
competing processes can ensure that the Safety property is
observed



Distributed Mutual Exclusion Algorithms

Maekawas voting algorithm

I Each process pi is associated with a voting set Vi of processes
I The set Vi for the process pi is chosen such that:

1. pi ∈ Vi — A process is in its own voting set
2. Vi ∩ Vj 6= {} — There is at least one process in the overlap

between any two voting sets
3. |Vi | = |Vj | — All voting sets are the same size
4. Each process pi is contained within M voting sets



Distributed Mutual Exclusion Algorithms

Maekawas voting algorithm

I The main idea in contrast to the previous algorithm is that
each process may only grant access to one process at a time

I A process which has already granted access to another process
cannot do the same for a subsequent request. In this sense it
has already voted

I Those subsequent requests are queued

I Once a process has used the critical section it sends a release
message to its voting set

I Once a process in the voting set has received a release
message it may once again vote, and does so immediately for
the head of the queue of requests if there is one



Maekawas voting algorithm

The state of a process

I As before each process maintains a state variable which can
be one of the following:

1. “Released” — Does not have access to the critical section and
does not require it

2. “Wanted” — Does not have access to the critical section but
does require it

3. “Held” — Currently has access to the critical section

I In addition each process maintains a boolean variable
indicating whether or not the process has “voted”

I Of course voting is not a one-time action. This variable really
indicates whether some process within the voting set has
access to the critical section and has yet to release it

I To begin with, these variables are set to “Released” and False
respectively



Maekawas voting algorithm

Requesting Permission

I To request permission to access the critical section a process
pi :

1. Updates its state variable to “Wanted”
2. Multicasts a request to all processes in the associated voting

set Vi

3. When the process has received a “permission granted”
response from all processes in the voting set Vi : update state
to “Held” and use the critical section

4. Once the process is finished using the critical section, it
updates its state again to “Released” and multicasts a
“release” message to all members of its voting set Vi



Maekawas voting algorithm

Granting Permission/Voting

I When a process pj receives a request message from a process
pi :

I If its state variable is “Held” or its voted variable is True:

1. Queue the request from pi without replying

I otherwise:

1. send a “permission granted” message to pi

2. set the voted variable to True

I When a process pj receives a “release” message:
I If there are no queued requests:

1. set the voted variable to False

I otherwise:

1. Remove the head of the queue, pq:
2. send a “permission granted” message to pq

3. The voted variable remains as True



Maekawas voting algorithm

Deadlock

I The algorithm as described does not respect the Liveness
property

I Consider three processes p1, p2 and p3

I Their voting sets: V1 = {p1, p2}, V2 = {p2, p3} and
V3 = {p3, p1}

I Suppose that all three processes concurrently request
permission to access the critical section

I All three processes immediately respond to their own requests

I All three processes have their “voted” variables set to True

I Hence, p1 queues the subsequently received request from p3

I Likewise, p2 queues the subsequently received request from p1

I Finally, p3 queues the subsequently received request from p2

I _̈



Maekawas voting algorithm

Safety, Liveness and Fairness

I Safety — Safety is achieved by ensuring that the intersection
between any two voting sets is non-empty.

I A process can only vote (or grant permission) once between
each successive “release” message

I But for any two processes to have concurrent access to the
critical section, the non-empty intersection between their
voting sets would have to have voted for both processes

I Liveness — As described the protocol does not respect the
Liveness property

I It can however be adapted to use Lamport clocks similar to the
previous algorithm

I Fairness — Similarly the Lamport clocks extension to the
algorithm allows it to satisfy the Fairness property



Mutual Exclusion Algorithms

Performance Evaluation

I We have four algorithms: central server, ring based, Ricart
and Agrawala’s and Maekawa’s voting algorithm

I We have three logical properties with which to compare them,
we can also compare them with respect to performance:

I For performance we are interested in:

1. The number of messages sent in order to enter and exit the
critical section

2. The client delay incurred at each entry and exit operation
3. The synchronisation delay, this is delay between one process

exiting the critical section and a waiting process entering

I Note: which of these is (more) important depends upon the
application domain, and in particular how often critical section
access is required



Mutual Exclusion Performance Evaluation

Central Server Algorithm

I Entering the critical section:
I requires two messages, the request and the reply — even when

no other process currently occupies it
I The client-delay is the time taken for this round-trip

I Exiting the critical section:
I requires only the sending of the “release” message
I Incurs no delay for the client, assuming asynchronous message

passing.

I The synchronisation-delay is also a round-trip time, the time
taken for the “release” message to be sent from client to
server and the time taken for the server to send the “grant”
message to the next process in the queue.



Mutual Exclusion Performance Evaluation

Ring-based Algorithm

I Entering the critical section:
I Requires between 0 and N messages
I Delay, these messages are serialised so the delay is between 0

and N

I Exiting the critical section:
I Simply requires that the holding process sends the token

forward through the ring

I The synchronisation-delay is between 1 and N-1 messages



Mutual Exclusion Performance Evaluation

Ricart and Agrawala

I Entering the critical section:
I This requires 2(N - 1) messages, assuming that multicast is

implemented simply as duplicated message, it requires N-1
requests and N-1 replies.

I Bandwidth-wise this may be bad, but since these messages are
sent and received concurrently the time taken is comparable to
the round-trip time of the previous two algorithms

I Exiting the critical section:
I Zero if no other process has requested entry
I Must send up to N-1 responses to queued requests, but again

if this is asynchronous there is no waiting for a reply

I The synchronisation-delay is only one message, the holder
simply responds to the queued request



Mutual Exclusion Performance Evaluation

Maekawa’s Voting algorithm

I Entering the critical section:
I This requires 2×

√
N messages

I As before though, the delay is comparable to a round-trip time

I Exiting the critical section:
I This requires

√
N messages

I The delay though is comparable to a single message
I The total for entry/exit is thus 3×

√
N which compares

favourably to Ricart and Agrawala’s total of 2(N − 1) where
N > 4.

I The synchronisation-delay is a round-trip time as it requires
the holding process to multi-cast to its voting set the
“release” message and then intersecting processes must send
a permission granted message to the requesting process



Mutual Exclusion Performance Evaluation

Further Considerations

I The ring-based algorithm continuously consumes bandwidth
as the token is passed around the ring even when no process
requires entry

I Ricart and Agrawala — the process that last used the critical
section can simply re-use it if no other requests have been
received in the meantime



Mutual Exclusion Algorithms

Fault Tolerance

I None of the algorithms described above tolerate loss of
messages

I The token based algorithms lose the token if such a message
is lost meaning no further accesses will be possible

I Ricart and Agrawala’s method will mean that the requesting
process will indefinitely wait for (N - 1) “permission granted”
messages that will never come because one or more of them
have been lost

I Maekawa’s algorithm cannot tolerate message loss without it
affecting the system, but parts of the system may be able to
proceed unhindered
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Fault Tolerance

Process Crashes

I What happens when a process crashes?

1. Central server, provided the process which crashes is not the
central server, does not hold the token and has not requested
the token, everything else may proceed unhindered

2. Ring-based algorithm — complete meltdown, but we may get
through up to N-1 critical section accesses in the meantime

3. Ricart and Agrawala — complete meltdown, we might get
through additional critical section accesses if the failed process
has already responded to them. But no subsequent requests
will be granted

4. Maekawa’s voting algorithm — This can tolerate some process
crashes, provided the crashed process is not within the voting
set of a process requesting critical section access
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Mutual Exclusion Algorithms

Fault Tolerance

I All of these algorithms may be adapted to recover from
process failures

I Given a failure detector(s)

I Note, however, that this problem is non-trivial

I In particular because for all of these algorithms a failed
process looks much like one which is currently using the
critical section

I The key point is that the failure may occur at any point

I A synchronous system may be sure that a process has failed
and take appropriate action

I An asynchronous system cannot be sure and hence may steal
the token from a process currently using the critical section

I Thus violating the Safety property



Mutual Exclusion Fault Tolerance

Considerations
I Central server

I care must be taken to decide whether the server or the failed
process held the token at the time of the failure

I If the server itself fails a new one must be elected, and any
queued requests must be re-made.

I Ring-based algorithm
I The ring can generally be easily fixed to circumvent the failed

process
I The failed process may have held or blocked the progress of

the token
I Ricart and Agrawala

I Each requesting process should record which processes have
granted permission rather than simply how many

I The failed process can simply be removed from the list of
those required

I Maekawa’s voting algorithm
I Trickier, the failed process may have been in the intersection

between two voting sets
I Even if not, it must be determined whether the failed process

was in the “Held” state



Coordination and Agreement

Elections
I Several algorithms which we have visited until now required a

master or nominee process, including:

1. Berkley algorithm for clock synchronisation
2. Distributed Debugging
3. The central server algorithm for mutual exclusion

I Even other algorithms may need a nominee to actually report
the results of the algorithm

I For example Chandy and Lamport’s snap shot algorithm
described how to record the local state at each process in
such a way that a consistent global state could be assembled
from the local states recorded at different times

I To actually be useful these local states must be gathered
together, a simple way to do this is for each local process to
send their locally recorded state to a nominee process



Elections

No Fixed Master/Nominee

I A simple way to provide a master process, is to simply name
one

I However if the named process fails there should be a recovery
plan

I A recovery plan requires that we dynamically decide who
should become the new master/nominee

I Even with a fixed order this is non-trivial, in particular as all
participants must agree that the current master as failed

I A more dynamic election process can allow for greater
flexibility of a running system



Elections

Assumptions and Scenario

I We will assume that any of the N processes may call for an
election of a nominee process at any time

I We will assume that no process calls more than one such
election concurrently

I But that all N processes may separately call for an election
concurrently



Elections

Requirements

I We require that the result of the election should be unique
I (no hung-parliaments or coalitions)
I Even if multiple processes call for an election concurrently
I We will say that the elected process should be the best choice:

I For our purposes we will have a simple identifier for each
process, and the process with the highest identifier should
“win” the election

I In reality the identifier could be any useful property, such as
available bandwidth

I The identifiers should be unique and consist of a total ordering
I In practice this can be done much like equal Lamport time

stamps can be given an artificial ordering using a process
identifier/address

I However care would have to be taken in the case that several
properties were used together such as uptime, available
bandwidth and geographical location



Elections

Assumptions and Scenario

I Each process at any point in time is either a participant or a
non-participant corresponding to whether the process itself
believes it is participating in an election

I Each process pi has a variable electedi which contains the
identifier of the elected process

I When the process pi first becomes a participant, the electedi

variable is set to the special value ⊥
I This means that the process does not yet know the result of

the election



Elections

Requirements

I Safety A participant process pi has electedi = ⊥ or
electedi = P, where P is chosen as the non-crashed process at
the end of the run with the largest identifier

I Liveness All processes participate and eventually either crash
or have electedi 6= ⊥

I Note that there may be some process pj which is not yet a
participant which has electedj = Q for some process which is
not the eventual winner of the election

I An additional property then could be specified as, no two
processes concurrently have electedi set to two different
processes

I Either one may be set to a process and the other to ⊥
I But if they are both set to a process it should be the same one
I We’ll call this property Total Safety



Elections

Election/Nominee Algorithms
I We will look at two distributed election algorithms

1. A ring-based election algorithm similar to the ring-based
mutual-exclusion algorithm

2. The bully election algorithm

I We will evaluate these algorithms with respect to their
performance characteristics, in particular:

I The total number of messages sent during an election — this
is a measure of the bandwidth used

I The turn-around time, measured by the number of serialised
messages sent:

I Recall Ricart and Agrawala’s algorithm for mutual exclusion
that required 2(N − 1) messsages to enter the critical section,
but that that time only amounted to a turn-around time, since
the only serialisation was that each response message followed
a request message.



Elections

Ring-based Election Algorithm

I As with the ring-based mutual exclusion algorithm the
ring-based election algorithm requires that the processes are
arranged within a logical ring

I Once again this ring is logical and may bear no resemblance
to any physical or geographical structure

I As before all messages are sent clockwise around the ring

I We will assume that there are no failures after the algorithm
is initiated

I It may have been initiated because of an earlier process
failure, but we assume that the ring has been reconstructed
following any such loss

I It is also possible that the election is merely due to high
computational load on the currently elected process



Ring-based Election Algorithm

Initiating an election

I Initially all processes are marked as “non-participant”

I Any process may begin an election at any time
I To do so, a process pi :

1. marks itself as a “participant”
2. sets the electedi variable to ⊥
3. Creates an election message and places its own identifier

within the election message
4. Sends the election message to its nearest clockwise neighbour

in the ring



Ring-based Election Algorithm

Receiving an election message
I When a process pi receives an election message:

1. Compares the identifier in the election message with its own
2. if its own identifier is the lower:

I It marks itself as a participant
I sets its electedi variable to ⊥
I forwards the message on to the next clockwise peer in the ring

3. if its own identifier is higher:
I It marks itself as a participant
I sets its electedi variable to ⊥
I Substitutes its own identifier into the election message and

forwards it on to the next clockwise peer in the ring

4. if its own identifier is in the received election message:
I Then it has won the election
I It marks itself as non-participant
I sets its electedi variable to its own identifier
I and sends an “elected” message with its own identifier to the

next clockwise peer in the ring
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Ring-based Election Algorithm

Receiving an elected message
I When a process pi receives an elected message:

1. marks itself as a non-particpant
2. sets its electedi variable to the identifier contained within the

elected message
3. if it is not the winner of the election:

I forward the elected message on to the next clockwise peer in
the ring

4. otherwise The election is over and all peers should have their
electedi variable set to the identifier of the agreed upon elected
process



Ring-based Election Algorithm

Required Properties
I Safety:

I A process must receive its own identifier back before sending
an elected message

I Therefore the election message containing that identifier must
have travelled the entire ring

I And must therefore have been compared with all process
identifiers

I Since no process updates its electedi variable until it wins the
election or receives an elected message no participating process
will have its electedi variable set to anything other than ⊥

I Liveness:
I Since there are no failures the liveness property follows from

the guaranteed traversals of the ring.



Ring-based Election Algorithm

Performance

I If only a single process starts the election

I Once the process with the highest identifier sends its election
message (either initiating or because it received one), then the
election will consume two full traversals of the ring.

I In the best case, the process with the highest identifier
initiated the election, it will take 2× N messages

I The worst case is when the process with the highest identifier
is the nearest anti-clockwise peer from the initiating process
In which case it is (N − 1) + 2× N messages

I Or 3N − 1 messages

I The turn-around time is also 3N − 1 since all the messages are
serialised



Elections

The Bully Election Algorithm

I Developed to allow processes to fail/crash during an election

I Important since the current nominee crashing is a common
cause for initiating an election

I Big assumption, we assume that all processes know ahead of
time, all processes with higher process identifiers

I This can therefore not be used alone to elect based on some
dynamic property

I There are three kinds of messages in the Bully algorithm

1. election — sent to announce an election
2. answer — sent in response to an election message
3. coordinator — sent to announce the identity of the elected

process



The Bully Election Algorithm

Failure Detector

I We are assuming a synchronous system here and so we can
build a reliable failure detector

I We assume that message delivery times are bound by Ttrans

I Further that message processing time is bound by Tprocess

I Hence a failure detector can send a process psuspect a message
and expect a response within time T = 2× Ttrans + Tprocess

I If a response does not occur within that time, the local failure
detector can report that the process psuspect has failed



The Bully Election Algorithm

A simple election

I If the process with the highest identifier is still available

I It knows that it is the process with the highest identifier

I It can therefore elect itself by simply sending a coordinator
message

I You may wonder why it would ever need to do this
I Imagine a process which can be initiated by any process, but

requires some coordinator
I For example global garbage collection
I For which we run a global snapshot algorithm
I And then require a coordinator to:

1. collect the global state
2. figure out which objects may be deleted
3. alert the processes which own those objects to delete them

I The initiator process cannot be sure that the previous
coordinator has not failed since the previous run.

I Hence an election is run each time
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The Bully Election Algorithm

An actual election

I A process which does not have the highest identifier:

I Begins an election by sending an election message to all
processes with a higher identifier

I It then awaits the answer message from at least one of those
processes

I If none arrive within our time bound T = 2×Ttrans + Tprocess

I Our initiator process assumes itself to be the process with the
highest identifier who is still alive

I And therefore sends a coordinator message indicating itself to
be the newly elected coordinator

I otherwise The process assumes that a coordinator message
will follow. It may set a timeout for this coordinator message
to arrive.

I If the timeout is reached before the coordinator message
arrives the process can begin a new election



The Bully Election Algorithm

Receiving Messages

I coordinator If a process receives a coordinator message it sets
the electedi variable to the named winner

I election If a process receives an election message it sends back
an answer message and begins another election (unless it has
already begun one).



The Bully Election Algorithm

Starting a process

I When a process fails a new process may be started to replace
it

I When a new process is started it calls for a new election

I If it is the process with the highest identifier this will be a
simple election in which it simply sends a coordinator message
to elect itself

I This is the origin of the name: Bully



The Bully Election Algorithm

Properties
I The Liveness property is satisfied.

I Some processes may only participate in the sense that they
receive a coordinator message

I But all non-crashed processes will have set electedi to
something other than ⊥.

I The Safety property is also satisfied if we assume that any
process which has crashed, either before or during the
election, is not replaced with another process with the same
identifier during the election.

I Total Safety is not satisfied



The Bully Election Algorithm

Properties
I Unfortunately the Safety property is not met if processes may

be replaced during a run of the election
I One process, say p1, with the highest identifier may be started

just as another process p2 has determined that it is currently
the process with the highest identifier

I In this case both these processes p1 and p2 will concurrently
send coordinator messages announcing themselves as the new
coordinator

I Since there is no guarantee as to the delivery order of messages
two other processes may receive these in a different order

I such that say: p3 believes the coordinator is p2 whilst p4

believes the coordinator is p1.

I Of course things can also go wrong if the assumption of a
synchronous system is incorrect



The Bully Election Algorithm

Performance Evaluation
I In the best case the process with the current highest identifier

calls the election
I It requires (N - 1) coordinator messages
I These are concurrent though so the turnaround time is 1

message

I In the worst case though we require O(N2) messages
I This is the case if the process with the lowest identifier calls

for the election
I In this case N − 1 processes all begin elections with processes

with higher identifiers

I The turn around time is best if the process with the highest
identifier is still alive. In which case it is comparable to a
round-trip time.

I Otherwise the turn around time depends on the time bounds
for message delivery and processing



Election Algorithms Comparision

Ring-based vs Bully
Ring Based Bully

Asynchronous Yes No
Allows processes to crash No Yes
Satisfies Safety Yes Yes/No
Dynamic process identifiers Yes No
Dynamic configuration of processes Maybe Maybe
Best case performance 2× N N − 1
Worst case performance 3× N − 1 O(N2)



Global Agreement

MultiCast

I Previously we encountered group multicast

I IP multicast and Xcast both delivered “Maybe” semantics

I That is, perhaps some of the recipients of a multicast message
receive it and perhaps not

I Here we look at ways in which we can ensure that all
members of a group have received a message

I And also that multiples of such messages are received in the
correct order

I This is a form of global consensus



Global Agreement

Assumptions and Scenario

I We will assume a known group of individual processes
I Communication between processes is

I message based
I one-to-one
I reliable

I Processes may fail, but only by crashing
I That is, we suffer from process omission errors but not process

arbitrary errors

I Our goal is to implement a multicast(g , m) operation

I Where m is a message and g is the group of processes which
should receive the message m



Global Agreement

deliver and receive

I We will use the operation deliver(m)

I This delivers the multicast message m to the application layer
of the calling process

I This is to distinguish it from the receive operation

I In order to implement some failure semantics not all multicast
messages received at process p are delivered to the application
layer



Global Agreement

Reliable Multicast
I Reliable multicast, with respect to a multicast operation

multicast(g , m), has three properties:

1. Integrity — A correct process p ∈ g delivers a message m at
most once and m was multicast by some correct process

2. Validity — If a correct process multicasts message m then
some correct process in g will eventually deliver m

3. Agreement — If a correct process delivers m then all other
correct processes in group g will deliver m

I Validity and Agreement together give the property that if a
correct process which multicasts a message it will eventually
be delivered at all correct processes



Global Agreement

Basic Multicast

I Suppose we have a reliable one-to-one send(p, m) operation
I We can implement a Basic Multicast: Bmulticast(g , m) with

a corresponding Bdeliver operation as:
1. Bmulticast(g , m) = for each process p in g :

I send(p, m)

2. On receive(m) : Bdeliver(m)

I This works because we can be sure that all messages will
eventually receive the multicast message since send(p, m) is
reliable

I It does however depend upon the multicasting process not
crashing

I Therefore Bmulticast does not have the Agreement property



Global Agreement

Reliable Multicast

I We will now implement reliable multicast on top of basic
multicast

I This is a good example of protocol layering

I We will implement the operations:

I Rmulticast(g , m) and Rdeliver(m)

I which are analogous to their Bmulticast(g , m) and
Bdeliver(m) counterparts but have additionally the Agreement
property



Global Agreement

Reliable Multicast — Using Basic Multicast

I On initialisation: Received = {}
I Process p to Rmulticast(g , m):

I Bmulticast(g ∪ p, m)

I On Bdeliver(m) at process q:
I If m 6∈ Received

I Received = Received ∪ {m}
I If p 6= q : Bmulticast(g , m)
I Rdeliver(m)



Global Agreement

Reliable Multicast

I Note that we insist that the sending process is in the receiving
group, hence:

I Validity — is satisfied since the sending process p will deliver
to itself

I Integrity — is guaranteed because of the integrity of the
underlying Bmulticast operation in addition to the rule that m
is only added to Received at most once

I Agreement — follows from the fact that every correct process
that Bdelivers(m) then performs a Bmulticast(g , m) before it
Rdelivers(m).

I However it is somewhat inefficient since each message is sent
to each process | g | times.



Global Agreement

Reliable Multicast Over IP

I So far our multicast (and indeed most of our algorithms) have
been described in a vacuum devoid of other communication

I In a real system of course there is other communication going
on

I So a reasonable method of implementing reliable multicast is
to piggy-back acknowledgements on the back of other
messages

I Additionally the concept of a “negative acknowledgement” is
used

I A negative acknowledgement is a response indicating that we
believe a message has been missed/dropped



Global Agreement

Reliable Multicast
IP

I We assume that groups are closed — not something assumed
for the previous algorithm

I When a process p performs an Rmulticast(g , m) it includes in
the message:

I a sequence number Sp
g

I acknowledgements of the form {q, Rq
g }

I An acknowledgement {q, Rq
g } included in message from

process p indicates the latest message multicast from process
q that p has delivered.

I So each process p maintains a sequence number Rq
g for every

other process q in the group g indicating the messages
received from q

I Having performed the multicast of a message with an Sp
g

value and any acknowledgements attached, process p then
increments its own stored value of Sp

g

I In other words: Sp
g is a sequence number



Global Agreement

I The sequence numbers Sp
g attached to each multicast

message, allows the recipients to learn about messages which
they have missed

I A process q can Rdeliver(m) only if the sequence number
Sp

g = Rp
g + 1.

I Immediately following Rdeliver(m) the value Rp
g is

incremented

I If an arriving message has a number S ≤ Rp
g then process q

knows that it has already performed Rdeliver on that message
and can safely discard it

I If S > Rp
g then the receiving process q knows that it has

missed some message from p destined for the group g

I In this case the receiving process q puts the message in a
hold-back queue and sends a negative acknowledgement to
the sending process p requesting the missing message(s)



Global Agreement

Properties

I The hold-back queue is not strictly necessary but it simplifies
things since then a simple number can represent all messages
that have been delivered

I We assume that IP-multicast can detect message corruption
(for which it uses checksums)

I Integrity is therefore satisfied since we can detect duplicates
and delete them without delivery

I Validity property holds again because the sending process is in
the group and so at least that will deliver the message

I Agreement only holds if messages amongst the group are sent
indefinitely and if sent messages are retained (for re-sending)
until all groups have acknowledged receipt of it

I Therefore as it stands Agreement does not formally hold,
though in practice the simple protocol can be modified to give
acceptable guarantees of Agreement



Global Agreement

Uniform Agreement

I Our Agreement property specifies that if any correct process
delivers a message m then all correct processes deliver the
message m

I It says nothing about what happens to a failed process

I We can strengthen the condition to Uniform Agreement

I Uniform Agreement states that if a process, whether it then
fails or not, delivers a message m, then all correct processes
also deliver m.

I A moment’s reflection shows how useful this is, if a process
could take some action that put it in an inconsistent state and
then fail, recovery would be difficult

I For example applying an update that not all other processes
receive



Global Agreement

Ordering

I There are several different ordering schemes for multicast
I The three main distinctions are:

1. FIFO — If a correct process performs mulitcast(g , m) and
then multicast(g , m′) then every correct process which delivers
m′ will deliver m before m′

2. Causal — If mulitcast(g , m)→ multicast(g , m′) then every
process which delivers m′ delivers m before m′

3. Total — If a correct process delivers m before it delivers m′

then every correct process which delivers m′ delivers m before
m′

I Note that Causal ordering implies FIFO ordering

I None of these require or imply reliable multicast
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Global Agreement

Total Ordering

I As we saw Causal ordering implies FIFO ordering

I But Total ordering is an orthogonal requirement

I Total ordering only requires an ordering on the delivery order,
but that ordering says nothing of the order in which messages
were sent

I Hence Total ordering can be combined with FIFO and Causal
ordering

I FIFO-Total ordering or Causal-Total ordering



Multicast Ordering

Implementing FIFO Ordering

I Our previous algorithm for reliable multicasting

I More generally sequence numbers are used to ensure FIFO
ordering



Multicast Ordering

Implementing Causal Ordering

I To implement Causal ordering on top of Basic Multicast
(bmulticast)

I Each process maintains a vector clock

I To send a Causal Ordered multicast a process first uses a
bmulticast

I When a process pi performs a bdeliver(m) that was multicast
by a process pj it places it in the holding queue until:

I It has delivered any earlier message sent by pj

I and
I It has delivered any message that had been delivered at pj

before pj multicast m

I Both of these conditions can be determined by examining the
vector timestamps



Global Agreement

Implementing Total Ordering
I There are two techniques to implementing Total Ordering:

1. Using a sequencer process
2. Using bmulticast to illicit proposed sequence numbers from all

receivers



Implementing Total Ordering

Using a sequencer

I Using a sequencer process is straight forward

I To total-ordered multicast a message m a process p first sends
the message to the sequencer

I The sequencer can determine message sequence numbers
based purely on the order in which they arrive at the
sequencer

I Though it could also use process sequence numbers or
Lamport timestamps should we wish to, for example, provide
FIFO-Total or Causal-Total ordering

I Once determined, the sequencer can either bmulticast the
message itself

I Or, to reduce the load on the sequencer, it may just respond
to process p with the sequence number which then itself
performs the bmulticast



Implementing Total Ordering

Using Collective Agreement

I To total-order multicast a message, the process p first
performs a bmulticast to the group

I Each process then responds with a proposal for the agreed
sequence number

I And puts the message in its hold-back queue with the
suggested sequence number provisionally in place

I Once the process p receives all such responses it selects the
largest proposed sequence number and replies to each process
(or uses bmulticast) with the agreed upon value

I Each receiving process then uses this agreed sequence number
to deliver (that is TO-deliver) the message at the correct point



Ordered Multicast

Overlapping Groups

I So far we have been happy to assume that each receiving
process belongs to exactly one multicast group

I Or that for overlapping groups the order is unimportant

I For some applications this is insufficient and our orderings can
be updated to account for overlapping groups



Ordered Multicast

Overlapping Groups

I Global FIFO Ordering If a correct process issues
multicast(g , m) and then multicast(g ′, m′) then every correct
process in g ∩ g ′ that delivers m′ delivers m before m′

I Global Causal Ordering If multicast(g , m)→ multicast(g ′, m′)
then every correct process in g ∩ g ′ that delivers m′ delivers m
before m′

I Pairwise Total Ordering If a correct process delivers message
m sent to g before it delivers m′ sent to g ′ then every correct
process in g ∩ g ′ which delivers m′ delivers m before m′

I A simple, but inefficient way, to do this is force all multicasts
to be to the group g ∪ g ′, receiving processes then simply
ignore the multicast messages not intended for them.

I e.g. process p ∈ g − g ′ ignore multicast messages sent to g ′
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Summary

Further Thoughts

I These algorithms to perform mutual exclusion, nominee
election and agreed multicast suffer many drawbacks

I Many are subject to some assumptions which may be
unreasonable

I Particularly when the network used is not a Local Area
Network

I These problems can be, and are, overcome

I But for each individual application the designer should
consider whether the assumptions are a problem

I It may be that coming up with a solution which is less optimal
but does not rely on, say, a reliable communication network,
may be the best approach

I For example, Routing Information Protocol



Consensus

Three Kinds

I The problems of mutual exclusion, electing a nominee and
multicast are all instances of the more general problem of
consensus.

I Consensus problems more generally then are described as one
of three kinds:

1. Consensus
2. Byzantine Generals
3. Interactive Consensus



Global Agreement

Consensus

I A set of processes {p1, p2, . . . pn} each begins in the
undecided state

I Each proposes a single value vi

I The processes then communicate, exchanging values

I To conclude, each process must set their decision variable di

to one value and thus enter the decided state
I Three desired properties:

I Termination: each process sets its decisioni variable
I Agreement: If pi and pj are correct processes and have both

entered the decided state, then di = dj

I Integrity: If the correct processes all proposed the same value
v , then any correct process pi in the decided state has di = v



Global Agreement

Byzantine Generals

I Imagine three or more generals are to decide whether or not
to attack

I We assume that there is a commander who issues the order

I The others must decide whether or not to attack

I Either the lieutenants or the commander can be faulty and
thus send incorrect values

I Three desired properties:
I Termination: each process sets its decisioni variable
I Agreement: If pi and pj are correct processes and have both

entered the decided state, then di = dj

I Integrity: If the commander is correct then all correct
processes decide on the value proposed by the commander

I When the commander is correct, Integrity implies Agreement,
but the commander may not be correct



Global Agreement

Interactive Consensus

I Each process proposes its own value and the goal is for each
process to agree on a vector of values

I Similar to consensus other than that each process contributes
only a part of the final answer which we call the decision
vector

I Three desired properties:
I Termination: each process sets its decisioni variable
I Agreement: The final decision vector of all processes is the

same
I Integrity: If pi is correct and proposes vi then all correct

processes decide on vi as the ith component of the decision
vector



Global Agreement

Relating the three
I Assuming we had a solution to any of the three problems we

could construct a solution to the other two
I For example, if we have a solution to Interactive Consensus,

then we have a solution to Consensus, all we require is some
way consistent function for choosing a single component of
the decision vector

I We might choose a majority function, maximum, minimum or
some other function depending on the application

I It only requires that the function is context independent
I If we have a solution to the Byzantine Generals then we can

construct a solution to Interactive Consensus
I To do so we simply run the Byzantine Generals solution N

times, once for each process
I The point is not necessarily that this would be the way to

implement such as solution (it may not be efficient)
I However if we can determine an impossibility result for one of

these problems we know that we also have the same result for
the others

I We are interested in how many incorrect processes f a system
with a total number of N processes can tolerate



Global Agreement

Byzantine Generals in a Synchronous System

p1
commander

p2 p3

1 says v 1 says v

2 claims 1 says v
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Global Agreement

Impossible
I Recall:

I Agreement: If pi and pj are correct processes and have both
entered the decided state, then di = dj

I Integrity: If the commander is correct then all correct
processes decide on the value proposed by the commander

I In both scenarios, process p2 receives different values from the
commander p1 and the other process p3

I It can therefore know that one process is faulty but cannot
know which one

I By the Integrity property then it is bound to choose the value
given by the commander

I By symmetry the process p3 is in the same situation when the
commander is faulty.

I Hence when the commander is faulty there is no way to
satisfy the Agreement property, so no solution exists for three
processes



Global Agreement

N ≤ 3× f

I In the above case we had three processes and at most one
incorrect process, hence N = 3 and f = 1

I It has been shown, by Pease et al that more generally no
solution can exist whenever N ≤ 3× f

I However there can exist a solution whenever N > 3× f

I Such algorithms consist of rounds of messages

I It is known that such algorithms require at least f + 1
message rounds

I The complexity and cost of such algorithms suggest that they
are only applicable where the threat is great

I That means either the threat of an incorrect or malicious
process is great

I and/or the cost of failing due to inability to reach consensus is
large



Global Agreement

Consensus in an Asynchronous System
I Fisher et al have shown that it is impossible to design an

algorithm which is guaranteed to reach consensus in an
asynchronous system, under the following condition:

I We allow a single process crash failure

I Even if we have 1000s of processes, and the failure is a crash
rather than an arbitrary failure of just a single process, any
consensus algorithm is not guaranteed to reach consensus

I Clearly this is a pretty benign set of circumstances
I We therefore know that there is no solution in an

asynchronous system to either:

1. Byzantine generals (and hence consensus or interactive
consensus)

2. Totally order and reliable multicast
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Consensus in an Asynchronous System

So what to do?
I The important word in the previous impossibility result is:

guarantee
I There is no algorithm which is guaranteed to reach consensus
I Consensus has been reached in asynchronous systems for years
I Some techniques for getting around the impossibility result:

I Masking process failures, for example using persistant storage
such that a crashed process can be replaced by one in
effectively the same state

I Thus meaning some operations appear to take a long time,
but all operations do eventually complete

I Employ failure detectors:
I Although in an asynchronous system we cannot achieve a

reliable failure detector
I We can use one which is “perfect by design”
I Once a process is deemed to have failed, any subsequent

messages that it does send (showing that it had not failed) are
ignored

I To do this the other processes must agree that a given process
has failed



Consensus in an Asynchronous System

Back to the pair of attacking generals
A = Acknowledge Attack!

left
general

right
general

Attack! AAAAAAAA

I If the probability of any one message being dropped is 0.5
I Then the probability that two acknowledgements fail to be

returned is 0.25
I For 3 it is 0.125 etc, for 8 it is 1

256 = 0.0039
I In reality we have to consider the probability that the message

is not dropped but not received by some time out value t
I This complicates the calculation but not the general idea



Coordination and Agreement

Summary
I We looked at the problem of Mutual Exclusion in a distributed

system
I Giving four algorithms:

1. Central server algorithm
2. Ring-based algorithm
3. Ricart and Agrawala’s algorithm
4. Maekawa’s voting algorithm

I Each had different characteristics for:

1. Performance, in terms of bandwidth and time
2. Guarantees, largely the difficulty of providing the Fairness

property
3. Tolerance to process crashes

I We then looked at two algorithms for electing a master or
nominee process

I Then we looked at providing multicast with a variety of
guarantees in terms of delivery and delivery order



Coordination and Agreement

Summary

I We then noted that these were all specialised versions of the
more general case of obtaining consensus

I We defined three general cases for consensus which could be
used for the above three problems

I We noted that a synchronous system can make some
guarantee about reaching consensus in the existance of a
limited number of process failures

I But that even a single process failure limits our ability to
guarantee reaching consensus in an asynchronous system

I In reality we live with this impossibility and try to figure out
ways to minimise the damage



Any Questions

Any Questions?


