
Distributed Systems — Time and Global State

Allan Clark

School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/ds
Autumn Term 2012

Distributed Systems — Time and Global State

Introduction In this part of the course we will cover:

I Why time is such an issue for distributed computing

I The problem of maintaining a global state

I Consequences of these two main ideas

I Methods to get around these problems

Global Notion of Time

I Einstein showed that the speed of light is constant
for all observers regardless of their own velocity

I He (and others) have shown that this forced several other
(sometimes counter-intuitive) properties including:

1. length contraction
2. time dilation
3. relativity of simultaneity

I Contradicting the classical notion that the duration of the
time interval between two events is equal for all observers

I It is impossible to say whether two events occur at the same
time, if those two events are separated by space

I A drum beat in Japan and a car crash in Brazil
I However, if the two events are causally connected — if A

causes B — the RoS preserves the causal order

Global Notion of Time

Observer on Train Observer on Platform

I However, if the two events are causally connected — if A
causes B — the relativity of simultaneity preserves the causal
order

I In this case, the flash of light happens before the light reaches
either end of the carriage for all observers

Global Notion of Time

In Our World

I We operate as if this were not true, that is, as if there were
some global notion of time

I People may tell you that this is because:

I On the scale of the differences in our frames of references, the
effect of relativity is negligible

I It’s true that on our scales the effects of relativity are
negligible

I But that’s not really why we operate as if there was a global
notion of time

I Even if our theortical clocks are well synchronised, or
mechanical ones are not

I We just accept this inherent inaccuracy build that into our
(social) protocols

Global Notion of Time

In Our World

I We operate as if this were not true, that is, as if there were
some global notion of time

I People may tell you that this is because:

I On the scale of the differences in our frames of references, the
effect of relativity is negligible

I It’s true that on our scales the effects of relativity are
negligible

I But that’s not really why we operate as if there was a global
notion of time

I Even if our theortical clocks are well synchronised, or
mechanical ones are not

I We just accept this inherent inaccuracy build that into our
(social) protocols

Global Notion of Time

Physical Clocks

I Computer clocks tend to rely on the oscillations occuring in a
crystal

I The difference between the instantaneous readings of two
separate clocks is termed their “skew”

I The “drift” between any two clocks is the difference in the
rates at which they are progressing. The rate of change of the
skew

I The drift rate of a given clock is the drift from a nominal
“perfect” clock, for quartz crystal clocks this is about 10−6

I Meaning it will drift from a perfect clock by about 1 second
every 1 million seconds — 11 and a half days.

Global Notion of Time

Coordinated Universal Time and French

I The most accurate clocks are based on atomic oscillators

I Atomic clocks are used as the basis for the international
standard International Atomic Time

I Abbreviated to TAI from the French Temps Atomique
International

I Since 1967 a standard second is defined as 9,192,631,770
periods of transition between the two hyperfine levels of the
ground state of Caesium-133 (Cs133).

I Time was originally bound to astronomical time, but
astronomical and atomic time tend to get out of step

I Coordinated Universal Time — basically the same as TAI but
with leap seconds inserted

I Abbreviated to UTC again from the French Temps Universel
Coordonné

Global Notion of Time

Correctness of Clocks

I What does it mean for a clock to be correct?

I The operating system reads the node’s hardware clock value,
H(t), scales it and adds an offset so as to produce a software
clock C (t) = αH(t) + β which measures real, physical time t

I Suppose we have two real times t and t ′ such that t < t ′

I A physical clock, H, is correct with respect to a given bound
‘p’ if:

I (1− p)(t ′ − t) ≤ H(t ′)− H(t) ≤ (1 + p)(t ′ − t)
I I (t ′ − t) — The true length of the interval

I The measured length of the interval
I The smallest acceptable length of the interval
I The largest acceptable length of the interval

Global Notion of Time

Correctness of Clocks
(1− p)(t ′ − t) ≤ H(t ′)− H(t) ≤ (1 + p)(t ′ − t)

I An important feature of this definition is that it is monotonic

I Meaning that:

I If t < t ′ then H(t) < H(t ′)

I Assuming that t < t ′ with respect to the precision of the
hardware clock

Global Notion of Time

Monotonicity

I What happens when a clock is determined to be running fast?

I We could just set the clock back:

I but that would break monotonicity
I Instead, we retain monotonicity:

I Ci (t) = αH(t) + β
I decreasing β such that Ci (t) ≤ Ci (t ′) for all t < t ′

Global Notion of Time

External vs Internal Synchronisation

I Intuitively, multiple clocks may be synchronised with respect
to each other, or with respect to an external source.

I Formally, for a synchronisation bound D > 0 and external
source S :

I Internal Syncronisation
I | Ci (t)− Cj (t) |< D
I No two clocks disagree by D or more

I External Syncronisation
I | Ci (t)− S(t) |< D
I No clock disagrees with external source S by D or more

I Internally synchronised clocks may not be very accurate at all
with respect to some external source

I Clocks which are externally synchronised to a bound of D
though are automatically internally synchronised to a bound
of 2× D.

Synchronising Clocks

Synchronising in a synchronous system

I Imagine trying to synchronise watches using text messaging
I Except that you have bounds for how long a text message will

take
I How would you do this?

1. Mario sends the time t on his watch to Luigi in a message m
2. Luigi should set his watch to t + Ttrans where Ttrans is the time

taken to transmit and receive the message m
3. Unfortunately Ttrans is only bound, it is not known
4. We do know that min ≤ Ttrans ≤ max
5. We can therefore acheive a bound of u = max −min if the

Luigi sets his watch to t + min or t + max
6. We can do a bit better an achieve a bound of u = max−min

2 if

Luigi sets his watch to t + max+min
2

7. More generally if there are N clocks (Mario, Luigi, Peach,
Toad, . . .) we can achieve a bound of (max −min)(1− 1

N)
8. Or more simply we make Mario an external source and the

bound is then max −min (or 2× max−min
2)

Synchronising Clocks

Cristian’s Method

I The previous method does not work where we have no upper
bound on message delivery time, i.e. in an asynchronous
system

I Cristian’s method is a method to synchronise clocks to an
external source.

I This could be used to provide external or internal
synchronisation as before, depending on whether the source is
itself externally synchronised or not.

I The key idea is that while we might not have an upper bound
on how long a single message takes, we can have an upper
bound on how long a round-trip took.

I However it requires that the round-trip time is sufficiently
short as compared to the required accuracy.

Synchronising Clocks

Cristian’s Method

I Luigi sends Mario (our source/server) a message mr

requesting the current time, and records the time Tsent at
which mr was sent according to Luigi’s current clock

I Upon receiving Luigi’s request message mr Mario responds
with the current time according to his clock in the message
mt .

I When Luigi receives Mario’s time t in message mt , at time
Trec according to his own clock the round trip took
Tround = Trec − Tsent

I Luigi then sets his clock to t + Tround
2

I Which assumes that the elapsed time was split evenly between
the exchange of the two messages.

Synchronising Clocks

Cristian’s Method

I How accurate is this?
I We often don’t have accurate upper bounds for message

delivery times but frequently we can at least guess
conservative lower bounds

I Assume that messages take at least min time to be delivered
I The earliest time at which Mario could have placed his time

into the response message mt is min after Luigi sent his
request message mr .

I The latest time at which Mario could have done this was min
before Luigi receives the response message mt .

I The time on Mario’s watch when Luigi receives the response
mt is:

I At least t + min
I At most t + Tround −min
I Hence the width is Tround − (2×min)

I The accuracy is therefore Tround
2 −min

Synchronising Clocks

The Berkley Algorithm

I Like Cristian’s algorithm this provides either external
synchronisation to a known server, or internal synchronisation
via choosing one of the players to be the master

I Unlike Cristian’s algorithm though, the master in this case
does not wait for requests from the other clocks to be
synchronised, rather it periodically polls the other clocks.

I The other’s then reply with a message containing their current
time.

I The master, estimates the slaves current times using the
round trip time in a similar way to Cristian’s algorithm

I It then averages those clock readings together with its own to
determine what should be the current time.

I It then replies to each of the other players with the amount by
which they should adjust their clocks

Synchronising Clocks

The Berkley Algorithm

I If a straight forward average is taken a faulty clock could shift
this average by a large amount, and therefore a fault tolerant
average is taken

I This is exactly as it sounds, it averages all the clocks that do
not differ by a chosen maximum amount.

Network Time Protocol

Pairwise synchronisation

I Similar to Cristian’s method however:
I Four times are recorded as measured by the clock of the

process at which the event occurs:
1. Ti−3 — Time of sending of the request message mr

2. Ti−2 — Time of receiving of the request message mr

3. Ti−1 — Time of sending of the response message mt

4. Ti — Time of receiving of the response message mt

I So if Luigi is requesting the time from Mario, then Ti−3 and
Ti are recorded by Luigi and Ti−2 and Ti−1 are recorded by
Mario

I Note that because Mario records the time at which the
request message was received and the time at which the
response message is sent, there can be a non-neglible delay
between both

I In particular then messages may be dropped

Network Time Protocol

Pairwise synchronisation

I If we assume that the true offset between the two clocks is
Otrue :

I And that the actual transmission times for the messages mr

and mt are t and t ′ respectively then:

I Ti−2 = Ti−3 + t + Otrue and

I Ti = Ti−1 + t ′ − Otrue

I Tround = (t + t ′) = (Ti − Ti−3)− (Ti−1 − Ti−2)

I Oguess =
(Ti−2−Ti−3)+(Ti−1−Ti)

2

Network Time Protocol

Pairwise synchronisation

I This is the non-trivial line:

I Oguess =
(Ti−2−Ti−3)+(Ti−1−Ti)

2

I

Ti−2 − Ti−3 = t + Otrue

Ti−1 − Ti = Otrue − t ′

= (t − t ′) + (2× Otrue)

I Oguess = t−t′

2 + Otrue

I Otrue = Oguess + (t−t′)
2

Since we know that Tround >| t − t ′ |:
I Oguess − Tround

2 ≤ Otrue ≤ Oguess + Tround
2

I Oguess is the guess as to the offset

I Tround is the measure of how accurate it is which is essentially
based on how long the messages were in transit

Synchronising Clocks

Network Time Protocol

I Network Time Protocol (actually abbreviated was NTP) is
designed to allow clients to synchronise with UTC over the
Internet.

I NTP is provided by a network of servers located across the
Internet.

I Primary servers are connected directly to a time source such
as a radio clock receiving UTC.

I Other servers are connected in a tree, with their strata
determined by how many branches are between them and a
primary server

I Strata N servers synchronise with Strata N - 1 servers
I Eventually a server is within a user’s workstation
I Errors may be introduced at each level of synchronisation and

they are cumulative, so the higher the strata number the less
accurate is the server

Network Time Protocol

Note: this picture does not show synchronisation between servers
at the same strata, but this does occur

Synchronising Clocks

Network Time Protocol
I NTP servers synchronise in one of three ways:

1. Multicast mode
I Not considered very accurate
I Intended for use on a high-speed LAN
I Can be accurate enough nonetheless for some purposes

2. Procedure call mode
I Similar to Cristian’s method
I Servers respond to requests from higher-strata servers
I Who use round-trip times to calculate the current time to

some degree of accuracy
I Used for example in network file servers which wish to keep as

accurate as possible file access times
3. Symmetric mode

I Used where the highest accuracies are required
I In particular between servers nearest the primary sources, that

is the lower strata servers
I Essentially similar to procedure-call mode except that the

communicating servers retain timing information to improve
their accuracy over time

Network Time Protocol

Overview

I In all three modes messages are delivered using the standard
UDP protocol

I Hence message delivery is unreliable

I At the higher strata servers can synchronise to high degree of
accuracy over time

I But in general NTP is useful for synchronising accurately to
UTC, whereby accurate is at the human level of accuracy

I Wall clocks, clocks at stations etc

I In summary: we can synchronise clocks to a bounded level of
accuracy, but for many applications the bound is simply not
tight enough

Logical Clocks

Asynchronous Orderings

I So we can achieve some measure of synchronisation between
physical clocks located at different sites

I Ultimately though we will never be able to synchronise clocks
to arbitrary precision

I For some applications low precision is enough, for others it is
not.

I Where we cannot guarantee a high enough order of precision
for synchronisation, we are forced to operate in the
asynchronous world

I Despite this we can still provide a logical ordering on events,
which may useful for certain applications

Logical Clocks

Logical Ordering

I Logical orderings attempt to give an order to events similar to
physical causal ordering of reality but applied to distributed
processes

I Logical clocks are based on the simple principles:

I Any process can order the events which it observes/executes

I Any message must be sent before it is received

Logical Clocks

Logical Ordering — Happened Before

I More formally we define the happened-before relation → by
the three rules:

1. If e1 and e2 are two events that happen in a single process and
e1 proceeds e2 then e1 → e2

2. If e1 is the sending of message m and e2 is the receiving of the
same message m then e1 → e2

3. If e1 → e2 and e2 → e3 then e1 → e3

Logical Clocks

Logical Ordering — A Logical Clock

I Lamport designed an algorithm whereby events in a logical
order can be given a numerical value

I This is a logical clock, similar to a program counter except
that there is no backward jumping, and so it is monotonically
increasing

I Each process Pi maintains its internal logical clock Li

I So in order to record the logical ordering of events, each
process does the following:

I Li is incremented immediately before each event is issued at Pi

I When the process Pi sends a messsage m it attaches the value
of its logical clock t = Li (m).

I Upon receiving a message (m, t) process Pj computes the new
value of Lj as max(Lj , t)

Logical Clocks

Properties

I Key point: using induction we can show that:

I e1 → e2 implies that L(e1) < L(e2)

I However, the converse is not true, that is:

I L(e1) < L(e2) does not imply that e1 → e2

I It is easy to see why, consider two processes, P1 and P2 which
each perform two steps prior to any communication.

I The two steps on the first process P1 are concurrent with
both of the two steps on process P2.

I In particular P1(e2) is concurrent with P2(e1) but
L(P1(e2)) = 2 and L(P2(e1)) = 1

Logical Clocks

Lamport Clocks — No reverse implication

I Here event L(e) < L(b) < L(c) < L(d) < L(f)

I but only e → f

I e is concurrent with b, c and d .

Logical Clocks

Total Ordering

I Just as the happened-before relation is a partial ordering

I So to are the numerical Lamport stamps attached to each
event

I That is, some events have the same number attached.

I However we can make it a total ordering by considering the
process identifier at which the event took place

I In this case Li (e1) < Lj (e2) if either:

1. Li (e1) < Lj (e2) OR
2. Li (e1) = Lj (e2) AND i < j

I This has no physical meaning but can sometimes be useful

Vector Clocks

Vector Clocks augment Logical Clocks

I Vector clocks were developed (by Mattern and Fidge) to
overcome the problem of the lack of a reversed implication

I That is: L(e1) < L(e2) does not imply e1 → e2

I Each process keeps it own vector clock Vi (an array of
Lamport clocks, one for every process)

I The vector clocks are updated according to the following
rules:

1. Initially Vi [j] = 0
2. As with Lamport clocks before each event at process Pi it

updates its own Lamport clock within its own vector clock:
Vi [i] = Vi [i] + 1

3. Every message Pi sends includes its entire vector clock t = Vi

4. When Pi receives a timestamp Vx then it updates all of its
vector clocks with: Vi [j] = max(Vi [j],Vx [j])

Vector Clocks

Vector Clocks augment Logical Clocks

I Vector clocks (or timestamps) are compared as follows:

1. Vx = Vy iff Vx [i] = Vy [i] ∀i , 1 . . .N
2. Vx ≤ Vy iff Vx [i] ≤ Vy [i] ∀i , 1 . . .N
3. Vx < Vy iff Vx [i] < Vy [i] ∀i , 1 . . .N

I As with logical clocks: e1 → e2 implies V (e1) < V (e2)

I In contrast with logical clocks the reverse is also true:
V (e1) < V (e2) implies e1 → e2

Vector Clocks

Vector Clocks augment Logical Clocks

I Of course vector clocks achieve this at the cost of larger time
stamps attached to each message

I In particular the size of the timestamps grows proportionally
with the number of communicating processes

Summary of Logical Clocks

I Since we cannot achieve arbitrary precision of synchronisation
between remote clocks via message passing

I We are forced to accept that some events are concurrent,
meaning that we have no way to determine which occured first

I Despite this we can still achieve a logical ordering of events
that is useful for many applications

Global State

I Correctness of distributed systems frequently hinges upon
satisfying some global system invariant

I Even for applications in which you do not expect your
algorithm to be correct at all times, it may still be desirable
that it is “good enough” at all times

I For example our distributed algorithm maybe maintaining a
record of all transactions

I In this case it might be okay if some processes are behind
other processes and thus do not know about the most recent
transactions

I But we would never want it to be the case that some process is
in an inconsistent state, say applying a single transaction twice.

Global State

I Motivating examples:

1. Distributed garbage collection
2. Distributed deadlock detection
3. Distributed termination detection
4. Distributed debugging

Global State — Absence of a Global Time

You may have thought you got away from global time discussions

I Consider what happens to each of our distributed problems
should we have a global time

I Distributed Garbage Collection
I Agree a global time for each process to check whether a

reference exists to a given object
I This leaves the problem that a reference may be in transit

between processes
I But each process can say which references they have sent

before the agreed time and compare that to the references
received at the agreed time

Global State — Absence of a Global Time

You may have thought you got away from global time discussions

I Consider what happens to each of our distributed problems
should we have a global time

I Distributed Deadlock Detection
I Somewhat depends upon the problem in question, however:
I At an agreed time all processes send to some master process

the processes or resources for which they are waiting
I The master process then simply checks for a loop in the

resulting graph

Global State — Absence of a Global Time

You may have thought you got away from global time discussions

I Consider what happens to each of our distributed problems
should we have a global time

I Distributed Termination Detection
I At an agreed time each process sends whether or not they

have completed to a master process
I Again this leaves the problem that a message may be in transit

at that time
I Again though, we should be able to work out which messages

are still in transit

Global State — Absence of a Global Time

You may have thought you got away from global time discussions

I Consider what happens to each of our distributed problems
should we have a global time

I Distributed Debugging
I At each point in time we can reconstruct the global state
I We can also record the entire history of events in the exact

order in which they ocurred.
I Allowing us to replay them and inspect the global state to see

where things have gone wrong as with traditional debugging

Global State — Consistent Cuts

I So, if we had synchronised clocks, we could agree on a time
for each process to record its state

I The combination of local states and the states of the
communication channels would be an actual global state

I Since we cannot do that we attempt to find a “cut”

I A cut is a partition of events into those occurring before the
cut and those occurring after the cut

I The goal is to assemble a meaningful global state from the
the local states of processes recorded at different times

Global State — Consistent Cuts

I A consistent cut is one which does not violate the happens
before relation →

I If e1 → e2 then either:
I both e1 and e2 are before the cut or
I both e1 and e2 are after the cut or
I e1 is before the cut and e2 is after the cut
I but not
I e1 is after the cut and e2 is before the cut

Global State — Consistent Cuts

Runs and Linearisations

I A consistent global state is one which corresponds to a
consistent cut

I A “run” is a total ordering of all events in a global history
which is consistent with the local history of each process

I A “linearisation” is a total ordering of all events in the global
history which is consistent with the happens-before relation →

I So all linearisations are also runs

I Not all runs pass through consistent global states but all
linearisations pass only through consistent global states

Global State — Safety and Liveness

I When we attempt to examine the global state, we are often
concerned with whether or not a property holds

I Some properties, B, are properties we hope never hold and
some properties, G, are properties we hope always hold

I Safety is the property that a bad property B does not hold for
any reachable state

I Liveness is the property that a good property G holds for all
reachable states

Global State — Stable and Unstable properties

I Some properties we wish to establish are stable properties

I Such properties may never become true, but once they do
they remain true

I Our four example properties:
I Garbage is stable: once an object has no valid references (at a

process or in transit) will never have any valid references
I Deadlock is stable: once a set of processes are deadlocked

they will always be deadlocked without external intervention
I Termination is stable: once a set of processes have terminated

they will remain terminated without external intervention
I Debugging is not really a property but the properties we may

look for whilst debugging are likely non-stable

Global State — Snapshot

Chandy and Lamport

I The goal is to record a snapshot, or global state, of a set of
processes

I The algorithm is such that the combination of recorded states
may never have occured simultaneously

I However the computed global state is always a consistent one

I The state is recorded locally at each process

I The algorithm also does not address the issue of gathering the
recorded global state.

I Though generally the locally recorded state can then be sent
to some pre-agreed master process.

Global State — Chandy and Lamport

Assumptions

I There is a path between any two pairs of processes, in both
directions

I Any process may initiate a global snapshot at any time

I The processes may continue their execution and send/receive
normal messages whilst the snapshot takes place

I Neither channels nor processes fail

I Communication is reliable such that every message that is
sent arrives at its destination exactly once

I Channels are unidirectional and provide FIFO-ordered message
delivery.

Global State — Chandy and Lamport

Assumptions

I There is a path between any two pairs of processes, in both
directions

I Any process may initiate a global snapshot at any time

I The processes may continue their execution and send/receive
normal messages whilst the snapshot takes place

I Neither channels nor processes fail

I Communication is reliable such that every message that is
sent arrives at its destination exactly once

I Channels are unidirectional and provide FIFO-ordered message
delivery.

Global State — Chandy and Lamport

Algorithm — Receiver
Receiving rule for process pi

1. On receipt of a Marker message over channel c :

2. if pi has not yet recorded state:

3. record process state now

4. record the state of c as the empty set

5. turn on recording of messages arriving on all other
channels

6. else

7. records the state of c as the set of messages it has
recorded since pi first recorded its state

Global State — Chandy and Lamport

Algorithm — Sender
Sending rule for process pi

1. After pi has recorded its state:

2. pi sends a marker message for each outgoing channel c

3. before it sends any other messages over c

Global State — Chandy and Lamport Example

We begin in this global state, where both channels are empty, the
states of the processes are as shown, but we say nothing about
what has gone before.

Ch 1

Ch 2

Global state 1

$1000,
0 Items

$50,
2000 Items

Global State — Chandy and Lamport Example

The left process decides to begin the snapshot algorithm and sends
a Marker message over channel 1 to the left process. It then
decides to send a request for 10 items at $10 each.

Ch 1

Ch 2

Ch 1 (Order 10, $100), Marker

Ch 2

Global state 1

Global state 2

$1000,
0 Items

$900,
0 Items

$50,
2000 Items

$50,
2000 Items

Global State — Chandy and Lamport Example

Meanwhile, the right process responds to an earlier request and
sends 5 items to the left process over channel 2.

Ch 1

Ch 2

Ch 1 (Order 10, $100), Marker

Ch 2

Ch 1 (Order 10, $100), Marker

Ch 2 Five Items

Global state 1

Global state 2

Global state 3

$1000,
0 Items

$900,
0 Items

$900,
0 Items

$50,
2000 Items

$50,
2000 Items

$50,
1995 Items

Global State — Chandy and Lamport Example

Finally the right process receives the Marker message, and in doing
so records its state and sends the left process a Marker message
over channel 2. When the left process receives this Marker
message it records the state of channel two as containing the 5
items it has received since recording its own state.

Ch 1

Ch 2

Ch 1 (Order 10, $100), Marker

Ch 2

Ch 1 (Order 10, $100), Marker

Ch 2 Five Items

Ch 1 (Order 10, $100)

Ch 2 Marker

Global state 1

Global state 2

Global state 3

Global state 4

$1000,
0 Items

$900,
0 Items

$900,
0 Items

$900,
5 Items

$50,
2000 Items

$50,
2000 Items

$50,
1995 Items

$50,
1995 Items

Global State — Chandy and Lamport Example

Ch 1

Ch 2

Ch 1 (Order 10, $100), Marker

Ch 2

Ch 1 (Order 10, $100), Marker

Ch 2 Five Items

Ch 1 (Order 10, $100)

Ch 2 Marker

Global state 1

Global state 2

Global state 3

Global state 4

$1000,
0 Items

$900,
0 Items

$900,
0 Items

$900,
5 Items

$50,
2000 Items

$50,
2000 Items

$50,
1995 Items

$50,
1995 Items

The final recorded state is:
Left Process $1000, 0
Right Process $50, 1995
Channel 1 empty
Channel 2 Five Items

Global State — Chandy and Lamport

Reachability

I The cut found by the Chandy and Lamport algorithm is
always a consistent cut

I This means that the global state which is characterised by the
algorithm is a consistent global state

I Though it may not be one that ever occurred
I We can though define a reachability relation:

I This is defined via the initial, observed and final global states
when the algorithm is run

I Assume that the events globally occurred in an order
Sys = e1, e2 . . .

I Let Sinit be the global state immediately before the algorithm
commences and Sfinal be the global state immediately after it
terminates. Finally Ssnap is the recorded global state

I We can find a permutation of Sys called Sys ′ which:
I contains all three states: Sinit , Ssnap and Sfinal

I Does not break the happens-before relationship on the events
in Sys

Global State — Chandy and Lamport — Reachability

I It may be that there are two events in Sys, en and en+1 such
that en is a post-snap event and en+1 is a pre-snap event

I However we can swap the order of en and en+1 since it cannot
be that en → en+1

I We continue to swap adjacent pairs of events until all
pre-snap events are ordered before all post-snap events. This
gives us the the linearisation Sys ′

I The reachability property of the snapshot algorithm is useful
for recording stable properties

I However any non-stable predicate which is True in the
snapshot may or may not be true in any other state

I Since the snapshot may not have actually occured

Global State — Chandy and Lamport

Use Cases

I No work which depends upon the global state is done until
the snapshot has been gathered

I They are therefore useful for:

1. Evaluating after the kind of change that happens infrequently
2. Stable changes, since the property that you detect to have

been true “when” the snapshot was taken will still be true
once the snapshot has been gathered

3. The kind of property that has a correct or an incorrect answer
rather than a range of increasingly appropriate answers:
Routing vs Garbage Collection

4. Properties that need not be detected and acted upon
immediately, for example garbage collection.

Distributed Debugging

I Distributed debugging was the application of our four example
applications that stood out for being concerned with unstable
properties

I This is a problem for our global snap-shot technique since its
main usefulness is derived from our reachability relation which
in turn means little for a non-stable property

I Distributed debugging is in a sense a combination of
logical/vector clocks and global snapshots

Distributed Debugging

Example Non-Stable Condition

I Suppose we are implementing an online poker game

I There is a process representing each player and one
representing the pot in the centre of the table

I Players can “send chips” to the pot, and once winners have
been decided the pot may send chips back to some of the
players.

I We wish to make sure that the total amount of chips in the
game never exceeds the initial amount

I It may be less than the initial amount since some chips may
be in transit between a player and the centre pot.

I But it cannot be more than the initial amount.

Distributed Debugging

I Suppose that we have a history H of events e1, . . . , en

I H(e1, . . . en) is therefore the true order of events as they
actually occurred in our system

I Recall then that a run is any ordering of those events in which
each event occurs exactly once

I But a linearisation is a consistent run
I A consistent run is one in which the “happens-before” relation

is satisfied for all pairs of events ei , ej

I If ei → ej then any linearisation (or consistent run) will order
ei before ej .

I Importantly then, all linearisations only pass through consistent
states

Distributed Debugging

The possibly relation

I Any linearisation Lin of our history of events H must therefore
pass through only consistent states

I A property P that is true in any state through which Lin
passes, was conceivably true at some global state through
which H passed

I If this is the case for some property p and some linearisation
we say possibly(p)

I Note: suppose we had taken a global snapshot during the set
of events H to determine if the property p was true and
determined that it was: Snap(p) evaluates to true.

I This would imply that p was possible.
I However the reverse is not true, so:

I Snap(p) =⇒ possibly(p)
I possibly(p) 6 =⇒ Snap(p)

Distributed Debugging

The definitely relation

I The sister relation to the possibly relation is the definitely
relation

I This states that for any linearisation Lin of H, Lin must pass
through some consistent global state S for which the
candidate property is true

I Since H is a linearisation of itself, then the candidate property
was certainly true at some point in the history of events.

More formally:

I The statement possibly(p) means that there is a consistent
global state S through which at least one linearisation of H
passes such that S(p) is true.

I The statement definitely(p) means that for all linearisations L
of H, there is a consistent global state S through which L
passes such that S(p) is True

Distributed Debugging

Possibly vs Definitely

I You may think that the possibly relation is useless

I Since I knew before we started that some predicate was
potentially true at some point.

I However, ¬(possibly(p)) =⇒ definitely(¬p)

I But, from definitely(¬p) we cannot conclude ¬(possibly(p)).

I definitely(¬p) means that there is at least one state in all
linearisations of H such that p is not true, but not all states.

I ¬(possibly(p)) however would require that ¬(p) was true in
all states in all linearisations

I Another way to put this is that definitely(p) and
definitely(¬p) may be true simultaneously but possibly(p)
and ¬(possibly(p)) cannot.

Distributed Debugging

Basic Outline

I The processes must all send messages recording their local
state to a master process

I The master process collates these and extracts the consistent
global states

I From this information the possibly(p) and definitely(p)
relations may be computed.

Distributed Debugging

Collecting The Global States
I Each process sends their initial state to the master process in

a state message and thereafter periodically send their local
state.

I The preparing and sending of these state messages may delay
the normal operation of the distributed system but does not
otherwise affect it: so debugging may be turned on and off.

I “Periodically” is better defined in terms of the predicate for
which we are debugging.

I So we do not send a state message to the master process
other than, initially and whenever our local state changes.

I The local state need only change with respect to the predicate
in question. We can concurrently check for separate predicates
as well by marking our state messages appropriately.

I Additionally even if the local state changes we need only send
a state message if that update could have altered the value of
the predicate.

Distributed Debugging

State Message Stamps

I In order that the master process can assemble the set of
consistent states from the set of state messages the individual
processes send it ..

I Each state message is stamped with the Vector clock value at
the local process sending the state message: {si ,V (si)}

I If S = {s1, . . . sn} is a set of state messages received by the
master process, and V (si) be the vector time stamp of the
particular local state si

I Then it is known that S is a consistent global state iff:

I Vi [i] >= Vj [i] ∀i , j1, ...N

State Message Stamps

Assembled Consistent Global States

I S is a consistent global state iff:

I Vi [i] >= Vj [i] ∀i , j1, ...N

I This says that the number of pi ’s events known at pj when it
sent sj is no more than the number of events that had
occurred at pi when it sent si .

I In other words, if the state of one process depends upon
another (according to happened-before ordering), then the
global state also encompasses the state upon which it
depends.

Assembling Consistent Global States

I Imagine the simplest case of 2 communicating processes.

I A plausible global state is S(sx
0 , s

y
1)

I The subscripts, 0 and 1, refer to the process index

I The superscripts x and y refer to the number of events which
have occurred at the particular process.

I The “level” of a given state is x + y , which is number of
events which have occurred globally to give rise to the
particular global state S .

Assembling Consistent Global States

Level 0 s0
0 , s0

1

1 s1
0 , s0

1

2 s2
0 , s0

1

3 s3
0 , s0

1 s2
0 , s1

1

4 s3
0 , s1

1 s2
0 , s2

1

5 s3
0 , s2

1 s2
0 , s3

1

6 s3
0 , s3

1

7 s4
0 , s3

1

Evaluating Possibly and Definitely

1. A state S ′ = {sx ′0
0 , . . . s

x ′N
N } is reachable from a state

S = {sx0
0 , . . . s

xN
N }

2. If
I S ′ is a consistent state
I The level of S ′ is 1 plus the level of S and:
I xi ′ = xi or xi ′ = 1 + xi ∀0 ≤ i ≤ N

Evaluating Possibly

1. Level = 0

2. States = {(s0
0 , . . . s

0
N)}

3. while (States is not empty)
I Level = Level + 1
I Reachable = {}
I for S’ where level(S’) = Level

I if S’ is reachable from some state in States
I then if p(S’) then output possibly(p) is True and quit
I else place S’ in Reachable

I States = Reachable

4. output possibly(p) is false

Evaluating Definitely

1. Level = 0

2. States = {(s0
0 , . . . s

0
N)}

3. while (States is not empty)
I Level = Level + 1
I Reachable = {}
I for S’ where level(S’) = Level

I if S’ is reachable from some state in States
I then if ¬(p(S ′)) then place S’ in Reachable

I States = Reachable

4. if Level is the maximum level recorded

5. then output definitely(p) is false

6. else output definitely(p) is true

Note: Should also check if it is true in the initial state

Evaluating Definitely

Recall:

Level 0 s0
0 , s0

1

1 s1
0 , s0

1

2 s2
0 , s0

1

3 s3
0 , s0

1 s2
0 , s1

1

4 s3
0 , s1

1 s2
0 , s2

1

5 s3
0 , s2

1 s2
0 , s3

1

6 s3
0 , s3

1

7 s4
0 , s3

1

Evaluating Definitely

Level 0 False

1 False

2 False

3 False True

4 s3
0 , s1

1

5 s3
0 , s2

1

6 s3
0 , s3

1

7 s4
0 , s3

1

Evaluating Definitely

Level 0 False

1 False

2 False

3 False True

4 True

5

6

7

Definitely(p) is True

Evaluating Possibly and Definitely

I Note that the number of states that must be evaluated is
potentially huge

I In the worse case, there is no communication between
processes, and the property is False for all states

I We must evaluate all permutations of states in which each
local history is preserved

I This system therefore works better if there is a lot of
communication and few local updates (which affect the
predicate under investigation)

Distributed Debuggin

In a synchronous system

I We have so far considered debugging within an asynchronous
system

I Our notion of a consistent global state is one which could
potentially have occurred

I In a synchronous system we have a little more information to
make that judgement

I Suppose each process has a clock internally synchronised with
the each other to a bound of D.

I With each state message, each process additionally time
stamps the message with their local time at which the state
was observed.

I For a single process with two state messages (sx
i ,Vi , ti) and

(sx+1
i ,V ′i , t

′
i) we know that the local state sx

i was valid
between the time interval:

I ti − D to t ′i + D

Distributed Debugging

In a synchronous system

I Recall our condition for a consistent global state:

I Vi [i] >= Vj [i] ∀i , j1, ...N

I We can add to that:

I ti − D ≤ tj ≤ t ′i + D and vice versa forall i,j

I Note, this makes use of the bounds imposed in a synchronous
system but speaks nothing of the time taken for a message to
be delivered

I Therefore obtaining useful bounds is rather plausible

I But if there is a lot of communication then we may not prune
the number of states which must be checked

Distributed Debugging

Summary

I Each process sends to a monitor process state update
messages whenever a significant event occurs.

I From this the monitor can build up a set of consistent global
states which may have occurred in the true history of events

I This can be used to evaluate whether some predicate was
possibly true at some point, or definitely true at some point

Time and Global State

Summary
I We noted that even in the real world there is no global notion

of time
I We extended this to computer systems noting that the clocks

associated with separate machines are subject to differences
between them known as the skew and the drift.

I We nevertheless described algorithms for attempting the
synchronisation between remote computers

I Cristian’s method
I The Berkely Algorithm
I Pairwise synchronisation in NTP

I Despite these algorithms to synchronise clocks it is still
impossible to determine for two arbitrary events which
occurred before the other.

I We therefore looked at ways in which we can impose a
meaningful order on remote events and this took us to logical
orderings

Time and Global State

Summary
I Lamport and Vector clocks were introduced:

I Lamport clocks are relatively lightweight provide us with the
following e1 → e2 =⇒ L(e1) < L(e2)

I Vector clocks improve on this by additionally providing the
reverse implication V (e1) < V (e2) =⇒ e1 → e2

I Meaning we can entirely determine whether e1 → e2 or
e2 → e1 or the two events are concurrent.

I But do so at the cost of message length and scalability

I The concept of a true history of events as opposed to runs
and linearisations was introduced

I We looked at Chandy and Lamport’s algorithm for recording a
global snapshot of the system

I Crucially we defined a notion of reachability such that the
snapshot algorithm could be usefully deployed in ascerting
whether some stable property has become true.

Time and Global State

Summary

I Finally the use of consistent cuts and linearisations was used
in Marzullo and Neiger’s algorithm

I Used in the debugging of distributed systems it allows us to
ascertain whether some transient property was possibly true at
some point or definitely true at some point.

I We compare these asynchronous techniques with the obvious
synchronous techniques

I We observe that while the synchronous techniques would be
more accurate often, they will occasionally be wrong

I The asynchronous techniques are frequently conservative in
that they may be imprecise but never wrong

I For example two events may be deemed concurrent meaning
that we do not know which occurred first, but we will never
erroneously ascertain that e1 occurred before e2

Any Questions

Any Questions?

