
Distributed Systems — Fundamental Concepts

Allan Clark

School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/ds
Autumn Term 2012

Fundamental Concepts

I Distributed Systems are first and foremost complex software
systems

I Architectural paradigms pertinent to distributed systems:
I Layers
I Client-Server

Layers

I The basic idea of a layered approach in general:
I layer: A group of closely related and highly coherent

functionalities
I service: The functionality provided to the superior layer.

An Example Layer Approach

1. Physical transistors

2. Chip architecture; uses physical transistors and provides a set
of (binary encoded) machine instructions for basic operations

3. Assembly code; uses binary codes to provide almost the same
instructions in an alphabet incoding.

4. Systems programming language: compiler uses the assembly
code to expose a high-level programming language such as C

5. Operating System (kernel): uses the systems programming
language to provide a range of services to aid application
programming

6. Application programming language: provides servies for the
application programmer using the operating system and
systems programming language

Layering in Distributed Systems

Typically:

1. Computer and Network

2. Platform: hardware and operating system providing access to
network protocols

3. Middleware: Used to achieve transparency of heterogeniety at
the platform level

4. Applications and services built on top of the middleware

Client-Server Architecture

I The Client-Server Architecture basic mode:

I Client: A process wishing to access some resource or perform
operations on a different computer

I Server: Process which accepts requests from clients and
processes those requests eventually providing a response

I The client is often referred to as the “active” player and the
server the “passive” since it is the client which initiates
communication.

I In common parlance a server is a machine but here it is a
process

I In order to satisfy some request the server may become a
client and make some request of a different server

I Where this is taken to an extreme we get “Peer Processes”
which have largely the same functionality and do not describe
a client-server architecture

Client-Server Architecture

Variants – Multiple Servers

I Service provided by multiple servers

I Many commercial web services implemented by many different
physical servers. This is so common now that it is almost the
single server that is the variant.

I Motivation:
I Peformance
I Reliability

I Servers generally must maintain a replicated or distributed
database

Client-Server Architecture

Variants – Proxy Servers

I Proxy server provides transparency of replication/distribution

Client-Server Architecture

Variants – Proxy Servers

I Proxy server may maintain cache of responses to recent
requests

I Requires that identical requests receive identical responses,
often this means that the cache store is time bounded

I Frequently used in search engines

Client-Server Architecture

Variants – Proxy Servers

Client-Server Architecture

Further Client-Server Variants

I Mobile Code
I Code that is sent to the client
I Java Applets, Flash etc.

I Mobile Agents — really a specific form of mobile code
I Thin Clients

I Note so much a variant as an extreme example

Client-Server Architecture

I Software Implications
I Use of client-server has impact on the software architecture

used
I What kinds of requests and responses are allowed
I What are the synchronisation mechanisms between client and

server
I Smaller shorter requests vs. Larger slower requests.

Client-Server Architecture

I Design Challenges
I Quality of service

I Performance: Response times

I Performance: throughput
I Performance: timeliness
I Reliability: Server must obviously be generally available
I Adaptability: For example to high and low demand
I Dependability: Fault tolerance, not just the server but a client

may be faulty (isup.me)
I Security: The server is an obvious point to attack as well as

the communication channels of any distributed system

isup.me

Peer-to-Peer Architecture

I Client-Server approach scales poorly

I As the number of users grows so too do the demands on the
centralised resources at the server

I In response Peer-to-Peer architectures arose from the
realisation that the resources (computing, data and
networking) owned by users of a service could be put to use to
support that service

I This has a number of useful consequences but most obviously
the shared resources available to users grows with the growth
of new users.

I The distributed source code control systems described earlier
could be described as peer-to-peer source code control.

I More to say on Peer-to-Peer distributed systems later

Fundamental Interaction Model

I Distributed System
I Multiple processes
I Connected by communication channels

I Distributed Algorithm
I Steps to be taken by each process
I Defines the communication between processes
I Does not directly define the sequence of steps globally

I We create models to:
I Make explicit all relevant assumptions about the distributed

system we are modelling/designing
I Make generalisations about what is possible given those

assumptions, for example desirable properties such as no
deadlock.

I Model aspects (may or may not be the same model):
I Interaction model
I Performance model
I Failure model
I Security model

Interaction Model

Synchronous distributed system
I time to execute each step of a computation within a process

has known lower and upper bounds
I message delivery times are bound to a known value
I each process has a clock whose drift rate from real time is

bounded by a known value

Asynchronous distributed system
I no bound on process execution times
I no bound on message delivery times
I no bound on clock drift rate

Note
I synchronous distributed systems are easier to handle, but

determining realistic bounds can be hard or impossible
I asynchronous distributed systems are more abstract and

general: a distributed algorithm executing on one system is
likely to also work on another one

Interaction Model

Event Ordering

I As we will see later, in a distributed system it is impossible for
any process to have a view on the current global state of the
system

I Possible to record timing information locally, and abstract
from real time (logical clocks)

I event ordering rules:
I if e1 and e2 happen in the same process and e1 happens before

e2 then e1 → e2

I if e1 is the sending of a message m and e2 is the receiving of
the same message m then e1 → e2

I Hence, → describes a partial ordering relation on the set of
events in the distributed system

Performance Model

Performance Characteristics of Communication Channels
I latency delay between sending and receipt of message

I network access time (e.g. Ethernet transmission delay)
I time for first bit to travel from sender’s network interface to

receiver’s network interface.

I throughput: number of units (eg packets) delivered per unit
of time

I bandwidth: amount of information transmitted per time unit

I delay jitter: variation in delay between different messages of
the same type, (e.g., video frames)

Failures

Omission Failures
I process omission failures

I detection with timeouts
I crash is fail-stop if other processes can detect with certainty

that process has crashed

I communication omission failures: message is not being
delivered — dropping of messages

I possible causes:
I network transmission error
I receiver incomming message buffer overflow

Arbitrary Failures

I process: omit intended processing steps or carry out
unintended ones

I communication channel: corruption or duplication etc.

Failures

Class of Failure Affects Description

Fail-stop Process Process halts and remains halted.
Other processes may detect this.

Crash Process Process halts and remains halted.
Other processes may not detect this.

Omission Channel A message inserted in one outgoing
buffer never arrives at the other end’s
incoming buffer

Send-omission Process A process completes a send but the
message is never put in its outgoing
buffer

Receive-
omission

Process A message is put in a process’s in-
coming buffer but the process never
receives it.

Arbitrary
(Byzantine)

Process /
Channel

Process/channel exhibits arbitrary be-
haviour: it may send/transmit arbir-
tary messages at arbitrary times.

Failures

Masking/Hiding Failures

I A service may mask an error by hiding it entirely or,

I converting it into a more acceptable type of error

I A reliable protocol can be built upon an unreliable protocol by
requesting retransmission of dropped messages

I Message sequence numbers can be used to ensure no message
is delivered twice, particularly when used with a guaranteed
delivery protocol.

I Parity bits or checksums can be used to detect an error and
thereby turn an arbitrary failure into an omission failure.

Security

I Two related problems:
I We wish to make sure only the intended recipient(s) can

receive a message
I Additionally messages (for example invocation requests) should

be authenticated so that we know from whom they originated

I These can be largely mitigated against with the use of modern
cryptographic algorithms

I However their use incurs some cost which we may hope to
minimise

I Denial of service
I generating debilitating network or server load so that services

become the equivalent of unavailable

I Mobile Code:
I requires executability priviledges on target machine
I code may be malicious

Summary — Fundamental Interaction Model

I We have looked at architectural models: Client-Server and
Peer-to-Peer.

I These are complemented by fundamental models to aid in
reasoning about behaviour:

I Interaction model
I Classifies models as synchronous or asynchronous
I Identify basic components from which distributed systems are

built

I Performance model — sometimes combined with interaction
I concerned with the efficiency of completing global tasks
I can be used to compare approaches

I Failure model
I Used to analyse how resilient a distributed system is to failures
I Can be used to classify what can go wrong and how that

affects the system including other peers

I Security model
I Allows us to keep the costs associated with security measures

to a minimum

Networking — Types of Networks

1. Personal Area Networks — generally wireless e.g. bluetooth

2. Local Area Networks

3. Wide Area Networks

4. Wireless local area networks

5. Wireless Wide Area Networks (3G and now 4G)

6. Internetworks — comprising of potentially many kinds of
networks linked together by routers and gateways. The
Internet being the most obvious example.

Getting Messages to Destinations — Switching

Broadcasting

I Broadcasting is one way of getting the message to its
intended recipient

I Simply send it to everyone and have all the receivers filter
their messages to receive only the ones intended for them

I A bit like spam

I Local area networks are commonly built on this technology (in
particular Ethernet is)

I Wireless networks are necessarily broadcast networks

I Cryptography can be used to force filtering on the receivers

I Broadcasting does not scale well with the number of senders

Getting Messages to Destinations — Switching

Broadcasting

Photo copyright Kwozie flickr user

Getting Messages to Destinations — Switching

Circuit Switching

I Was used for the telephone system

I Very rarely used for computer networks

I Circuit switching does have some advantages including greater
efficiency once the circuit has been initiated

I Long distance networks required several switches in-between
end-points.

I However it has several disadvantages including:
I low adaptability to changing traffic
I low adaptability to loss of communication channel

Getting Messages to Destinations — Switching

Packet Switching or Store and Forward

I When networks were built with computers so came the
possibility to do some processing at each node along the path

I Packet switching is an example of what is called a “store and
forward” network

I Each packet is treated separately at each node, it is first
stored and then a decision is made about how and where to
forward it

I The postal system is an example of a store and forward
network, using packet switching

Getting Messages to Destinations — Switching

Packet Switching or Store and Forward

I Packet Switching can adapt to changing network conditions

I Including the loss of a communication channel

I They do incur some disadvantages, in particular packages may
arrive out of order

I Packet lengths are restricted in order to:
I Each computer in the network can allocate sufficient storage to

hold the largest possible incoming packet
I Avoid undue delays in waiting for communication channels to

become free (essentially the same reason you don’t send an
unsegmented thesis to the printer)

I “frame relay” is a compromise between circuit and package
switching.

Protocols

I Protocols enable communication between computers
I A protocol specifies:

1. The sequence of messages that must be exchanged e.g.
message - acknowledgement

2. The format of the data in the messages

I A key idea is that of protocol layering

I Software at the sender and receiver is arranged in modules
representing each layer

I Conceptually the software at layer N is communicating with
the other computer at layer N

I But in reality is invoking and reacting to the layer below

I In particular one can build a reliable communication layer atop
an unreliable communication layer.

Routing

I Routing is required in networks larger than a LAN

I Adaptive routing allows for changes in network traffic and
connectivity

I A routing algorithm is implemented by a program in the
network layer at each node

I It must:

1. Determine the route taken by each packet as it travels through
the network. A circuit switched network will set up a route for
all subsequent packets but a packet switched network will
perform the same steps for each packet. The routing algorithm
in a packet switched network must therefore be simple and
efficient.

2. Dynamically update its knowledge of the network so as to
better route subsequent packets/circuits

I Internet routing is essentially path finding in graphs.

Routing — Example Algorithm

Router Information Protocol (RIP)

1. Maintain a routing table:

Dest Link Cost

1 local 0

2 2 1

8 2 4

2. Periodically — and whenever the local routing table changes
— send table in summary form to all accessible links

3. If a routing table packet is received from a neighbouring
router update your own table accordingly:

I If there is a new destination add that row to your table
I If there is a lower cost route to an existing node update the

appropriate row
I If the table was received on link N replace all differing rows

with N as the link

4. If a link L becomes unavailable set cost to ∞ for all entries
with L. Since the routing table has changed, send it to all
accessible links.

Routing — Example Algorithm

Router Information Protocol (RIP)

Dest Link Cost

Allan local 0

Bob lBob 1

Alice lAlice 1

Susan lAlice 5

Routing — Example Algorithm

Router Information Protocol (RIP)
Bob sends me a new table and it has information about a node I
hadn’t seen before “Harry” at a cost of 8

Dest Link Cost

Allan local 0

Bob lBob 1

Alice lAlice 1

Susan lAlice 5

Harry lBob 9

Routing — Example Algorithm

Router Information Protocol (RIP)
Susan now sends me an updated table and it contains information
about “Harry” that she can get a packet there within 5 hops.

Dest Link Cost

Allan local 0

Bob lBob 1

Alice lAlice 1

Susan lAlice 5

Harry lAlice 6

Routing — Example Algorithm

Router Information Protocol (RIP)

I Don’t forget that after each of these updates I perform a send
to all outgoing links.

I In particular Bob could now have received my table linking to
Harry in 6 which would mean he would have a new route to
Harry through me at a cost of 7 beating his previous 8.

I I now receive a table from Alice with the “Harry” link set to
∞.

Dest Link Cost

Allan local 0

Bob lBob 1

Alice lAlice 1

Susan lAlice 5

Harry lAlice ∞

Routing — Example Algorithm

Router Information Protocol (RIP)
I then later detect that the link lAlice has been broken

Dest Link Cost

Allan local 0

Bob lBob 1

Alice lAlice ∞
Susan lAlice ∞
Harry lAlice ∞

Routing — Example Algorithm

Router Information Protocol (RIP)
Bob then later sends his table which still has a link to Harry at
cost 8

Dest Link Cost

Allan local 0

Bob lBob 1

Alice lAlice ∞
Susan lAlice ∞
Harry lBob 9

Routing — Example Algorithm

Router Information Protocol (RIP)

I This algorithm has been shown to eventually converge on the
best routes to each destination whenever the network is
changed

I This is a simple version of the algorithm and it may be
improved in many ways:

1. The cost metric can take into account bandwidth
2. Avoid undesirable intermediate states before convergence, such

as loops.
I Optional home exercise: show an example where there is a

looping intermediate state

I Note: this is a distributed algorithm: I promised you that
“parts of computer networks are distributed systems”

Networking Issues

I Performance — We are of course most interested in the speed
with which individual messages can be transferred between
two computers.

I latency delay after a send is initiated before data begins to
arrive at the destination

I data transfer rate this is the bits per second rate that is
quoted.

I Message transmission time = latency + length/data transfer
rate

I Though longer messages may require segmentation into
multiple messages

I Latency affects small frequent message passing which is
common for distributed systems

Networking Issues — Performance

I Time required to transmit a short message and receive a reply
on a small local network: about half a millisecond (0.0005s)

I Time required to invoke an operation on an object in local
memory: sub-microsecond (0.000001s)

I About a thousand times slower on the network

I However, networks can outperform hard-disks.

I So if you have one large server with a very large amount of
system memory this may perform better than several
machines with small amounts of system memory

I Over the Internet we might be looking at about 5-500
milliseconds

I Some of this is latency (switching delays at routers) and some
is data transfer rate (contention for network circuits)

Networking Issues — Reliability

I Physical transmission media is generally pretty reliabile —
though wireless less so

I Message losses are often due to software errors

I Many applications are able to recover and/or tolerate
transmission errors.

I A guaranteed communication channel is often therefore
needless overhead.

I In particular because the software itself may lose the message
it must be designed to account for that — it may then as well
cope with transmission failure by the communication channel.

I But it depends on the transmission media

I Must try to reduce the amount of incorrect data that is
transmitted as well as the amount of checking done on correct
data.

Reliability

Left 1 2 3 4 5 Right

Left 1 2 3 4 5 Right

Left 1 2 3 4 5 Right

Left 1 2 3 4 5 Right

Left 1 2 3 4 5 Right

Red denotes a node at which error detection/correction occurs

I If the probability of a message getting through any channel is
0.5 then completing the trip is 0.56 = 0.016

I Fortunately communication channels are generally more
reliable

I (9999
10000)6 = 0.9994 > 999

1000

Networking Issues — Security

I Security is generally handled more at the application layer
I Generally through cryptographic techniques
I Though the network can provide some level of security
I A firewall is catch all solution with associated inefficiencies
I For some organisations those inefficiencies are deemed

appropriate.

Interprocess Communication

Interprocess Communication

UDP and TCP

I Two internet protocols provide two alternative transmission
protocols for differing situations with different characteristics

I User Datagram Protocol — UDP
I Simple and efficient message passing
I Suffers from possible omission failures
I Provides error detection but no error correction

I Transmission Control Protocol – TCP
I Built on top of UDP
I Provides a guaranteed message delivery service
I But does so at the cost of additional messages
I Has a higher latency as a stream must first be set up
I Provides both error detection and correction

UDP and TCP

I User Datagram Protocol — UDP
I Is connectionless
I Used for small requests from possibly large numbers of clients
I Examples: DNS, RIP and VOIP and online gaming
I VOIP: The biran prefmros smoe erorr mkasnig for us
I Sometimes used for larger requests when the application may

be able to do its own error correction

I Transmission Control Protocol – TCP
I Is connection based
I Used for larger requests
I Examples: SMTP, HTTP and TELNET

UDP and TCP

Failure Models
I User Datagram Protocol — UDP

I Sometimes packages are dropped — no guaranteed validity
I Messages may be delivered out of order — no guaranteed

validity
I Checksums are used to provide near guaranteed integrity

I Transmission Control Protocol – TCP
I Uses checksums to give near guaranteed integrity
I Uses sequence numbers, timeouts and retransmissions to

provide guaranteed validity
I If the communication channel is bad enough then timeouts may

occur often enough for the connection to be deemed broken
I Therefore there is no absolute guarantee of reliabile

communication
I Processes cannot distinguish between network failure and

failure of the other process
I Processes cannot be sure that recent messages have

succeeded or failed.

Send and Receive

I Communication between to separate hosts is supported by two
operations, simply send and receive

I Two modes of communication:
1. Synchronous

I communicating processes synchronise on every message
I Hence both sending and receiving are blocking operations
I Sort of the “instant messaging” of the data communication

world

2. Asynchronous
I Only the receive operation is blocking, the send is not
I The “e-mail” of the data communcation world
I A form of non-blocking receive can be built, however this is

really just a thread which waits and then sends a signal to the
parent thread when there is received data to be read

Sockets

I Sockets are a dominant abstraction programmers use for
writing synchronous and asynchronous communication

I A process may use the same socket for sending and receiving

I A socket is associated with an Internet Address and a Port
number

I Generally servers will advertise on which ports they will receive

I Only a single process can receive on a particular port

I Sockets can be used to send/receive UDP messages

I Sockets can also be used to set up a TCP stream of
communication, generally two such streams are initiated to
enable two-way communication between the two hosts.

Multicast

I For some applications it is appropriate to send a single
message to many recipients

I Multicast is essentially a selective broadcast

1. unicast
2. anycast (one of a group)
3. multicast
4. broadcast

I The most common reasons for multicast are:

1. Efficiency
2. Simplicity/transparency for the sender, in particular the sender

need not necessarily know all the recipients

I However there are some issues, in particular we must consider
the failure semantics of multi-recipient messages.

I Attempts to provide strict failure semantics for multicast
messages unfortunately often negate part or all of these two
advantages

Multicast

Multicast

Uses of Multicast

1. Fault tolerance based on replicated services

2. Data replication for increased efficiency

3. Discovery of services in spontaneous networking

4. Propagation of event notifications

Multicast

Plausible Failure Semantics

1. Maybe semantics — The multicast equivalent of UDP, some
processes may receive each message some may not. They may
receive messages in different orders

2. Either all members receive a message or none do, some may
receive a message out of order

3. All members of the group receive every message in the correct
order

I called: totally ordered multicast
I We will see this in more detail in a later part of the course

IP-Multicast

I UDP failure semantics:

I For each message, some members of the group may receive
the message some may not

I IP-Multicast is built on top of IP

I The sender is unaware of the identities of the individual
recipients of the message

I IP addresses (in IPv4) in the range 224.0.0.0 to
239.255.255.255 are reserved for multicast traffic and are
managed globally

I Any socket (that is any port on any computer with an IP
address) may join any IP-multicast group

I IGMP (Internet Group Management Protocol) is used both for
requesting entry to a group and for communication between
adjacent routers

IP-Multicast

I Upon receiving a multicast message a multicast router sends
the message on to any links which have members of the group

I To avoid eternally propogating messages, each multicast
message has a “Time To Live” variable which is decremented
with each propogation

I Groups ownership is not addressed by the IP-multicast
protocol

I For small local groups this can be achieved through using a
small time to live number

I Over the Internet other solutions are required, for example
Multcast Address Allocation Architecture is a client-server
based solution, in which the server maintains addresses which
are free.

Multicast XCAST Implementation

I An alternative way to implement multicast is to require the
sender to attach each recipient address to the message

I This is used by XCAST (Explicit Multi-Unicast), which is
implemented on top of IP and places each receiver’s address
in the IP packet header

I Since IP-packets are limited in size, this places a strict limit
on the size of the group

I The group must also be known ahead of time

I However it is appropriate for use when there are a large
number of small sessions which have a small number of groups

I Video conferencing for example

External Data and Marshalling

I Ultimately processes/algorithms wish to exchange data

I But messages are restricted to a sequence of bytes

I Hence the communicating processes must agree in advance a
suitable format in which the data should be converted
to/from a sequence of bytes

I Examples:
I XML
I Java serialisation
I JSON
I CORBA

External Data and Marshalling

CORBA

I Common Object Request Broker Architecture

I Marshals data for receivers that have prior knowledge of the
types of the objects to be communicated

I Type information is defined in an Interface Definition
Language (IDL) file

I IDL files can be automatically mapped to programming
language type definitions and code to (de)marshall object

I Has the disadvantage that types must be agreed upon in
advance

I Has the advantage that there is no overhead in
communicating the type

External Data and Marshalling

Java Serialisation

I Includes the full type information in the marshalled data

I Uses reflection in order to obtain that type information

I Is restricted of course to use with the Java programming
language (and languages specifically designed to interoperate)

I The .NET framework has a similar approach

XML

I More general than either Java Serialisation or CORBA

I Can be used in both modes, that is either to send type
information together with the data or agree on pre-existing
types

External Data and Marshalling

JSON

I Javascript Object Notation

I Includes type information, but that type information is basic

I Number, String, Boolean, Array, Null or

I Object — a list of key-value pairs

I Is becoming very popular because it is useful for many
languages and requires no parsing by the application
programmer

I In particular popular with dynamic languages such as Python

Summary

I UDP provides simple, efficient, connectionless sending of
messages with few guarantees

I TCP provides connection-based sending atop UDP with
greater guarantees of validity, no omission failures

I Programming APIs built atop these tend to rely on the
Sockets abstraction to provide synchronous or asynchronous
send and receive operations

I Marshalling is used to send complex data structures as
one-dimensional sequences of bytes

I Different approaches may require prior agreement as to the
types of the marshalled data and may make constraints on
programming language used

Any Questions

Any Questions?

Distributed Systems — Questions

Questions

I Question : Are — and if not, why not? — platform layers not
generally standardised to reduce/remove the need for
middlewares like some kind of distributed POSIX?

I Answer : To some degree, for example the Sockets abstraction
is widely implemented. Essentially middleware exists either
because popular platforms have not agreed upon a common
abstraction or because that abstraction more usefully sits
outside of the realm of the “platform”. Why platform vendors
cannot agree upon common abstractions is more of a social
and possibly economic question.

Distributed Systems — Questions

Questions

I Question : Proxy servers provide transparency of
replication/distribution. Can they be classified as middleware?

I Answer : Middleware is a term used only for software, since a
proxy must ultimately be realised in hardware we wouldn’t
normally say that a proxy is middleware.

Distributed Systems — Questions

Questions

I Question : With regards to synchronous and asynchronous
systems, specifically determining realistic bounds, why can one
not just specify bounds that covers all possible circumstances?
For example, assuming that, say, HTTP GET requests will
always return within 10 minutes if the server is available?
Obviously this assumption is ridiculous, but at least then the
bounds are known.

I Answer : The key point is whether or not one can determine
useful bounds. The distinction is more in how we then treat
the communication system. All systems can have fairly
unreasonable bounds applied — a message may arrive
instantaneously or may take 1000 years. Atop which you could
attempt to build a reliable communication system using a
timeout of 2000 years. Alternatively one could simply assume
asynchronicity and build on top of that.

Distributed Systems — Questions

Questions

I Question : Can you give an example of a process omission
failure and the difference between process omission and
arbitrary failures?

I Answer :
I A process omission failure is when a message which should

have been sent (or received) simply isn’t. It might be because
the code of the process is erroneous, or it might be some
software driver is incorrect. For example perhaps the message
was put in the out-going buffer but that buffer was full and the
software did not deal with that correct.

I So for example in the RIP protocol one of the routers may
simply fail to send on their updated RIP-table after an update

I An arbitrary failure is when a message is sent, but the message
sent is not the correct message. Generally this is more likely to
be incorrect logic in the code of the process itself.

Distributed Systems — Questions

Questions

I Question : Can you give an example of a process omission
failure and the difference between process omission and
arbitrary failures? — continued

I Answer :
I In the RIP algorithm one process may simply send an incorrect

table. Or it may erroneously set all link costs to ∞ and hence
— at least temporarily — continuously send incorrect routing
tables.

I The question is, given such an error, how does the distributed
algorithm cope with this. Is it detectable? Is the behaviour
acceptable even if it is not detected or in the meantime before
it is detected?

Introducing PEPA

I PEPA: Performance Evaluation Process Algebra

I Modellers define their model by first describing a set of
sequential components and then combining those sequential
components together in parallel to form the main system
equation.

I Definitions are built using the choice (+), prefix (.) operators.

I The system equation is built using the cooperation operators
BC

L
, ‖ and hiding \.

Service Example

Service = (request,>).Service
+ (service, rserve).Service
+ (break , rbreak).Broken

Broken = (repair , rrepair).Service
+ (request,>).Broken

Client = (request, rjoin).Wait
Wait = (service,>).Client

Service BC
L

Client[clients]

where L = {request, service}
and Client[3] = Client ‖ Client ‖ Client

State Specifications Examples

Broken == 1 The/a server is in the state Broken

Wait > 3 More than three clients waiting

Broken == 1 && Wait > 3 Both the previous are true

Service < Wait Fewer servers ready than clients waiting

Activity Probe Specifications Examples

a : start, b : stop Any state between the a and b actions

P :: (a : start, b : stop) . . . as observed by a single P process

(a|b|c) : start, (x |y) : stop choice to start and end

(a, a, a)/b : start, b : stop As before, without a b interrupting

PEPA

More information at: www.dcs.ed.ac.uk/pepa

www.dcs.ed.ac.uk/pepa

Concurrent Finite State Machines

I An example of an interaction modelling framework

I Due to Brand and Zafiropoulo

I Consist of a set of finite state machines which can
communicate via a set of communication channels

I Every FSM represents a concurrent, communication process

I One pair of channels (Cij and Cji)) for each pair of machines
I Every communication channel is:

I full-duplex
I error-free
I has a first-in-first-out strategy
I had unbounded capacity
I So this represents a perfect full-duplex channel

Concurrent Finite State Machines

Formalisation

I N: a positive integer

I i, j = 1, . . . , N indexes over processes

I 〈Qi 〉Ni=1 N disjoint finite sets, Qi denotes the state of process I.

I 〈Aij〉Ni ,j=1 disjoint sets where Aij denotes the message alphabet
for the channel i −→ j

I ∀iAii = {}
I δ: relation determining for each pair (i,j) the following

functions
I Qi × Aij → Qi : send from i to j
I Qi × Aji → Qi : receive from j at i

I 〈q0
i 〉 the initial states such that ∀i(q0

i ∈ Qi)

I AND SO: we call (〈Qi 〉, 〈q0
i 〉, 〈Aij〉, δ) a protocol

Concurrent Finite State Machines

Notation

I si ∈ Qi : state of process i
I xij ∈ Aij : a message

I ?xij reception of a message
I !yji sending of a message

I f((s1, .. sn)) = (f(s1), .., f(sn))

I x,y: message

I X,Y: sequence of messages

I x, xy, xY, xXY : concatenated sequences of messages

Concurrent Finite State Machines

Alternating Bit Protocol

I Simple protocol securing unreliable message channels

I Sender sends message msgn with n ∈ 0, 1 a sequence number

I Receiver acknowledges with ackn

I Sender sets new sequence number at 1 + n mod 2

I Retransmission of current message when wrong sequence
number receieved

Concurrent Finite State Machines

I Semantics of a protocol:
I The set of admissable state sequences

I State of a protocol:
I sum of:

1. Local state of each of the processes
2. state of all channels (which is the sequence of all messages

along it which have been sent but not received)

I We call this the global system state.

Concurrent Finite State Machines

Obtaining All Computations:

1. Initially all processes in their initial states and all channels
empty

2. System is in a current global system state s

3. State transition triggered by send and receive events
I send event:

I add a message to the tail of the appropriate channel
I update the local state of the sending process

I receive event:
I take the message from the head of the message queue
I update the local state of the receiving process

4. Leads to a new global system state

Concurrent Finite State Machines

State Transition Relation

I Let P be a protocol and G be the set of all global system
states (S,C)

I The ` (G −→ G) is defined as follows: (S ,C) ` (S ′,C ′) iff
∃i , k , xij such that (S ,C) and (S ′,C ′) are identical other than
either

I si’ = δ(si, !xij) and cij’ = cij xij
I or
I si’ = δ(si, ?xij) and cji = xji cji’

Concurrent Finite State Machines

Reachable Global System State
I Let:

I G0 be the initial global system state
I G a global system state of the same protocol
I ` the state transition relation of the same protocol
I `∗ the transitive closure of `

I We say that G is reachable if:
I G`∗G

Paths and the language accepted by a protocol can be defined via
`∗ as would be done for NFAs.

Concurrent Finite State Machines

Expressiveness
I Theorem: CFSMs are Turing complete

I Many proofs possible (including proof by claiming it is obvious)
I One such idea:

I three processes P1, P2, P3
I Simulate the control of the Turing Machine in P2
I Use P1 and the channels c12 and c21 to simulate the left of

the tape
I Use P3 and the channels c23 and c32 to simulate the right of

the tape
I since all cij have unbounded capacity we have an inifite tape

Consequences

I global state space has unbounded size
I undecidable problems include:

I termination
I will some communication event ever be executed?
I is some system state reachable?
I is the protocol deadlock free?

