
Distributed Systems — Introduction

Allan Clark

School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/ds
Autumn Term 2012



Distributed Systems — Definitions

I “A system in which hardware or software
components located at networked computers
communicate and coordinate their actions only by
message passing.” — Coulouris

I “A system that consists of a collection of two or
more independent computers which coordinate their
processing through the exchange of synchronous or
asynchronous message passing.”

I “A distributed system is a collection of independent
computers that appear to the users of the system as
a single computer.” — Tanenbaum

I “ A distributed system is a collection of autonomous
computers linked by a network with software
designed to produce an
integrated computing facility.”



Distributed Systems — Computer Networks

Computer Networks vs. Distributed Systems

I Computer Network: the autonomous computers are explicitly
visible — have to be explicitly addressed

I Distributed System: existence of multiple autonomous
computers is transparent

I The study of computer networks is concerned with how to
send messages between machines, whilst the study of
distributed systems is how to use those networks to get stuff
done.

I However,
I many problems in common,
I in some sense networks (or parts of them, e.g., name services)

are also distributed systems, and
I normally, every distributed system relies on services provided

by a computer network.



Reasons for Distributed Systems

I Inherent distribution stemming from the application domain,
e.g.

I cash register and inventory systems for chain-stores
I computer supported collaborative work
I multi-player games

I Resource sharing is often a strong motivation
I Load distribution

I amazon.com is not a single computer
I these separate computers can be turned on-off for different

demand profiles

I Critical failure tolerance, e.g. peer-to-peer networks
I amazon.com isn’t even located on a single site.
I It is therefore resilient to (to some extent) earthquakes, power

outages and more mailicious attacks



Consequences

These may be good, bad or somewhere in between:

I Software - how to design and manage it in a distributed
system

I Dependency on the underlying network infrastructure

I Easy access to shared data raises security concerns

I Emergent behaviour, sometimes good, bad, or just fascinating



Consequences

I Distributed systems are concurrent systems
I This concept will come up again and again
I Synchronization and coordination by message passing
I Sharing of resources, as both a positive and a negative
I Typical problems of concurrent systems

I Deadlocks and Livelocks
I Unreliable communication

I Absence of a global clock
I Due to asynchronous message passing there are limits on the

precision with which processes in a distributed system can
synchronize their clocks



Consequences — continued

I Absence of a global state
I In the general case, there is no single process in the distributed

system that would have a knowledge of the current global
state of the system

I Due to concurrency and message passing communication

I Specific failure modes
I Processes run autonomously, in isolation

I Failures of individual processes may remain undetected
I Individual processes may be unaware of failures in the system

context



Emerged/emerging Distributed Systems

1. Commerce

2. Encyclopedias (more generally knowledge stores)

3. Publishing in general

4. Finance

5. Education

6. Science

7. Healthcare



Examples of Distributed Systems

Web Search

I Google’s infrastructure is one of the world’s largest
installations of a distributed system. It must visit and index a
ridiculously large volume of web content in a variety of
formats and then index this content for speedy results.

I Any numbers I give would be out of date tomorrow and are in
any case unimaginable

I 68 Billion pages, maybe

I Data centres around the world

I A distributed file system designed for very fast access to very
large files



Examples of Distributed Systems

(Massively) Multiplayer Games

I A particular need for fast response times

I Propogation of events and maintenance of the universe (or
global state).

I The consequences of failure are potentially not as bad for the
users (though major loss of revenue for the vendors)

I Most commericial offerings depend upon large infrastructure
whether that be centrally managed or more distributed

I But, we are seeing the emergence of peer-to-peer based
architectures for online games, with each user contributing
some resources

I As such online games can be seen as a testbed for distributed
systems (as they have proven in the past)



Examples of Distributed Systems

Online Betting

I Clearly betting has moved from the high street to the Internet

I More importantly there are now examples of distributed
“layers” or “bookmakers”

I Examples are betfair.com and intrade.com

I Traditionally a bookmaker (using a greybeard and
mathematics) would “set” or “fix” the odds for each
particular bet

I Distributed bookmakers allow anyone to “back” or “lay” any
particular bet (or market) at any particular price

I For example I can offer odds that Stoke City will win the EPL
this year at odds of 1 in 4

I Sadly it is unlikely that anyone will take up this offer.

I Odds emerge as a market outcome

betfair.com
intrade.com


Examples of Distributed Systems

Financial Markets

I On the forefront of distributed systems development

I Due to a need for real-time information from a multitude of
sources

I Have a need to relay events to potentially large numbers of
clients

I For this reason they have unsual underlying architectures
I Emergent behaviour can be undesirable here, e.g. flash crash

2:45

I Thursday 6th May 2010
I Dow Jones industrial average plunged approximately 1000

points
I This was about 9% at the time
I The largest one day point decline ever
I The losses were recovered within minutes
I Nobody knows to this day what happened



Examples of Distributed Systems

Financial Markets

I On the forefront of distributed systems development

I Due to a need for real-time information from a multitude of
sources

I Have a need to relay events to potentially large numbers of
clients

I For this reason they have unsual underlying architectures
I Emergent behaviour can be undesirable here, e.g. flash crash

2:45
I Thursday 6th May 2010
I Dow Jones industrial average plunged approximately 1000

points
I This was about 9% at the time
I The largest one day point decline ever
I The losses were recovered within minutes
I Nobody knows to this day what happened



Examples of Distributed Systems

Google bought this place for 1.9 billion dollars



Examples of Distributed Systems

Google bought this place for 1.9 billion dollars



Examples of Distributed Systems

Building Location Height Built Price (USD)

The Shard London, UK 310 metres 2012 3.9b

Antilla Mumbai, India 173 metres 2007/10 2b

Taipei 101 Taipei, Taiwan 509 metres 2004 1.76b



Examples of Distributed Systems



Examples of Distributed Systems

Source Code Control

I Source code control is the endeavour to maintain a full history
of changes to a project’s source code, often by multiple
authors

I Only the original source code and the changes (or diffs) are
stored

I Concurrent updates are allowed when different parts of the
code are changed, in which case the changes can be “merged”

I Where the same part is changed concurrently there is a
“conflict” which must be resolved before operations may
continue

I This allows for multiple versions of the source code such as a
release and development branch

I Bugs can be tracked down to the change in which the bug
was introduced, thereby elminating many possible causes



Examples of Distributed Systems

Source Code Control

I This has always tended to be a distributed system

I In the sense that there are multiple authors

I Traditionally there was a client-server based architecture

I One centralised server with the single repository
I Authors request:

I New revisions
I That their revisions be recorded in the global history



Examples of Distributed Systems

Source Code Control

I Recently (last decade or so) source code control systems have
been decentralised or distributed

I Each contributor clones the entire history and has a local
repository.

I Revisions can be sent and received between any two
repositories

I There is greater fault tolerance, if the original centralised
server fails a different one is simply declared the new master

I Merging can occur between smaller groups before commiting
to a larger audience (of the master repository)



Examples of Distributed Systems

Source Code Control

I Centralised: cvs, subversion, ClearCase, Vault

I Distributed: git, mercurial, darcs, bazaar, bitkeeper



Challenges in Design of Distributed Systems

I 1. Heterogeneity
I Hardware, Networks, Operating Systems, Programming

Languages
I Not just heterogeneity of implementation but sometimes of

characteristics such as reliability or speed.
I In a sense this much of this is a networking problem, that is the

difficulty of sending messages around heterogeneous networks
I But it does have implications, such as I have mentioned before

for software versioning
I Approaches generally use abstraction

I Middleware (e.g., CORBA): transparency of network, hard-
and software and programming language heterogeneity

I Mobile Code (e.g., JAVA): transparency from hard-, software
and programming language heterogeneity through virtual
machine concept



Challenges in Design of Distributed Systems

I 2. Openness
I How open a distributed system is determines whether it can be

extended domain, both size and functionality
I Mostly determined by how well published are the interfaces

which are used
I Many web-services are being turned into mobile applications

because they have well defined and published interfaces
I An open system is less reliant on a particular vendor

I 3. Security,
I has essentially three main components:

1. Confidentiality — protection against access by unauthorised
individuals

2. Integrity — protection against alteration or corruption
3. Availability — protection against loss of access whether

circumstantial or a malicious denial of service attack

I Security forms a later part of this course — but in summary,
encryption only gets you part of the way there



Challenges in Design of Distributed Systems

I 4. Scalability
I Does the system remain effective given expectable growth?
I Expectable growth of physical resources and
I Expectable growth of users
I Avoiding Performance bottlenecks

I Early Domain Name Lookup consisted of a single centrally
hosted file

I The “hosts.txt” file mapped names to numerical addresses
I Client computers were required to periodically re-download

this file from its known location (at SRI, now SRI
International)

I The “hosts.txt” file still exists on most operating systems
today and can be used for much hilarity if you can access your
friend’s hosts.txt file

I $ dig www.some-annoying-site.com ⇒ 173.194.67.103
I 173.194.67.103 www.bbc.co.uk



Challenges in Design of Distributed Systems

I 4. Scalability
I After DNS was developed:
I Some time in the late 1970s it was decided that 32 bit

addresses would be enough, but they are currently running out.
I IP addresses are in the process of switching from 32 bit

addressing to 128 bit addressing but overcompensating could
have been a serious performance issue



Challenges in Design of Distributed Systems

I 4. Scalability
I Expectable growth is often non-obvious



Challenges in Design of Distributed Systems

I 5. Handling of failures
I Detection (may be impossible)
I Masking

I retransmission
I redundancy of data storage
I generally not guaranteed in the worst case

I Tolerance
I exception handling (e.g., timeouts when waiting for a web

resource)

I Recovery
I Can be especially tough, the failed process may have left some

permanent data in an inconsistent state

I Redundancy
I redundant routes in network
I replication of name tables in multiple domain name servers



Challenges in Design of Distributed Systems

I 6. Concurrency
I Consistent scheduling of concurrent threads (so that

dependencies are preserved, e.g., in concurrent transactions)
I Avoidance of dead- and livelock problems
I Actions are concurrent if A may happen before B and B may

happen before A
I Generally you hope for consistent results in either case
I I will have more to speak about concurrency



Challenges in Design of Distributed Systems

I 7. Transparency: concealing the heterogeneous and
distributed nature of the system so that it appears to the user
like one system.

I Transparency categories (according to ISO’s Reference Model
for ODP)

I Access: access local and remote resources using identical
operations e.g., network mapped drive

I Location: access without knowledge of location of a resource
e.g., URLs, email addresses

I Concurrency: allow several processes to operate concurrently
using shared resources in a consistent fashion

I Replication: use replicated resource as if there was just one
instance

I Failure: allow programs to complete their task despite failures
e.g., retransmit of email messages

I Mobility: allow resources to move around
I Performance: adaption of the system to varying load

situations without the user noticing it
I Scaling: allow system and applications to expand without

need to change structure or application algorithms



Any Questions

Any Questions?


