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Distributed Systems — Definitions

I “A system in which hardware or software
components located at networked computers
communicate and coordinate their actions only by
message passing.” — Coulouris

I “A system that consists of a collection of two or
more independent computers which coordinate their
processing through the exchange of synchronous or
asynchronous message passing.”

I “A distributed system is a collection of independent
computers that appear to the users of the system as
a single computer.” — Tanenbaum

I “ A distributed system is a collection of autonomous
computers linked by a network with software
designed to produce an
integrated computing facility.”



Distributed Systems — Computer Networks

Computer Networks vs. Distributed Systems

I Computer Network: the autonomous computers are explicitly
visible — have to be explicitly addressed

I Distributed System: existence of multiple autonomous
computers is transparent

I The study of computer networks is concerned with how to
send messages between machines, whilst the study of
distributed systems is how to use those networks to get stuff
done.

I However,
I many problems in common,
I in some sense networks (or parts of them, e.g., name services)

are also distributed systems, and
I normally, every distributed system relies on services provided

by a computer network.



Reasons for Distributed Systems

I Inherent distribution stemming from the application domain,
e.g.

I cash register and inventory systems for chain-stores
I computer supported collaborative work
I multi-player games

I Resource sharing is often a strong motivation
I Load distribution

I amazon.com is not a single computer
I these separate computers can be turned on-off for different

demand profiles

I Critical failure tolerance, e.g. peer-to-peer networks
I amazon.com isn’t even located on a single site.
I It is therefore resilient to (to some extent) earthquakes, power

outages and more mailicious attacks



Consequences

These may be good, bad or somewhere in between:

I Software - how to design and manage it in a distributed
system

I Dependency on the underlying network infrastructure

I Easy access to shared data raises security concerns

I Emergent behaviour, sometimes good, bad, or just fascinating



Consequences

I Distributed systems are concurrent systems
I This concept will come up again and again
I Synchronization and coordination by message passing
I Sharing of resources, as both a positive and a negative
I Typical problems of concurrent systems

I Deadlocks and Livelocks
I Unreliable communication

I Absence of a global clock
I Due to asynchronous message passing there are limits on the

precision with which processes in a distributed system can
synchronize their clocks



Consequences — continued

I Absence of a global state
I In the general case, there is no single process in the distributed

system that would have a knowledge of the current global
state of the system

I Due to concurrency and message passing communication

I Specific failure modes
I Processes run autonomously, in isolation

I Failures of individual processes may remain undetected
I Individual processes may be unaware of failures in the system

context



Emerged/emerging Distributed Systems

1. Commerce

2. Encyclopedias (more generally knowledge stores)

3. Publishing in general

4. Finance

5. Education

6. Science

7. Healthcare



Examples of Distributed Systems

Web Search

I Google’s infrastructure is one of the world’s largest
installations of a distributed system. It must visit and index a
ridiculously large volume of web content in a variety of
formats and then index this content for speedy results.

I Any numbers I give would be out of date tomorrow and are in
any case unimaginable

I 68 Billion pages, maybe

I Data centres around the world

I A distributed file system designed for very fast access to very
large files



Examples of Distributed Systems

(Massively) Multiplayer Games

I A particular need for fast response times

I Propogation of events and maintenance of the universe (or
global state).

I The consequences of failure are potentially not as bad for the
users (though major loss of revenue for the vendors)

I Most commericial offerings depend upon large infrastructure
whether that be centrally managed or more distributed

I But, we are seeing the emergence of peer-to-peer based
architectures for online games, with each user contributing
some resources

I As such online games can be seen as a testbed for distributed
systems (as they have proven in the past)



Examples of Distributed Systems

Online Betting

I Clearly betting has moved from the high street to the Internet

I More importantly there are now examples of distributed
“layers” or “bookmakers”

I Examples are betfair.com and intrade.com

I Traditionally a bookmaker (using a greybeard and
mathematics) would “set” or “fix” the odds for each
particular bet

I Distributed bookmakers allow anyone to “back” or “lay” any
particular bet (or market) at any particular price

I For example I can offer odds that Stoke City will win the EPL
this year at odds of 1 in 4

I Sadly it is unlikely that anyone will take up this offer.

I Odds emerge as a market outcome

betfair.com
intrade.com


Examples of Distributed Systems

Financial Markets

I On the forefront of distributed systems development

I Due to a need for real-time information from a multitude of
sources

I Have a need to relay events to potentially large numbers of
clients

I For this reason they have unsual underlying architectures
I Emergent behaviour can be undesirable here, e.g. flash crash

2:45

I Thursday 6th May 2010
I Dow Jones industrial average plunged approximately 1000

points
I This was about 9% at the time
I The largest one day point decline ever
I The losses were recovered within minutes
I Nobody knows to this day what happened
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Examples of Distributed Systems

Google bought this place for 1.9 billion dollars
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Examples of Distributed Systems

Building Location Height Built Price (USD)

The Shard London, UK 310 metres 2012 3.9b

Antilla Mumbai, India 173 metres 2007/10 2b

Taipei 101 Taipei, Taiwan 509 metres 2004 1.76b



Examples of Distributed Systems



Examples of Distributed Systems

Source Code Control

I Source code control is the endeavour to maintain a full history
of changes to a project’s source code, often by multiple
authors

I Only the original source code and the changes (or diffs) are
stored

I Concurrent updates are allowed when different parts of the
code are changed, in which case the changes can be “merged”

I Where the same part is changed concurrently there is a
“conflict” which must be resolved before operations may
continue

I This allows for multiple versions of the source code such as a
release and development branch

I Bugs can be tracked down to the change in which the bug
was introduced, thereby elminating many possible causes



Examples of Distributed Systems

Source Code Control

I This has always tended to be a distributed system

I In the sense that there are multiple authors

I Traditionally there was a client-server based architecture

I One centralised server with the single repository
I Authors request:

I New revisions
I That their revisions be recorded in the global history



Examples of Distributed Systems

Source Code Control

I Recently (last decade or so) source code control systems have
been decentralised or distributed

I Each contributor clones the entire history and has a local
repository.

I Revisions can be sent and received between any two
repositories

I There is greater fault tolerance, if the original centralised
server fails a different one is simply declared the new master

I Merging can occur between smaller groups before commiting
to a larger audience (of the master repository)



Examples of Distributed Systems

Source Code Control

I Centralised: cvs, subversion, ClearCase, Vault

I Distributed: git, mercurial, darcs, bazaar, bitkeeper



Challenges in Design of Distributed Systems

I 1. Heterogeneity
I Hardware, Networks, Operating Systems, Programming

Languages
I Not just heterogeneity of implementation but sometimes of

characteristics such as reliability or speed.
I In a sense this much of this is a networking problem, that is the

difficulty of sending messages around heterogeneous networks
I But it does have implications, such as I have mentioned before

for software versioning
I Approaches generally use abstraction

I Middleware (e.g., CORBA): transparency of network, hard-
and software and programming language heterogeneity

I Mobile Code (e.g., JAVA): transparency from hard-, software
and programming language heterogeneity through virtual
machine concept



Challenges in Design of Distributed Systems

I 2. Openness
I How open a distributed system is determines whether it can be

extended domain, both size and functionality
I Mostly determined by how well published are the interfaces

which are used
I Many web-services are being turned into mobile applications

because they have well defined and published interfaces
I An open system is less reliant on a particular vendor

I 3. Security,
I has essentially three main components:

1. Confidentiality — protection against access by unauthorised
individuals

2. Integrity — protection against alteration or corruption
3. Availability — protection against loss of access whether

circumstantial or a malicious denial of service attack

I Security forms a later part of this course — but in summary,
encryption only gets you part of the way there



Challenges in Design of Distributed Systems

I 4. Scalability
I Does the system remain effective given expectable growth?
I Expectable growth of physical resources and
I Expectable growth of users
I Avoiding Performance bottlenecks

I Early Domain Name Lookup consisted of a single centrally
hosted file

I The “hosts.txt” file mapped names to numerical addresses
I Client computers were required to periodically re-download

this file from its known location (at SRI, now SRI
International)

I The “hosts.txt” file still exists on most operating systems
today and can be used for much hilarity if you can access your
friend’s hosts.txt file

I $ dig www.some-annoying-site.com ⇒ 173.194.67.103
I 173.194.67.103 www.bbc.co.uk



Challenges in Design of Distributed Systems

I 4. Scalability
I After DNS was developed:
I Some time in the late 1970s it was decided that 32 bit

addresses would be enough, but they are currently running out.
I IP addresses are in the process of switching from 32 bit

addressing to 128 bit addressing but overcompensating could
have been a serious performance issue



Challenges in Design of Distributed Systems

I 4. Scalability
I Expectable growth is often non-obvious



Challenges in Design of Distributed Systems

I 5. Handling of failures
I Detection (may be impossible)
I Masking

I retransmission
I redundancy of data storage
I generally not guaranteed in the worst case

I Tolerance
I exception handling (e.g., timeouts when waiting for a web

resource)

I Recovery
I Can be especially tough, the failed process may have left some

permanent data in an inconsistent state

I Redundancy
I redundant routes in network
I replication of name tables in multiple domain name servers



Challenges in Design of Distributed Systems

I 6. Concurrency
I Consistent scheduling of concurrent threads (so that

dependencies are preserved, e.g., in concurrent transactions)
I Avoidance of dead- and livelock problems
I Actions are concurrent if A may happen before B and B may

happen before A
I Generally you hope for consistent results in either case
I I will have more to speak about concurrency



Challenges in Design of Distributed Systems

I 7. Transparency: concealing the heterogeneous and
distributed nature of the system so that it appears to the user
like one system.

I Transparency categories (according to ISO’s Reference Model
for ODP)

I Access: access local and remote resources using identical
operations e.g., network mapped drive

I Location: access without knowledge of location of a resource
e.g., URLs, email addresses

I Concurrency: allow several processes to operate concurrently
using shared resources in a consistent fashion

I Replication: use replicated resource as if there was just one
instance

I Failure: allow programs to complete their task despite failures
e.g., retransmit of email messages

I Mobility: allow resources to move around
I Performance: adaption of the system to varying load

situations without the user noticing it
I Scaling: allow system and applications to expand without

need to change structure or application algorithms



Any Questions

Any Questions?


