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Distributed Systems — Definitions

I “A system in which hardware or software
components located at networked computers
communicate and coordinate their actions only by
message passing.” — Coulouris

I “A system that consists of a collection of two or
more independent computers which coordinate their
processing through the exchange of synchronous or
asynchronous message passing.”

I “A distributed system is a collection of independent
computers that appear to the users of the system as
a single computer.” — Tanenbaum

I “ A distributed system is a collection of autonomous
computers linked by a network with software
designed to produce an
integrated computing facility.”



Distributed Systems — Computer Networks

Computer Networks vs. Distributed Systems

I Computer Network: the autonomous computers are explicitly
visible — have to be explicitly addressed

I Distributed System: existence of multiple autonomous
computers is transparent

I The study of computer networks is concerned with how to
send messages between machines, whilst the study of
distributed systems is how to use those networks to get stuff
done.

I However,
I many problems in common,
I in some sense networks (or parts of them, e.g., name services)

are also distributed systems, and
I normally, every distributed system relies on services provided

by a computer network.



Reasons for Distributed Systems

I Inherent distribution stemming from the application domain,
e.g.

I cash register and inventory systems for chain-stores
I computer supported collaborative work
I multi-player games

I Resource sharing is often a strong motivation
I Load distribution

I amazon.com is not a single computer
I these separate computers can be turned on-off for different

demand profiles

I Critical failure tolerance, e.g. peer-to-peer networks
I amazon.com isn’t even located on a single site.
I It is therefore resilient to (to some extent) earthquakes, power

outages and more mailicious attacks



Consequences

These may be good, bad or somewhere in between:

I Software - how to design and manage it in a distributed
system

I Dependency on the underlying network infrastructure

I Easy access to shared data raises security concerns

I Emergent behaviour, sometimes good, bad, or just fascinating



Consequences

I Distributed systems are concurrent systems
I This concept will come up again and again
I Synchronization and coordination by message passing
I Sharing of resources, as both a positive and a negative
I Typical problems of concurrent systems

I Deadlocks and Livelocks
I Unreliable communication

I Absence of a global clock
I Due to asynchronous message passing there are limits on the

precision with which processes in a distributed system can
synchronize their clocks



Consequences — continued

I Absence of a global state
I In the general case, there is no single process in the distributed

system that would have a knowledge of the current global
state of the system

I Due to concurrency and message passing communication

I Specific failure modes
I Processes run autonomously, in isolation

I Failures of individual processes may remain undetected
I Individual processes may be unaware of failures in the system

context



Emerged/emerging Distributed Systems

1. Commerce

2. Encyclopedias (more generally knowledge stores)

3. Publishing in general

4. Finance

5. Education

6. Science

7. Healthcare



Examples of Distributed Systems

Web Search

I Google’s infrastructure is one of the world’s largest
installations of a distributed system. It must visit and index a
ridiculously large volume of web content in a variety of
formats and then index this content for speedy results.

I Any numbers I give would be out of date tomorrow and are in
any case unimaginable

I 68 Billion pages, maybe

I Data centres around the world

I A distributed file system designed for very fast access to very
large files



Examples of Distributed Systems

(Massively) Multiplayer Games

I A particular need for fast response times

I Propogation of events and maintenance of the universe (or
global state).

I The consequences of failure are potentially not as bad for the
users (though major loss of revenue for the vendors)

I Most commericial offerings depend upon large infrastructure
whether that be centrally managed or more distributed

I But, we are seeing the emergence of peer-to-peer based
architectures for online games, with each user contributing
some resources

I As such online games can be seen as a testbed for distributed
systems (as they have proven in the past)



Examples of Distributed Systems

Online Betting

I Clearly betting has moved from the high street to the Internet

I More importantly there are now examples of distributed
“layers” or “bookmakers”

I Examples are betfair.com and intrade.com

I Traditionally a bookmaker (using a greybeard and
mathematics) would “set” or “fix” the odds for each
particular bet

I Distributed bookmakers allow anyone to “back” or “lay” any
particular bet (or market) at any particular price

I For example I can offer odds that Stoke City will win the EPL
this year at odds of 1 in 4

I Sadly it is unlikely that anyone will take up this offer.

I Odds emerge as a market outcome



Examples of Distributed Systems

Financial Markets

I On the forefront of distributed systems development

I Due to a need for real-time information from a multitude of
sources

I Have a need to relay events to potentially large numbers of
clients

I For this reason they have unsual underlying architectures
I Emergent behaviour can be undesirable here, e.g. flash crash

2:45

I Thursday 6th May 2010
I Dow Jones industrial average plunged approximately 1000

points
I This was about 9% at the time
I The largest one day point decline ever
I The losses were recovered within minutes
I Nobody knows to this day what happened



Examples of Distributed Systems

Financial Markets

I On the forefront of distributed systems development

I Due to a need for real-time information from a multitude of
sources

I Have a need to relay events to potentially large numbers of
clients

I For this reason they have unsual underlying architectures
I Emergent behaviour can be undesirable here, e.g. flash crash

2:45
I Thursday 6th May 2010
I Dow Jones industrial average plunged approximately 1000

points
I This was about 9% at the time
I The largest one day point decline ever
I The losses were recovered within minutes
I Nobody knows to this day what happened



Examples of Distributed Systems

Google bought this place for 1.9 billion dollars
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Examples of Distributed Systems

Building Location Height Built Price (USD)

The Shard London, UK 310 metres 2012 3.9b

Antilla Mumbai, India 173 metres 2007/10 2b

Taipei 101 Taipei, Taiwan 509 metres 2004 1.76b



Examples of Distributed Systems



Examples of Distributed Systems

Source Code Control

I Source code control is the endeavour to maintain a full history
of changes to a project’s source code, often by multiple
authors

I Only the original source code and the changes (or diffs) are
stored

I Concurrent updates are allowed when different parts of the
code are changed, in which case the changes can be “merged”

I Where the same part is changed concurrently there is a
“conflict” which must be resolved before operations may
continue

I This allows for multiple versions of the source code such as a
release and development branch

I Bugs can be tracked down to the change in which the bug
was introduced, thereby elminating many possible causes



Examples of Distributed Systems

Source Code Control

I This has always tended to be a distributed system

I In the sense that there are multiple authors

I Traditionally there was a client-server based architecture

I One centralised server with the single repository
I Authors request:

I New revisions
I That their revisions be recorded in the global history



Examples of Distributed Systems

Source Code Control

I Recently (last decade or so) source code control systems have
been decentralised or distributed

I Each contributor clones the entire history and has a local
repository.

I Revisions can be sent and received between any two
repositories

I There is greater fault tolerance, if the original centralised
server fails a different one is simply declared the new master

I Merging can occur between smaller groups before commiting
to a larger audience (of the master repository)



Examples of Distributed Systems

Source Code Control

I Centralised: cvs, subversion, ClearCase, Vault

I Distributed: git, mercurial, darcs, bazaar, bitkeeper



Challenges in Design of Distributed Systems

I 1. Heterogeneity
I Hardware, Networks, Operating Systems, Programming

Languages
I Not just heterogeneity of implementation but sometimes of

characteristics such as reliability or speed.
I In a sense this much of this is a networking problem, that is the

difficulty of sending messages around heterogeneous networks
I But it does have implications, such as I have mentioned before

for software versioning
I Approaches generally use abstraction

I Middleware (e.g., CORBA): transparency of network, hard-
and software and programming language heterogeneity

I Mobile Code (e.g., JAVA): transparency from hard-, software
and programming language heterogeneity through virtual
machine concept



Challenges in Design of Distributed Systems

I 2. Openness
I How open a distributed system is determines whether it can be

extended domain, both size and functionality
I Mostly determined by how well published are the interfaces

which are used
I Many web-services are being turned into mobile applications

because they have well defined and published interfaces
I An open system is less reliant on a particular vendor

I 3. Security,
I has essentially three main components:

1. Confidentiality — protection against access by unauthorised
individuals

2. Integrity — protection against alteration or corruption
3. Availability — protection against loss of access whether

circumstantial or a malicious denial of service attack

I Security forms a later part of this course — but in summary,
encryption only gets you part of the way there



Challenges in Design of Distributed Systems

I 4. Scalability
I Does the system remain effective given expectable growth?
I Expectable growth of physical resources and
I Expectable growth of users
I Avoiding Performance bottlenecks

I Early Domain Name Lookup consisted of a single centrally
hosted file

I The “hosts.txt” file mapped names to numerical addresses
I Client computers were required to periodically re-download

this file from its known location (at SRI, now SRI
International)

I The “hosts.txt” file still exists on most operating systems
today and can be used for much hilarity if you can access your
friend’s hosts.txt file

I $ dig www.some-annoying-site.com ⇒ 173.194.67.103
I 173.194.67.103 www.bbc.co.uk



Challenges in Design of Distributed Systems

I 4. Scalability
I After DNS was developed:
I Some time in the late 1970s it was decided that 32 bit

addresses would be enough, but they are currently running out.
I IP addresses are in the process of switching from 32 bit

addressing to 128 bit addressing but overcompensating could
have been a serious performance issue



Challenges in Design of Distributed Systems

I 4. Scalability
I Expectable growth is often non-obvious



Challenges in Design of Distributed Systems

I 5. Handling of failures
I Detection (may be impossible)
I Masking

I retransmission
I redundancy of data storage
I generally not guaranteed in the worst case

I Tolerance
I exception handling (e.g., timeouts when waiting for a web

resource)

I Recovery
I Can be especially tough, the failed process may have left some

permanent data in an inconsistent state

I Redundancy
I redundant routes in network
I replication of name tables in multiple domain name servers



Challenges in Design of Distributed Systems

I 6. Concurrency
I Consistent scheduling of concurrent threads (so that

dependencies are preserved, e.g., in concurrent transactions)
I Avoidance of dead- and livelock problems
I Actions are concurrent if A may happen before B and B may

happen before A
I Generally you hope for consistent results in either case
I I will have more to speak about concurrency



Challenges in Design of Distributed Systems

I 7. Transparency: concealing the heterogeneous and
distributed nature of the system so that it appears to the user
like one system.

I Transparency categories (according to ISO’s Reference Model
for ODP)

I Access: access local and remote resources using identical
operations e.g., network mapped drive

I Location: access without knowledge of location of a resource
e.g., URLs, email addresses

I Concurrency: allow several processes to operate concurrently
using shared resources in a consistent fashion

I Replication: use replicated resource as if there was just one
instance

I Failure: allow programs to complete their task despite failures
e.g., retransmit of email messages

I Mobility: allow resources to move around
I Performance: adaption of the system to varying load

situations without the user noticing it
I Scaling: allow system and applications to expand without

need to change structure or application algorithms



Any Questions

Any Questions?
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Fundamental Concepts

I Distributed Systems are first and foremost complex software
systems

I Architectural paradigms pertinent to distributed systems:
I Layers
I Client-Server



Layers

I The basic idea of a layered approach in general:
I layer: A group of closely related and highly coherent

functionalities
I service: The functionality provided to the superior layer.



An Example Layer Approach

1. Physical transistors

2. Chip architecture; uses physical transistors and provides a set
of (binary encoded) machine instructions for basic operations

3. Assembly code; uses binary codes to provide almost the same
instructions in an alphabet incoding.

4. Systems programming language: compiler uses the assembly
code to expose a high-level programming language such as C

5. Operating System (kernel): uses the systems programming
language to provide a range of services to aid application
programming

6. Application programming language: provides servies for the
application programmer using the operating system and
systems programming language



Layering in Distributed Systems

Typically:

1. Computer and Network

2. Platform: hardware and operating system providing access to
network protocols

3. Middleware: Used to achieve transparency of heterogeniety at
the platform level

4. Applications and services built on top of the middleware



Client-Server Architecture

I The Client-Server Architecture basic mode:

I Client: A process wishing to access some resource or perform
operations on a different computer

I Server: Process which accepts requests from clients and
processes those requests eventually providing a response

I The client is often referred to as the “active” player and the
server the “passive” since it is the client which initiates
communication.

I In common parlance a server is a machine but here it is a
process

I In order to satisfy some request the server may become a
client and make some request of a different server

I Where this is taken to an extreme we get “Peer Processes”
which have largely the same functionality and do not describe
a client-server architecture



Client-Server Architecture

Variants – Multiple Servers

I Service provided by multiple servers

I Many commercial web services implemented by many different
physical servers. This is so common now that it is almost the
single server that is the variant.

I Motivation:
I Peformance
I Reliability

I Servers generally must maintain a replicated or distributed
database



Client-Server Architecture

Variants – Proxy Servers

I Proxy server provides transparency of replication/distribution



Client-Server Architecture

Variants – Proxy Servers

I Proxy server may maintain cache of responses to recent
requests

I Requires that identical requests receive identical responses,
often this means that the cache store is time bounded

I Frequently used in search engines



Client-Server Architecture

Variants – Proxy Servers



Client-Server Architecture

Further Client-Server Variants

I Mobile Code
I Code that is sent to the client
I Java Applets, Flash etc.

I Mobile Agents — really a specific form of mobile code
I Thin Clients

I Note so much a variant as an extreme example



Client-Server Architecture

I Software Implications
I Use of client-server has impact on the software architecture

used
I What kinds of requests and responses are allowed
I What are the synchronisation mechanisms between client and

server
I Smaller shorter requests vs. Larger slower requests.



Client-Server Architecture

I Design Challenges
I Quality of service

I Performance: Response times

I Performance: throughput
I Performance: timeliness
I Reliability: Server must obviously be generally available
I Adaptability: For example to high and low demand
I Dependability: Fault tolerance, not just the server but a client

may be faulty (isup.me)
I Security: The server is an obvious point to attack as well as

the communication channels of any distributed system



Peer-to-Peer Architecture

I Client-Server approach scales poorly

I As the number of users grows so too do the demands on the
centralised resources at the server

I In response Peer-to-Peer architectures arose from the
realisation that the resources (computing, data and
networking) owned by users of a service could be put to use to
support that service

I This has a number of useful consequences but most obviously
the shared resources available to users grows with the growth
of new users.

I The distributed source code control systems described earlier
could be described as peer-to-peer source code control.

I More to say on Peer-to-Peer distributed systems later



Fundamental Interaction Model

I Distributed System
I Multiple processes
I Connected by communication channels

I Distributed Algorithm
I Steps to be taken by each process
I Defines the communication between processes
I Does not directly define the sequence of steps globally

I We create models to:
I Make explicit all relevant assumptions about the distributed

system we are modelling/designing
I Make generalisations about what is possible given those

assumptions, for example desirable properties such as no
deadlock.

I Model aspects (may or may not be the same model):
I Interaction model
I Performance model
I Failure model
I Security model



Interaction Model

Synchronous distributed system
I time to execute each step of a computation within a process

has known lower and upper bounds
I message delivery times are bound to a known value
I each process has a clock whose drift rate from real time is

bounded by a known value

Asynchronous distributed system
I no bound on process execution times
I no bound on message delivery times
I no bound on clock drift rate

Note
I synchronous distributed systems are easier to handle, but

determining realistic bounds can be hard or impossible
I asynchronous distributed systems are more abstract and

general: a distributed algorithm executing on one system is
likely to also work on another one



Interaction Model

Event Ordering

I As we will see later, in a distributed system it is impossible for
any process to have a view on the current global state of the
system

I Possible to record timing information locally, and abstract
from real time (logical clocks)

I event ordering rules:
I if e1 and e2 happen in the same process and e1 happens before

e2 then e1 → e2

I if e1 is the sending of a message m and e2 is the receiving of
the same message m then e1 → e2

I Hence, → describes a partial ordering relation on the set of
events in the distributed system



Performance Model

Performance Characteristics of Communication Channels
I latency delay between sending and receipt of message

I network access time (e.g. Ethernet transmission delay)
I time for first bit to travel from sender’s network interface to

receiver’s network interface.

I throughput: number of units (eg packets) delivered per unit
of time

I bandwidth: amount of information transmitted per time unit

I delay jitter: variation in delay between different messages of
the same type, (e.g., video frames)



Failures

Omission Failures
I process omission failures

I detection with timeouts
I crash is fail-stop if other processes can detect with certainty

that process has crashed

I communication omission failures: message is not being
delivered — dropping of messages

I possible causes:
I network transmission error
I receiver incomming message buffer overflow

Arbitrary Failures

I process: omit intended processing steps or carry out
unintended ones

I communication channel: corruption or duplication etc.



Failures

Class of Failure Affects Description

Fail-stop Process Process halts and remains halted.
Other processes may detect this.

Crash Process Process halts and remains halted.
Other processes may not detect this.

Omission Channel A message inserted in one outgoing
buffer never arrives at the other end’s
incoming buffer

Send-omission Process A process completes a send but the
message is never put in its outgoing
buffer

Receive-
omission

Process A message is put in a process’s in-
coming buffer but the process never
receives it.

Arbitrary
(Byzantine)

Process /
Channel

Process/channel exhibits arbitrary be-
haviour: it may send/transmit arbir-
tary messages at arbitrary times.



Failures

Masking/Hiding Failures

I A service may mask an error by hiding it entirely or,

I converting it into a more acceptable type of error

I A reliable protocol can be built upon an unreliable protocol by
requesting retransmission of dropped messages

I Message sequence numbers can be used to ensure no message
is delivered twice, particularly when used with a guaranteed
delivery protocol.

I Parity bits or checksums can be used to detect an error and
thereby turn an arbitrary failure into an omission failure.



Security

I Two related problems:
I We wish to make sure only the intended recipient(s) can

receive a message
I Additionally messages (for example invocation requests) should

be authenticated so that we know from whom they originated

I These can be largely mitigated against with the use of modern
cryptographic algorithms

I However their use incurs some cost which we may hope to
minimise

I Denial of service
I generating debilitating network or server load so that services

become the equivalent of unavailable

I Mobile Code:
I requires executability priviledges on target machine
I code may be malicious



Summary — Fundamental Interaction Model

I We have looked at architectural models: Client-Server and
Peer-to-Peer.

I These are complemented by fundamental models to aid in
reasoning about behaviour:

I Interaction model
I Classifies models as synchronous or asynchronous
I Identify basic components from which distributed systems are

built

I Performance model — sometimes combined with interaction
I concerned with the efficiency of completing global tasks
I can be used to compare approaches

I Failure model
I Used to analyse how resilient a distributed system is to failures
I Can be used to classify what can go wrong and how that

affects the system including other peers

I Security model
I Allows us to keep the costs associated with security measures

to a minimum



Networking — Types of Networks

1. Personal Area Networks — generally wireless e.g. bluetooth

2. Local Area Networks

3. Wide Area Networks

4. Wireless local area networks

5. Wireless Wide Area Networks (3G and now 4G)

6. Internetworks — comprising of potentially many kinds of
networks linked together by routers and gateways. The
Internet being the most obvious example.



Getting Messages to Destinations — Switching

Broadcasting

I Broadcasting is one way of getting the message to its
intended recipient

I Simply send it to everyone and have all the receivers filter
their messages to receive only the ones intended for them

I A bit like spam

I Local area networks are commonly built on this technology (in
particular Ethernet is)

I Wireless networks are necessarily broadcast networks

I Cryptography can be used to force filtering on the receivers

I Broadcasting does not scale well with the number of senders



Getting Messages to Destinations — Switching

Broadcasting

Photo copyright Kwozie flickr user



Getting Messages to Destinations — Switching

Circuit Switching

I Was used for the telephone system

I Very rarely used for computer networks

I Circuit switching does have some advantages including greater
efficiency once the circuit has been initiated

I Long distance networks required several switches in-between
end-points.

I However it has several disadvantages including:
I low adaptability to changing traffic
I low adaptability to loss of communication channel



Getting Messages to Destinations — Switching

Packet Switching or Store and Forward

I When networks were built with computers so came the
possibility to do some processing at each node along the path

I Packet switching is an example of what is called a “store and
forward” network

I Each packet is treated separately at each node, it is first
stored and then a decision is made about how and where to
forward it

I The postal system is an example of a store and forward
network, using packet switching



Getting Messages to Destinations — Switching

Packet Switching or Store and Forward

I Packet Switching can adapt to changing network conditions

I Including the loss of a communication channel

I They do incur some disadvantages, in particular packages may
arrive out of order

I Packet lengths are restricted in order to:
I Each computer in the network can allocate sufficient storage to

hold the largest possible incoming packet
I Avoid undue delays in waiting for communication channels to

become free (essentially the same reason you don’t send an
unsegmented thesis to the printer)

I “frame relay” is a compromise between circuit and package
switching.



Protocols

I Protocols enable communication between computers
I A protocol specifies:

1. The sequence of messages that must be exchanged e.g.
message - acknowledgement

2. The format of the data in the messages

I A key idea is that of protocol layering

I Software at the sender and receiver is arranged in modules
representing each layer

I Conceptually the software at layer N is communicating with
the other computer at layer N

I But in reality is invoking and reacting to the layer below

I In particular one can build a reliable communication layer atop
an unreliable communication layer.



Routing

I Routing is required in networks larger than a LAN

I Adaptive routing allows for changes in network traffic and
connectivity

I A routing algorithm is implemented by a program in the
network layer at each node

I It must:

1. Determine the route taken by each packet as it travels through
the network. A circuit switched network will set up a route for
all subsequent packets but a packet switched network will
perform the same steps for each packet. The routing algorithm
in a packet switched network must therefore be simple and
efficient.

2. Dynamically update its knowledge of the network so as to
better route subsequent packets/circuits

I Internet routing is essentially path finding in graphs.



Routing — Example Algorithm

Router Information Protocol (RIP)

1. Maintain a routing table:

Dest Link Cost

1 local 0

2 2 1

8 2 4

2. Periodically — and whenever the local routing table changes
— send table in summary form to all accessible links

3. If a routing table packet is received from a neighbouring
router update your own table accordingly:

I If there is a new destination add that row to your table
I If there is a lower cost route to an existing node update the

appropriate row
I If the table was received on link N replace all differing rows

with N as the link

4. If a link L becomes unavailable set cost to ∞ for all entries
with L. Since the routing table has changed, send it to all
accessible links.



Routing — Example Algorithm

Router Information Protocol (RIP)

Dest Link Cost

Allan local 0

Bob lBob 1

Alice lAlice 1

Susan lAlice 5



Routing — Example Algorithm

Router Information Protocol (RIP)
Bob sends me a new table and it has information about a node I
hadn’t seen before “Harry” at a cost of 8

Dest Link Cost

Allan local 0

Bob lBob 1

Alice lAlice 1

Susan lAlice 5

Harry lBob 9



Routing — Example Algorithm

Router Information Protocol (RIP)
Susan now sends me an updated table and it contains information
about “Harry” that she can get a packet there within 5 hops.

Dest Link Cost

Allan local 0

Bob lBob 1

Alice lAlice 1

Susan lAlice 5

Harry lAlice 6



Routing — Example Algorithm

Router Information Protocol (RIP)

I Don’t forget that after each of these updates I perform a send
to all outgoing links.

I In particular Bob could now have received my table linking to
Harry in 6 which would mean he would have a new route to
Harry through me at a cost of 7 beating his previous 8.

I I now receive a table from Alice with the “Harry” link set to
∞.

Dest Link Cost

Allan local 0

Bob lBob 1

Alice lAlice 1

Susan lAlice 5

Harry lAlice ∞



Routing — Example Algorithm

Router Information Protocol (RIP)
I then later detect that the link lAlice has been broken

Dest Link Cost

Allan local 0

Bob lBob 1

Alice lAlice ∞
Susan lAlice ∞
Harry lAlice ∞



Routing — Example Algorithm

Router Information Protocol (RIP)
Bob then later sends his table which still has a link to Harry at
cost 8

Dest Link Cost

Allan local 0

Bob lBob 1

Alice lAlice ∞
Susan lAlice ∞
Harry lBob 9



Routing — Example Algorithm

Router Information Protocol (RIP)

I This algorithm has been shown to eventually converge on the
best routes to each destination whenever the network is
changed

I This is a simple version of the algorithm and it may be
improved in many ways:

1. The cost metric can take into account bandwidth
2. Avoid undesirable intermediate states before convergence, such

as loops.
I Optional home exercise: show an example where there is a

looping intermediate state

I Note: this is a distributed algorithm: I promised you that
“parts of computer networks are distributed systems”



Networking Issues

I Performance — We are of course most interested in the speed
with which individual messages can be transferred between
two computers.

I latency delay after a send is initiated before data begins to
arrive at the destination

I data transfer rate this is the bits per second rate that is
quoted.

I Message transmission time = latency + length/data transfer
rate

I Though longer messages may require segmentation into
multiple messages

I Latency affects small frequent message passing which is
common for distributed systems



Networking Issues — Performance

I Time required to transmit a short message and receive a reply
on a small local network: about half a millisecond (0.0005s)

I Time required to invoke an operation on an object in local
memory: sub-microsecond (0.000001s)

I About a thousand times slower on the network

I However, networks can outperform hard-disks.

I So if you have one large server with a very large amount of
system memory this may perform better than several
machines with small amounts of system memory

I Over the Internet we might be looking at about 5-500
milliseconds

I Some of this is latency (switching delays at routers) and some
is data transfer rate (contention for network circuits)



Networking Issues — Reliability

I Physical transmission media is generally pretty reliabile —
though wireless less so

I Message losses are often due to software errors

I Many applications are able to recover and/or tolerate
transmission errors.

I A guaranteed communication channel is often therefore
needless overhead.

I In particular because the software itself may lose the message
it must be designed to account for that — it may then as well
cope with transmission failure by the communication channel.

I But it depends on the transmission media

I Must try to reduce the amount of incorrect data that is
transmitted as well as the amount of checking done on correct
data.



Reliability

Left 1 2 3 4 5 Right

Left 1 2 3 4 5 Right

Left 1 2 3 4 5 Right

Left 1 2 3 4 5 Right

Left 1 2 3 4 5 Right

Red denotes a node at which error detection/correction occurs

I If the probability of a message getting through any channel is
0.5 then completing the trip is 0.56 = 0.016

I Fortunately communication channels are generally more
reliable

I ( 9999
10000)6 = 0.9994 > 999

1000



Networking Issues — Security

I Security is generally handled more at the application layer
I Generally through cryptographic techniques
I Though the network can provide some level of security
I A firewall is catch all solution with associated inefficiencies
I For some organisations those inefficiencies are deemed

appropriate.



Interprocess Communication

Interprocess Communication



UDP and TCP

I Two internet protocols provide two alternative transmission
protocols for differing situations with different characteristics

I User Datagram Protocol — UDP
I Simple and efficient message passing
I Suffers from possible omission failures
I Provides error detection but no error correction

I Transmission Control Protocol – TCP
I Built on top of UDP
I Provides a guaranteed message delivery service
I But does so at the cost of additional messages
I Has a higher latency as a stream must first be set up
I Provides both error detection and correction



UDP and TCP

I User Datagram Protocol — UDP
I Is connectionless
I Used for small requests from possibly large numbers of clients
I Examples: DNS, RIP and VOIP and online gaming
I VOIP: The biran prefmros smoe erorr mkasnig for us
I Sometimes used for larger requests when the application may

be able to do its own error correction

I Transmission Control Protocol – TCP
I Is connection based
I Used for larger requests
I Examples: SMTP, HTTP and TELNET



UDP and TCP

Failure Models
I User Datagram Protocol — UDP

I Sometimes packages are dropped — no guaranteed validity
I Messages may be delivered out of order — no guaranteed

validity
I Checksums are used to provide near guaranteed integrity

I Transmission Control Protocol – TCP
I Uses checksums to give near guaranteed integrity
I Uses sequence numbers, timeouts and retransmissions to

provide guaranteed validity
I If the communication channel is bad enough then timeouts may

occur often enough for the connection to be deemed broken
I Therefore there is no absolute guarantee of reliabile

communication
I Processes cannot distinguish between network failure and

failure of the other process
I Processes cannot be sure that recent messages have

succeeded or failed.



Send and Receive

I Communication between to separate hosts is supported by two
operations, simply send and receive

I Two modes of communication:
1. Synchronous

I communicating processes synchronise on every message
I Hence both sending and receiving are blocking operations
I Sort of the “instant messaging” of the data communication

world

2. Asynchronous
I Only the receive operation is blocking, the send is not
I The “e-mail” of the data communcation world
I A form of non-blocking receive can be built, however this is

really just a thread which waits and then sends a signal to the
parent thread when there is received data to be read



Sockets

I Sockets are a dominant abstraction programmers use for
writing synchronous and asynchronous communication

I A process may use the same socket for sending and receiving

I A socket is associated with an Internet Address and a Port
number

I Generally servers will advertise on which ports they will receive

I Only a single process can receive on a particular port

I Sockets can be used to send/receive UDP messages

I Sockets can also be used to set up a TCP stream of
communication, generally two such streams are initiated to
enable two-way communication between the two hosts.



Multicast

I For some applications it is appropriate to send a single
message to many recipients

I Multicast is essentially a selective broadcast

1. unicast
2. anycast (one of a group)
3. multicast
4. broadcast

I The most common reasons for multicast are:

1. Efficiency
2. Simplicity/transparency for the sender, in particular the sender

need not necessarily know all the recipients

I However there are some issues, in particular we must consider
the failure semantics of multi-recipient messages.

I Attempts to provide strict failure semantics for multicast
messages unfortunately often negate part or all of these two
advantages



Multicast



Multicast

Uses of Multicast

1. Fault tolerance based on replicated services

2. Data replication for increased efficiency

3. Discovery of services in spontaneous networking

4. Propagation of event notifications



Multicast

Plausible Failure Semantics

1. Maybe semantics — The multicast equivalent of UDP, some
processes may receive each message some may not. They may
receive messages in different orders

2. Either all members receive a message or none do, some may
receive a message out of order

3. All members of the group receive every message in the correct
order

I called: totally ordered multicast
I We will see this in more detail in a later part of the course



IP-Multicast

I UDP failure semantics:

I For each message, some members of the group may receive
the message some may not

I IP-Multicast is built on top of IP

I The sender is unaware of the identities of the individual
recipients of the message

I IP addresses (in IPv4) in the range 224.0.0.0 to
239.255.255.255 are reserved for multicast traffic and are
managed globally

I Any socket (that is any port on any computer with an IP
address) may join any IP-multicast group

I IGMP (Internet Group Management Protocol) is used both for
requesting entry to a group and for communication between
adjacent routers



IP-Multicast

I Upon receiving a multicast message a multicast router sends
the message on to any links which have members of the group

I To avoid eternally propogating messages, each multicast
message has a “Time To Live” variable which is decremented
with each propogation

I Groups ownership is not addressed by the IP-multicast
protocol

I For small local groups this can be achieved through using a
small time to live number

I Over the Internet other solutions are required, for example
Multcast Address Allocation Architecture is a client-server
based solution, in which the server maintains addresses which
are free.



Multicast XCAST Implementation

I An alternative way to implement multicast is to require the
sender to attach each recipient address to the message

I This is used by XCAST (Explicit Multi-Unicast), which is
implemented on top of IP and places each receiver’s address
in the IP packet header

I Since IP-packets are limited in size, this places a strict limit
on the size of the group

I The group must also be known ahead of time

I However it is appropriate for use when there are a large
number of small sessions which have a small number of groups

I Video conferencing for example



External Data and Marshalling

I Ultimately processes/algorithms wish to exchange data

I But messages are restricted to a sequence of bytes

I Hence the communicating processes must agree in advance a
suitable format in which the data should be converted
to/from a sequence of bytes

I Examples:
I XML
I Java serialisation
I JSON
I CORBA



External Data and Marshalling

CORBA

I Common Object Request Broker Architecture

I Marshals data for receivers that have prior knowledge of the
types of the objects to be communicated

I Type information is defined in an Interface Definition
Language (IDL) file

I IDL files can be automatically mapped to programming
language type definitions and code to (de)marshall object

I Has the disadvantage that types must be agreed upon in
advance

I Has the advantage that there is no overhead in
communicating the type



External Data and Marshalling

Java Serialisation

I Includes the full type information in the marshalled data

I Uses reflection in order to obtain that type information

I Is restricted of course to use with the Java programming
language (and languages specifically designed to interoperate)

I The .NET framework has a similar approach

XML

I More general than either Java Serialisation or CORBA

I Can be used in both modes, that is either to send type
information together with the data or agree on pre-existing
types



External Data and Marshalling

JSON

I Javascript Object Notation

I Includes type information, but that type information is basic

I Number, String, Boolean, Array, Null or

I Object — a list of key-value pairs

I Is becoming very popular because it is useful for many
languages and requires no parsing by the application
programmer

I In particular popular with dynamic languages such as Python



Summary

I UDP provides simple, efficient, connectionless sending of
messages with few guarantees

I TCP provides connection-based sending atop UDP with
greater guarantees of validity, no omission failures

I Programming APIs built atop these tend to rely on the
Sockets abstraction to provide synchronous or asynchronous
send and receive operations

I Marshalling is used to send complex data structures as
one-dimensional sequences of bytes

I Different approaches may require prior agreement as to the
types of the marshalled data and may make constraints on
programming language used



Any Questions

Any Questions?



Distributed Systems — Questions

Questions

I Question : Are — and if not, why not? — platform layers not
generally standardised to reduce/remove the need for
middlewares like some kind of distributed POSIX?

I Answer : To some degree, for example the Sockets abstraction
is widely implemented. Essentially middleware exists either
because popular platforms have not agreed upon a common
abstraction or because that abstraction more usefully sits
outside of the realm of the “platform”. Why platform vendors
cannot agree upon common abstractions is more of a social
and possibly economic question.



Distributed Systems — Questions

Questions

I Question : Proxy servers provide transparency of
replication/distribution. Can they be classified as middleware?

I Answer : Middleware is a term used only for software, since a
proxy must ultimately be realised in hardware we wouldn’t
normally say that a proxy is middleware.



Distributed Systems — Questions

Questions

I Question : With regards to synchronous and asynchronous
systems, specifically determining realistic bounds, why can one
not just specify bounds that covers all possible circumstances?
For example, assuming that, say, HTTP GET requests will
always return within 10 minutes if the server is available?
Obviously this assumption is ridiculous, but at least then the
bounds are known.

I Answer : The key point is whether or not one can determine
useful bounds. The distinction is more in how we then treat
the communication system. All systems can have fairly
unreasonable bounds applied — a message may arrive
instantaneously or may take 1000 years. Atop which you could
attempt to build a reliable communication system using a
timeout of 2000 years. Alternatively one could simply assume
asynchronicity and build on top of that.



Distributed Systems — Questions

Questions

I Question : Can you give an example of a process omission
failure and the difference between process omission and
arbitrary failures?

I Answer :
I A process omission failure is when a message which should

have been sent (or received) simply isn’t. It might be because
the code of the process is erroneous, or it might be some
software driver is incorrect. For example perhaps the message
was put in the out-going buffer but that buffer was full and the
software did not deal with that correct.

I So for example in the RIP protocol one of the routers may
simply fail to send on their updated RIP-table after an update

I An arbitrary failure is when a message is sent, but the message
sent is not the correct message. Generally this is more likely to
be incorrect logic in the code of the process itself.



Distributed Systems — Questions

Questions

I Question : Can you give an example of a process omission
failure and the difference between process omission and
arbitrary failures? — continued

I Answer :
I In the RIP algorithm one process may simply send an incorrect

table. Or it may erroneously set all link costs to ∞ and hence
— at least temporarily — continuously send incorrect routing
tables.

I The question is, given such an error, how does the distributed
algorithm cope with this. Is it detectable? Is the behaviour
acceptable even if it is not detected or in the meantime before
it is detected?



Introducing PEPA

I PEPA: Performance Evaluation Process Algebra

I Modellers define their model by first describing a set of
sequential components and then combining those sequential
components together in parallel to form the main system
equation.

I Definitions are built using the choice (+), prefix (.) operators.

I The system equation is built using the cooperation operators
BC

L
, ‖ and hiding \.



Service Example

Service = (request,>).Service
+ (service, rserve).Service
+ (break , rbreak).Broken

Broken = (repair , rrepair ).Service
+ (request,>).Broken

Client = (request, rjoin).Wait
Wait = (service,>).Client

Service BC
L

Client[clients]

where L = {request, service}
and Client[3] = Client ‖ Client ‖ Client



State Specifications Examples

Broken == 1 The/a server is in the state Broken

Wait > 3 More than three clients waiting

Broken == 1 && Wait > 3 Both the previous are true

Service < Wait Fewer servers ready than clients waiting



Activity Probe Specifications Examples

a : start, b : stop Any state between the a and b actions

P :: (a : start, b : stop) . . . as observed by a single P process

(a|b|c) : start, (x |y) : stop choice to start and end

(a, a, a)/b : start, b : stop As before, without a b interrupting



PEPA

More information at: www.dcs.ed.ac.uk/pepa



Concurrent Finite State Machines

I An example of an interaction modelling framework

I Due to Brand and Zafiropoulo

I Consist of a set of finite state machines which can
communicate via a set of communication channels

I Every FSM represents a concurrent, communication process

I One pair of channels (Cij and Cji )) for each pair of machines
I Every communication channel is:

I full-duplex
I error-free
I has a first-in-first-out strategy
I had unbounded capacity
I So this represents a perfect full-duplex channel



Concurrent Finite State Machines

Formalisation

I N: a positive integer

I i, j = 1, . . . , N indexes over processes

I 〈Qi 〉Ni=1 N disjoint finite sets, Qi denotes the state of process I.

I 〈Aij〉Ni ,j=1 disjoint sets where Aij denotes the message alphabet
for the channel i −→ j

I ∀iAii = {}
I δ: relation determining for each pair (i,j) the following

functions
I Qi × Aij → Qi : send from i to j
I Qi × Aji → Qi : receive from j at i

I 〈q0
i 〉 the initial states such that ∀i(q0

i ∈ Qi )

I AND SO: we call (〈Qi 〉, 〈q0
i 〉, 〈Aij〉, δ) a protocol



Concurrent Finite State Machines

Notation

I si ∈ Qi : state of process i
I xij ∈ Aij : a message

I ?xij reception of a message
I !yji sending of a message

I f((s1, .. sn)) = (f(s1), .., f(sn))

I x,y: message

I X,Y: sequence of messages

I x, xy, xY, xXY : concatenated sequences of messages



Concurrent Finite State Machines

Alternating Bit Protocol

I Simple protocol securing unreliable message channels

I Sender sends message msgn with n ∈ 0, 1 a sequence number

I Receiver acknowledges with ackn

I Sender sets new sequence number at 1 + n mod 2

I Retransmission of current message when wrong sequence
number receieved



Concurrent Finite State Machines

I Semantics of a protocol:
I The set of admissable state sequences

I State of a protocol:
I sum of:

1. Local state of each of the processes
2. state of all channels (which is the sequence of all messages

along it which have been sent but not received)

I We call this the global system state.



Concurrent Finite State Machines

Obtaining All Computations:

1. Initially all processes in their initial states and all channels
empty

2. System is in a current global system state s

3. State transition triggered by send and receive events
I send event:

I add a message to the tail of the appropriate channel
I update the local state of the sending process

I receive event:
I take the message from the head of the message queue
I update the local state of the receiving process

4. Leads to a new global system state



Concurrent Finite State Machines

State Transition Relation

I Let P be a protocol and G be the set of all global system
states (S,C)

I The ` (G −→ G ) is defined as follows: (S ,C ) ` (S ′,C ′) iff
∃i , k , xij such that (S ,C ) and (S ′,C ′) are identical other than
either

I si’ = δ(si, !xij) and cij’ = cij xij
I or
I si’ = δ(si, ?xij) and cji = xji cji’



Concurrent Finite State Machines

Reachable Global System State
I Let:

I G0 be the initial global system state
I G a global system state of the same protocol
I ` the state transition relation of the same protocol
I `∗ the transitive closure of `

I We say that G is reachable if:
I G`∗G

Paths and the language accepted by a protocol can be defined via
`∗ as would be done for NFAs.



Concurrent Finite State Machines

Expressiveness
I Theorem: CFSMs are Turing complete

I Many proofs possible (including proof by claiming it is obvious)
I One such idea:

I three processes P1, P2, P3
I Simulate the control of the Turing Machine in P2
I Use P1 and the channels c12 and c21 to simulate the left of

the tape
I Use P3 and the channels c23 and c32 to simulate the right of

the tape
I since all cij have unbounded capacity we have an inifite tape

Consequences

I global state space has unbounded size
I undecidable problems include:

I termination
I will some communication event ever be executed?
I is some system state reachable?
I is the protocol deadlock free?
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Distributed Systems — Time and Global State

Introduction In this part of the course we will cover:

I Why time is such an issue for distributed computing

I The problem of maintaining a global state

I Consequences of these two main ideas

I Methods to get around these problems



Global Notion of Time

I Einstein showed that the speed of light is constant
for all observers regardless of their own velocity

I He (and others) have shown that this forced several other
(sometimes counter-intuitive) properties including:

1. length contraction
2. time dilation
3. relativity of simultaneity

I Contradicting the classical notion that the duration of the
time interval between two events is equal for all observers

I It is impossible to say whether two events occur at the same
time, if those two events are separated by space

I A drum beat in Japan and a car crash in Brazil
I However, if the two events are causally connected — if A

causes B — the RoS preserves the causal order



Global Notion of Time

Observer on Train Observer on Platform

I However, if the two events are causally connected — if A
causes B — the relativity of simultaneity preserves the causal
order

I In this case, the flash of light happens before the light reaches
either end of the carriage for all observers



Global Notion of Time

In Our World

I We operate as if this were not true, that is, as if there were
some global notion of time

I People may tell you that this is because:

I On the scale of the differences in our frames of references, the
effect of relativity is negligible

I It’s true that on our scales the effects of relativity are
negligible

I But that’s not really why we operate as if there was a global
notion of time

I Even if our theortical clocks are well synchronised, or
mechanical ones are not

I We just accept this inherent inaccuracy build that into our
(social) protocols



Global Notion of Time

In Our World

I We operate as if this were not true, that is, as if there were
some global notion of time

I People may tell you that this is because:

I On the scale of the differences in our frames of references, the
effect of relativity is negligible

I It’s true that on our scales the effects of relativity are
negligible

I But that’s not really why we operate as if there was a global
notion of time

I Even if our theortical clocks are well synchronised, or
mechanical ones are not

I We just accept this inherent inaccuracy build that into our
(social) protocols



Global Notion of Time

Physical Clocks

I Computer clocks tend to rely on the oscillations occuring in a
crystal

I The difference between the instantaneous readings of two
separate clocks is termed their “skew”

I The “drift” between any two clocks is the difference in the
rates at which they are progressing. The rate of change of the
skew

I The drift rate of a given clock is the drift from a nominal
“perfect” clock, for quartz crystal clocks this is about 10−6

I Meaning it will drift from a perfect clock by about 1 second
every 1 million seconds — 11 and a half days.



Global Notion of Time

Coordinated Universal Time and French

I The most accurate clocks are based on atomic oscillators

I Atomic clocks are used as the basis for the international
standard International Atomic Time

I Abbreviated to TAI from the French Temps Atomique
International

I Since 1967 a standard second is defined as 9,192,631,770
periods of transition between the two hyperfine levels of the
ground state of Caesium-133 (Cs133).

I Time was originally bound to astronomical time, but
astronomical and atomic time tend to get out of step

I Coordinated Universal Time — basically the same as TAI but
with leap seconds inserted

I Abbreviated to UTC again from the French Temps Universel
Coordonné



Global Notion of Time

Correctness of Clocks

I What does it mean for a clock to be correct?

I The operating system reads the node’s hardware clock value,
H(t), scales it and adds an offset so as to produce a software
clock C (t) = αH(t) + β which measures real, physical time t

I Suppose we have two real times t and t ′ such that t < t ′

I A physical clock, H, is correct with respect to a given bound
‘p’ if:

I (1− p)(t ′ − t) ≤ H(t ′)− H(t) ≤ (1 + p)(t ′ − t)
I I (t ′ − t) — The true length of the interval

I The measured length of the interval
I The smallest acceptable length of the interval
I The largest acceptable length of the interval



Global Notion of Time

Correctness of Clocks
(1− p)(t ′ − t) ≤ H(t ′)− H(t) ≤ (1 + p)(t ′ − t)

I An important feature of this definition is that it is monotonic

I Meaning that:

I If t < t ′ then H(t) < H(t ′)
I Assuming that t < t ′ with respect to the precision of the

hardware clock



Global Notion of Time

Monotonicity

I What happens when a clock is determined to be running fast?

I We could just set the clock back:

I but that would break monotonicity
I Instead, we retain monotonicity:

I Ci (t) = αH(t) + β
I decreasing β such that Ci (t) ≤ Ci (t ′) for all t < t ′



Global Notion of Time

External vs Internal Synchronisation

I Intuitively, multiple clocks may be synchronised with respect
to each other, or with respect to an external source.

I Formally, for a synchronisation bound D > 0 and external
source S :

I Internal Syncronisation
I | Ci (t)− Cj (t) |< D
I No two clocks disagree by D or more

I External Syncronisation
I | Ci (t)− S(t) |< D
I No clock disagrees with external source S by D or more

I Internally synchronised clocks may not be very accurate at all
with respect to some external source

I Clocks which are externally synchronised to a bound of D
though are automatically internally synchronised to a bound
of 2× D.



Synchronising Clocks

Synchronising in a synchronous system

I Imagine trying to synchronise watches using text messaging
I Except that you have bounds for how long a text message will

take
I How would you do this?

1. Mario sends the time t on his watch to Luigi in a message m
2. Luigi should set his watch to t + Ttrans where Ttrans is the time

taken to transmit and receive the message m
3. Unfortunately Ttrans is only bound, it is not known
4. We do know that min ≤ Ttrans ≤ max
5. We can therefore acheive a bound of u = max −min if the

Luigi sets his watch to t + min or t + max
6. We can do a bit better an achieve a bound of u = max−min

2 if

Luigi sets his watch to t + max+min
2

7. More generally if there are N clocks (Mario, Luigi, Peach,
Toad, . . . ) we can achieve a bound of (max −min)(1− 1

N )
8. Or more simply we make Mario an external source and the

bound is then max −min (or 2× max−min
2 )



Synchronising Clocks

Cristian’s Method

I The previous method does not work where we have no upper
bound on message delivery time, i.e. in an asynchronous
system

I Cristian’s method is a method to synchronise clocks to an
external source.

I This could be used to provide external or internal
synchronisation as before, depending on whether the source is
itself externally synchronised or not.

I The key idea is that while we might not have an upper bound
on how long a single message takes, we can have an upper
bound on how long a round-trip took.

I However it requires that the round-trip time is sufficiently
short as compared to the required accuracy.



Synchronising Clocks

Cristian’s Method

I Luigi sends Mario (our source/server) a message mr

requesting the current time, and records the time Tsent at
which mr was sent according to Luigi’s current clock

I Upon receiving Luigi’s request message mr Mario responds
with the current time according to his clock in the message
mt .

I When Luigi receives Mario’s time t in message mt , at time
Trec according to his own clock the round trip took
Tround = Trec − Tsent

I Luigi then sets his clock to t + Tround
2

I Which assumes that the elapsed time was split evenly between
the exchange of the two messages.



Synchronising Clocks

Cristian’s Method

I How accurate is this?
I We often don’t have accurate upper bounds for message

delivery times but frequently we can at least guess
conservative lower bounds

I Assume that messages take at least min time to be delivered
I The earliest time at which Mario could have placed his time

into the response message mt is min after Luigi sent his
request message mr .

I The latest time at which Mario could have done this was min
before Luigi receives the response message mt .

I The time on Mario’s watch when Luigi receives the response
mt is:

I At least t + min
I At most t + Tround −min
I Hence the width is Tround − (2×min)

I The accuracy is therefore Tround
2 −min



Synchronising Clocks

The Berkley Algorithm

I Like Cristian’s algorithm this provides either external
synchronisation to a known server, or internal synchronisation
via choosing one of the players to be the master

I Unlike Cristian’s algorithm though, the master in this case
does not wait for requests from the other clocks to be
synchronised, rather it periodically polls the other clocks.

I The other’s then reply with a message containing their current
time.

I The master, estimates the slaves current times using the
round trip time in a similar way to Cristian’s algorithm

I It then averages those clock readings together with its own to
determine what should be the current time.

I It then replies to each of the other players with the amount by
which they should adjust their clocks



Synchronising Clocks

The Berkley Algorithm

I If a straight forward average is taken a faulty clock could shift
this average by a large amount, and therefore a fault tolerant
average is taken

I This is exactly as it sounds, it averages all the clocks that do
not differ by a chosen maximum amount.



Network Time Protocol

Pairwise synchronisation

I Similar to Cristian’s method however:
I Four times are recorded as measured by the clock of the

process at which the event occurs:
1. Ti−3 — Time of sending of the request message mr

2. Ti−2 — Time of receiving of the request message mr

3. Ti−1 — Time of sending of the response message mt

4. Ti — Time of receiving of the response message mt

I So if Luigi is requesting the time from Mario, then Ti−3 and
Ti are recorded by Luigi and Ti−2 and Ti−1 are recorded by
Mario

I Note that because Mario records the time at which the
request message was received and the time at which the
response message is sent, there can be a non-neglible delay
between both

I In particular then messages may be dropped



Network Time Protocol

Pairwise synchronisation

I If we assume that the true offset between the two clocks is
Otrue :

I And that the actual transmission times for the messages mr

and mt are t and t ′ respectively then:

I Ti−2 = Ti−3 + t + Otrue and

I Ti = Ti−1 + t ′ − Otrue

I Tround = (t + t ′) = (Ti − Ti−3)− (Ti−1 − Ti−2)

I Oguess =
(Ti−2−Ti−3)+(Ti−1−Ti)

2



Network Time Protocol

Pairwise synchronisation

I This is the non-trivial line:

I Oguess =
(Ti−2−Ti−3)+(Ti−1−Ti )

2

I
Ti−2 − Ti−3 = t + Otrue

Ti−1 − Ti = Otrue − t ′

= (t − t ′) + (2× Otrue)

I Oguess = t−t′
2 + Otrue

I Otrue = Oguess + (t−t′)
2

Since we know that Tround >| t − t ′ |:
I Oguess − Tround

2 ≤ Otrue ≤ Oguess + Tround
2

I Oguess is the guess as to the offset

I Tround is the measure of how accurate it is which is essentially
based on how long the messages were in transit



Synchronising Clocks

Network Time Protocol

I Network Time Protocol (actually abbreviated was NTP) is
designed to allow clients to synchronise with UTC over the
Internet.

I NTP is provided by a network of servers located across the
Internet.

I Primary servers are connected directly to a time source such
as a radio clock receiving UTC.

I Other servers are connected in a tree, with their strata
determined by how many branches are between them and a
primary server

I Strata N servers synchronise with Strata N - 1 servers
I Eventually a server is within a user’s workstation
I Errors may be introduced at each level of synchronisation and

they are cumulative, so the higher the strata number the less
accurate is the server



Network Time Protocol

Note: this picture does not show synchronisation between servers
at the same strata, but this does occur



Synchronising Clocks

Network Time Protocol
I NTP servers synchronise in one of three ways:

1. Multicast mode
I Not considered very accurate
I Intended for use on a high-speed LAN
I Can be accurate enough nonetheless for some purposes

2. Procedure call mode
I Similar to Cristian’s method
I Servers respond to requests from higher-strata servers
I Who use round-trip times to calculate the current time to

some degree of accuracy
I Used for example in network file servers which wish to keep as

accurate as possible file access times
3. Symmetric mode

I Used where the highest accuracies are required
I In particular between servers nearest the primary sources, that

is the lower strata servers
I Essentially similar to procedure-call mode except that the

communicating servers retain timing information to improve
their accuracy over time



Network Time Protocol

Overview

I In all three modes messages are delivered using the standard
UDP protocol

I Hence message delivery is unreliable

I At the higher strata servers can synchronise to high degree of
accuracy over time

I But in general NTP is useful for synchronising accurately to
UTC, whereby accurate is at the human level of accuracy

I Wall clocks, clocks at stations etc

I In summary: we can synchronise clocks to a bounded level of
accuracy, but for many applications the bound is simply not
tight enough



Logical Clocks

Asynchronous Orderings

I So we can achieve some measure of synchronisation between
physical clocks located at different sites

I Ultimately though we will never be able to synchronise clocks
to arbitrary precision

I For some applications low precision is enough, for others it is
not.

I Where we cannot guarantee a high enough order of precision
for synchronisation, we are forced to operate in the
asynchronous world

I Despite this we can still provide a logical ordering on events,
which may useful for certain applications



Logical Clocks

Logical Ordering

I Logical orderings attempt to give an order to events similar to
physical causal ordering of reality but applied to distributed
processes

I Logical clocks are based on the simple principles:

I Any process can order the events which it observes/executes

I Any message must be sent before it is received



Logical Clocks

Logical Ordering — Happened Before

I More formally we define the happened-before relation → by
the three rules:

1. If e1 and e2 are two events that happen in a single process and
e1 proceeds e2 then e1 → e2

2. If e1 is the sending of message m and e2 is the receiving of the
same message m then e1 → e2

3. If e1 → e2 and e2 → e3 then e1 → e3



Logical Clocks

Logical Ordering — A Logical Clock

I Lamport designed an algorithm whereby events in a logical
order can be given a numerical value

I This is a logical clock, similar to a program counter except
that there is no backward jumping, and so it is monotonically
increasing

I Each process Pi maintains its internal logical clock Li

I So in order to record the logical ordering of events, each
process does the following:

I Li is incremented immediately before each event is issued at Pi

I When the process Pi sends a messsage m it attaches the value
of its logical clock t = Li (m).

I Upon receiving a message (m, t) process Pj computes the new
value of Lj as max(Lj , t)



Logical Clocks

Properties

I Key point: using induction we can show that:

I e1 → e2 implies that L(e1) < L(e2)

I However, the converse is not true, that is:

I L(e1) < L(e2) does not imply that e1 → e2

I It is easy to see why, consider two processes, P1 and P2 which
each perform two steps prior to any communication.

I The two steps on the first process P1 are concurrent with
both of the two steps on process P2.

I In particular P1(e2) is concurrent with P2(e1) but
L(P1(e2)) = 2 and L(P2(e1)) = 1



Logical Clocks

Lamport Clocks — No reverse implication

I Here event L(e) < L(b) < L(c) < L(d) < L(f )

I but only e → f

I e is concurrent with b, c and d .



Logical Clocks

Total Ordering

I Just as the happened-before relation is a partial ordering

I So to are the numerical Lamport stamps attached to each
event

I That is, some events have the same number attached.

I However we can make it a total ordering by considering the
process identifier at which the event took place

I In this case Li (e1) < Lj (e2) if either:

1. Li (e1) < Lj (e2) OR
2. Li (e1) = Lj (e2) AND i < j

I This has no physical meaning but can sometimes be useful



Vector Clocks

Vector Clocks augment Logical Clocks

I Vector clocks were developed (by Mattern and Fidge) to
overcome the problem of the lack of a reversed implication

I That is: L(e1) < L(e2) does not imply e1 → e2

I Each process keeps it own vector clock Vi (an array of
Lamport clocks, one for every process)

I The vector clocks are updated according to the following
rules:

1. Initially Vi [j ] = 0
2. As with Lamport clocks before each event at process Pi it

updates its own Lamport clock within its own vector clock:
Vi [i ] = Vi [i ] + 1

3. Every message Pi sends includes its entire vector clock t = Vi

4. When Pi receives a timestamp Vx then it updates all of its
vector clocks with: Vi [j ] = max(Vi [j ],Vx [j ])



Vector Clocks

Vector Clocks augment Logical Clocks

I Vector clocks (or timestamps) are compared as follows:

1. Vx = Vy iff Vx [i ] = Vy [i ] ∀i , 1 . . .N
2. Vx ≤ Vy iff Vx [i ] ≤ Vy [i ] ∀i , 1 . . .N
3. Vx < Vy iff Vx [i ] < Vy [i ] ∀i , 1 . . .N

I As with logical clocks: e1 → e2 implies V (e1) < V (e2)

I In contrast with logical clocks the reverse is also true:
V (e1) < V (e2) implies e1 → e2



Vector Clocks

Vector Clocks augment Logical Clocks

I Of course vector clocks achieve this at the cost of larger time
stamps attached to each message

I In particular the size of the timestamps grows proportionally
with the number of communicating processes

Summary of Logical Clocks

I Since we cannot achieve arbitrary precision of synchronisation
between remote clocks via message passing

I We are forced to accept that some events are concurrent,
meaning that we have no way to determine which occured first

I Despite this we can still achieve a logical ordering of events
that is useful for many applications



Global State

I Correctness of distributed systems frequently hinges upon
satisfying some global system invariant

I Even for applications in which you do not expect your
algorithm to be correct at all times, it may still be desirable
that it is “good enough” at all times

I For example our distributed algorithm maybe maintaining a
record of all transactions

I In this case it might be okay if some processes are behind
other processes and thus do not know about the most recent
transactions

I But we would never want it to be the case that some process is
in an inconsistent state, say applying a single transaction twice.



Global State

I Motivating examples:

1. Distributed garbage collection
2. Distributed deadlock detection
3. Distributed termination detection
4. Distributed debugging



Global State — Absence of a Global Time

You may have thought you got away from global time discussions

I Consider what happens to each of our distributed problems
should we have a global time

I Distributed Garbage Collection
I Agree a global time for each process to check whether a

reference exists to a given object
I This leaves the problem that a reference may be in transit

between processes
I But each process can say which references they have sent

before the agreed time and compare that to the references
received at the agreed time



Global State — Absence of a Global Time

You may have thought you got away from global time discussions

I Consider what happens to each of our distributed problems
should we have a global time

I Distributed Deadlock Detection
I Somewhat depends upon the problem in question, however:
I At an agreed time all processes send to some master process

the processes or resources for which they are waiting
I The master process then simply checks for a loop in the

resulting graph



Global State — Absence of a Global Time

You may have thought you got away from global time discussions

I Consider what happens to each of our distributed problems
should we have a global time

I Distributed Termination Detection
I At an agreed time each process sends whether or not they

have completed to a master process
I Again this leaves the problem that a message may be in transit

at that time
I Again though, we should be able to work out which messages

are still in transit



Global State — Absence of a Global Time

You may have thought you got away from global time discussions

I Consider what happens to each of our distributed problems
should we have a global time

I Distributed Debugging
I At each point in time we can reconstruct the global state
I We can also record the entire history of events in the exact

order in which they ocurred.
I Allowing us to replay them and inspect the global state to see

where things have gone wrong as with traditional debugging



Global State — Consistent Cuts

I So, if we had synchronised clocks, we could agree on a time
for each process to record its state

I The combination of local states and the states of the
communication channels would be an actual global state

I Since we cannot do that we attempt to find a “cut”

I A cut is a partition of events into those occurring before the
cut and those occurring after the cut

I The goal is to assemble a meaningful global state from the
the local states of processes recorded at different times



Global State — Consistent Cuts

I A consistent cut is one which does not violate the happens
before relation →

I If e1 → e2 then either:
I both e1 and e2 are before the cut or
I both e1 and e2 are after the cut or
I e1 is before the cut and e2 is after the cut
I but not
I e1 is after the cut and e2 is before the cut



Global State — Consistent Cuts

Runs and Linearisations

I A consistent global state is one which corresponds to a
consistent cut

I A “run” is a total ordering of all events in a global history
which is consistent with the local history of each process

I A “linearisation” is a total ordering of all events in the global
history which is consistent with the happens-before relation →

I So all linearisations are also runs

I Not all runs pass through consistent global states but all
linearisations pass only through consistent global states



Global State — Safety and Liveness

I When we attempt to examine the global state, we are often
concerned with whether or not a property holds

I Some properties, B, are properties we hope never hold and
some properties, G, are properties we hope always hold

I Safety is the property that a bad property B does not hold for
any reachable state

I Liveness is the property that a good property G holds for all
reachable states



Global State — Stable and Unstable properties

I Some properties we wish to establish are stable properties

I Such properties may never become true, but once they do
they remain true

I Our four example properties:
I Garbage is stable: once an object has no valid references (at a

process or in transit) will never have any valid references
I Deadlock is stable: once a set of processes are deadlocked

they will always be deadlocked without external intervention
I Termination is stable: once a set of processes have terminated

they will remain terminated without external intervention
I Debugging is not really a property but the properties we may

look for whilst debugging are likely non-stable



Global State — Snapshot

Chandy and Lamport

I The goal is to record a snapshot, or global state, of a set of
processes

I The algorithm is such that the combination of recorded states
may never have occured simultaneously

I However the computed global state is always a consistent one

I The state is recorded locally at each process

I The algorithm also does not address the issue of gathering the
recorded global state.

I Though generally the locally recorded state can then be sent
to some pre-agreed master process.



Global State — Chandy and Lamport

Assumptions

I There is a path between any two pairs of processes, in both
directions

I Any process may initiate a global snapshot at any time

I The processes may continue their execution and send/receive
normal messages whilst the snapshot takes place

I Neither channels nor processes fail

I Communication is reliable such that every message that is
sent arrives at its destination exactly once

I Channels are unidirectional and provide FIFO-ordered message
delivery.



Global State — Chandy and Lamport

Assumptions

I There is a path between any two pairs of processes, in both
directions

I Any process may initiate a global snapshot at any time

I The processes may continue their execution and send/receive
normal messages whilst the snapshot takes place

I Neither channels nor processes fail

I Communication is reliable such that every message that is
sent arrives at its destination exactly once

I Channels are unidirectional and provide FIFO-ordered message
delivery.



Global State — Chandy and Lamport

Algorithm — Receiver
Receiving rule for process pi

1. On receipt of a Marker message over channel c :

2. if pi has not yet recorded state:

3. record process state now

4. record the state of c as the empty set

5. turn on recording of messages arriving on all other
channels

6. else

7. records the state of c as the set of messages it has
recorded since pi first recorded its state



Global State — Chandy and Lamport

Algorithm — Sender
Sending rule for process pi

1. After pi has recorded its state:

2. pi sends a marker message for each outgoing channel c

3. before it sends any other messages over c



Global State — Chandy and Lamport Example

We begin in this global state, where both channels are empty, the
states of the processes are as shown, but we say nothing about
what has gone before.

Ch 1

Ch 2

Global state 1

$1000,
0 Items

$50,
2000 Items



Global State — Chandy and Lamport Example

The left process decides to begin the snapshot algorithm and sends
a Marker message over channel 1 to the left process. It then
decides to send a request for 10 items at $10 each.

Ch 1

Ch 2

Ch 1 (Order 10, $100), Marker

Ch 2

Global state 1

Global state 2

$1000,
0 Items

$900,
0 Items

$50,
2000 Items

$50,
2000 Items



Global State — Chandy and Lamport Example

Meanwhile, the right process responds to an earlier request and
sends 5 items to the left process over channel 2.

Ch 1

Ch 2

Ch 1 (Order 10, $100), Marker

Ch 2

Ch 1 (Order 10, $100), Marker

Ch 2 Five Items

Global state 1

Global state 2

Global state 3

$1000,
0 Items

$900,
0 Items

$900,
0 Items

$50,
2000 Items

$50,
2000 Items

$50,
1995 Items



Global State — Chandy and Lamport Example

Finally the right process receives the Marker message, and in doing
so records its state and sends the left process a Marker message
over channel 2. When the left process receives this Marker
message it records the state of channel two as containing the 5
items it has received since recording its own state.

Ch 1

Ch 2

Ch 1 (Order 10, $100), Marker

Ch 2

Ch 1 (Order 10, $100), Marker

Ch 2 Five Items

Ch 1 (Order 10, $100)

Ch 2 Marker

Global state 1

Global state 2

Global state 3

Global state 4

$1000,
0 Items

$900,
0 Items

$900,
0 Items

$900,
5 Items

$50,
2000 Items

$50,
2000 Items

$50,
1995 Items

$50,
1995 Items



Global State — Chandy and Lamport Example

Ch 1

Ch 2

Ch 1 (Order 10, $100), Marker

Ch 2

Ch 1 (Order 10, $100), Marker

Ch 2 Five Items

Ch 1 (Order 10, $100)

Ch 2 Marker

Global state 1

Global state 2

Global state 3

Global state 4

$1000,
0 Items

$900,
0 Items

$900,
0 Items

$900,
5 Items

$50,
2000 Items

$50,
2000 Items

$50,
1995 Items

$50,
1995 Items

The final recorded state is:
Left Process $1000, 0
Right Process $50, 1995
Channel 1 empty
Channel 2 Five Items



Global State — Chandy and Lamport

Reachability

I The cut found by the Chandy and Lamport algorithm is
always a consistent cut

I This means that the global state which is characterised by the
algorithm is a consistent global state

I Though it may not be one that ever occurred
I We can though define a reachability relation:

I This is defined via the initial, observed and final global states
when the algorithm is run

I Assume that the events globally occurred in an order
Sys = e1, e2 . . .

I Let Sinit be the global state immediately before the algorithm
commences and Sfinal be the global state immediately after it
terminates. Finally Ssnap is the recorded global state

I We can find a permutation of Sys called Sys ′ which:
I contains all three states: Sinit , Ssnap and Sfinal

I Does not break the happens-before relationship on the events
in Sys



Global State — Chandy and Lamport — Reachability

I It may be that there are two events in Sys, en and en+1 such
that en is a post-snap event and en+1 is a pre-snap event

I However we can swap the order of en and en+1 since it cannot
be that en → en+1

I We continue to swap adjacent pairs of events until all
pre-snap events are ordered before all post-snap events. This
gives us the the linearisation Sys ′

I The reachability property of the snapshot algorithm is useful
for recording stable properties

I However any non-stable predicate which is True in the
snapshot may or may not be true in any other state

I Since the snapshot may not have actually occured



Global State — Chandy and Lamport

Use Cases

I No work which depends upon the global state is done until
the snapshot has been gathered

I They are therefore useful for:

1. Evaluating after the kind of change that happens infrequently
2. Stable changes, since the property that you detect to have

been true “when” the snapshot was taken will still be true
once the snapshot has been gathered

3. The kind of property that has a correct or an incorrect answer
rather than a range of increasingly appropriate answers:
Routing vs Garbage Collection

4. Properties that need not be detected and acted upon
immediately, for example garbage collection.



Distributed Debugging

I Distributed debugging was the application of our four example
applications that stood out for being concerned with unstable
properties

I This is a problem for our global snap-shot technique since its
main usefulness is derived from our reachability relation which
in turn means little for a non-stable property

I Distributed debugging is in a sense a combination of
logical/vector clocks and global snapshots



Distributed Debugging

Example Non-Stable Condition

I Suppose we are implementing an online poker game

I There is a process representing each player and one
representing the pot in the centre of the table

I Players can “send chips” to the pot, and once winners have
been decided the pot may send chips back to some of the
players.

I We wish to make sure that the total amount of chips in the
game never exceeds the initial amount

I It may be less than the initial amount since some chips may
be in transit between a player and the centre pot.

I But it cannot be more than the initial amount.



Distributed Debugging

I Suppose that we have a history H of events e1, . . . , en

I H(e1, . . . en) is therefore the true order of events as they
actually occurred in our system

I Recall then that a run is any ordering of those events in which
each event occurs exactly once

I But a linearisation is a consistent run
I A consistent run is one in which the “happens-before” relation

is satisfied for all pairs of events ei , ej

I If ei → ej then any linearisation (or consistent run) will order
ei before ej .

I Importantly then, all linearisations only pass through consistent
states



Distributed Debugging

The possibly relation

I Any linearisation Lin of our history of events H must therefore
pass through only consistent states

I A property P that is true in any state through which Lin
passes, was conceivably true at some global state through
which H passed

I If this is the case for some property p and some linearisation
we say possibly(p)

I Note: suppose we had taken a global snapshot during the set
of events H to determine if the property p was true and
determined that it was: Snap(p) evaluates to true.

I This would imply that p was possible.
I However the reverse is not true, so:

I Snap(p) =⇒ possibly(p)
I possibly(p) 6 =⇒ Snap(p)



Distributed Debugging

The definitely relation

I The sister relation to the possibly relation is the definitely
relation

I This states that for any linearisation Lin of H, Lin must pass
through some consistent global state S for which the
candidate property is true

I Since H is a linearisation of itself, then the candidate property
was certainly true at some point in the history of events.

More formally:

I The statement possibly(p) means that there is a consistent
global state S through which at least one linearisation of H
passes such that S(p) is true.

I The statement definitely(p) means that for all linearisations L
of H, there is a consistent global state S through which L
passes such that S(p) is True



Distributed Debugging

Possibly vs Definitely

I You may think that the possibly relation is useless

I Since I knew before we started that some predicate was
potentially true at some point.

I However, ¬(possibly(p)) =⇒ definitely(¬p)

I But, from definitely(¬p) we cannot conclude ¬(possibly(p)).

I definitely(¬p) means that there is at least one state in all
linearisations of H such that p is not true, but not all states.

I ¬(possibly(p)) however would require that ¬(p) was true in
all states in all linearisations

I Another way to put this is that definitely(p) and
definitely(¬p) may be true simultaneously but possibly(p)
and ¬(possibly(p)) cannot.



Distributed Debugging

Basic Outline

I The processes must all send messages recording their local
state to a master process

I The master process collates these and extracts the consistent
global states

I From this information the possibly(p) and definitely(p)
relations may be computed.



Distributed Debugging

Collecting The Global States
I Each process sends their initial state to the master process in

a state message and thereafter periodically send their local
state.

I The preparing and sending of these state messages may delay
the normal operation of the distributed system but does not
otherwise affect it: so debugging may be turned on and off.

I “Periodically” is better defined in terms of the predicate for
which we are debugging.

I So we do not send a state message to the master process
other than, initially and whenever our local state changes.

I The local state need only change with respect to the predicate
in question. We can concurrently check for separate predicates
as well by marking our state messages appropriately.

I Additionally even if the local state changes we need only send
a state message if that update could have altered the value of
the predicate.



Distributed Debugging

State Message Stamps

I In order that the master process can assemble the set of
consistent states from the set of state messages the individual
processes send it ..

I Each state message is stamped with the Vector clock value at
the local process sending the state message: {si ,V (si )}

I If S = {s1, . . . sn} is a set of state messages received by the
master process, and V (si ) be the vector time stamp of the
particular local state si

I Then it is known that S is a consistent global state iff:

I Vi [i ] >= Vj [i ] ∀i , j1, ...N



State Message Stamps

Assembled Consistent Global States

I S is a consistent global state iff:

I Vi [i ] >= Vj [i ] ∀i , j1, ...N

I This says that the number of pi ’s events known at pj when it
sent sj is no more than the number of events that had
occurred at pi when it sent si .

I In other words, if the state of one process depends upon
another (according to happened-before ordering), then the
global state also encompasses the state upon which it
depends.



Assembling Consistent Global States

I Imagine the simplest case of 2 communicating processes.

I A plausible global state is S(sx
0 , s

y
1 )

I The subscripts, 0 and 1, refer to the process index

I The superscripts x and y refer to the number of events which
have occurred at the particular process.

I The “level” of a given state is x + y , which is number of
events which have occurred globally to give rise to the
particular global state S .



Assembling Consistent Global States

Level 0 s0
0 , s0

1

1 s1
0 , s0

1

2 s2
0 , s0

1

3 s3
0 , s0

1 s2
0 , s1

1

4 s3
0 , s1

1 s2
0 , s2

1

5 s3
0 , s2

1 s2
0 , s3

1

6 s3
0 , s3

1

7 s4
0 , s3

1



Evaluating Possibly and Definitely

1. A state S ′ = {sx ′0
0 , . . . s

x ′N
N } is reachable from a state

S = {sx0
0 , . . . s

xN
N }

2. If
I S ′ is a consistent state
I The level of S ′ is 1 plus the level of S and:
I xi ′ = xi or xi ′ = 1 + xi ∀0 ≤ i ≤ N



Evaluating Possibly

1. Level = 0

2. States = {(s0
0 , . . . s

0
N)}

3. while (States is not empty)
I Level = Level + 1
I Reachable = {}
I for S’ where level(S’) = Level

I if S’ is reachable from some state in States
I then if p(S’) then output possibly(p) is True and quit
I else place S’ in Reachable

I States = Reachable

4. output possibly(p) is false



Evaluating Definitely

1. Level = 0

2. States = {(s0
0 , . . . s

0
N)}

3. while (States is not empty)
I Level = Level + 1
I Reachable = {}
I for S’ where level(S’) = Level

I if S’ is reachable from some state in States
I then if ¬(p(S ′)) then place S’ in Reachable

I States = Reachable

4. if Level is the maximum level recorded

5. then output definitely(p) is false

6. else output definitely(p) is true

Note: Should also check if it is true in the initial state



Evaluating Definitely

Recall:

Level 0 s0
0 , s0

1

1 s1
0 , s0

1

2 s2
0 , s0

1

3 s3
0 , s0

1 s2
0 , s1

1

4 s3
0 , s1

1 s2
0 , s2

1

5 s3
0 , s2

1 s2
0 , s3

1

6 s3
0 , s3

1

7 s4
0 , s3

1



Evaluating Definitely

Level 0 False

1 False

2 False

3 False True

4 s3
0 , s1

1

5 s3
0 , s2

1

6 s3
0 , s3

1

7 s4
0 , s3

1



Evaluating Definitely

Level 0 False

1 False

2 False

3 False True

4 True

5

6

7

Definitely(p) is True



Evaluating Possibly and Definitely

I Note that the number of states that must be evaluated is
potentially huge

I In the worse case, there is no communication between
processes, and the property is False for all states

I We must evaluate all permutations of states in which each
local history is preserved

I This system therefore works better if there is a lot of
communication and few local updates (which affect the
predicate under investigation)



Distributed Debuggin

In a synchronous system

I We have so far considered debugging within an asynchronous
system

I Our notion of a consistent global state is one which could
potentially have occurred

I In a synchronous system we have a little more information to
make that judgement

I Suppose each process has a clock internally synchronised with
the each other to a bound of D.

I With each state message, each process additionally time
stamps the message with their local time at which the state
was observed.

I For a single process with two state messages (sx
i ,Vi , ti ) and

(sx+1
i ,V ′i , t

′
i ) we know that the local state sx

i was valid
between the time interval:

I ti − D to t ′i + D



Distributed Debugging

In a synchronous system

I Recall our condition for a consistent global state:

I Vi [i ] >= Vj [i ] ∀i , j1, ...N

I We can add to that:

I ti − D ≤ tj ≤ t ′i + D and vice versa forall i,j

I Note, this makes use of the bounds imposed in a synchronous
system but speaks nothing of the time taken for a message to
be delivered

I Therefore obtaining useful bounds is rather plausible

I But if there is a lot of communication then we may not prune
the number of states which must be checked



Distributed Debugging

Summary

I Each process sends to a monitor process state update
messages whenever a significant event occurs.

I From this the monitor can build up a set of consistent global
states which may have occurred in the true history of events

I This can be used to evaluate whether some predicate was
possibly true at some point, or definitely true at some point



Time and Global State

Summary
I We noted that even in the real world there is no global notion

of time
I We extended this to computer systems noting that the clocks

associated with separate machines are subject to differences
between them known as the skew and the drift.

I We nevertheless described algorithms for attempting the
synchronisation between remote computers

I Cristian’s method
I The Berkely Algorithm
I Pairwise synchronisation in NTP

I Despite these algorithms to synchronise clocks it is still
impossible to determine for two arbitrary events which
occurred before the other.

I We therefore looked at ways in which we can impose a
meaningful order on remote events and this took us to logical
orderings



Time and Global State

Summary
I Lamport and Vector clocks were introduced:

I Lamport clocks are relatively lightweight provide us with the
following e1 → e2 =⇒ L(e1) < L(e2)

I Vector clocks improve on this by additionally providing the
reverse implication V (e1) < V (e2) =⇒ e1 → e2

I Meaning we can entirely determine whether e1 → e2 or
e2 → e1 or the two events are concurrent.

I But do so at the cost of message length and scalability

I The concept of a true history of events as opposed to runs
and linearisations was introduced

I We looked at Chandy and Lamport’s algorithm for recording a
global snapshot of the system

I Crucially we defined a notion of reachability such that the
snapshot algorithm could be usefully deployed in ascerting
whether some stable property has become true.



Time and Global State

Summary

I Finally the use of consistent cuts and linearisations was used
in Marzullo and Neiger’s algorithm

I Used in the debugging of distributed systems it allows us to
ascertain whether some transient property was possibly true at
some point or definitely true at some point.

I We compare these asynchronous techniques with the obvious
synchronous techniques

I We observe that while the synchronous techniques would be
more accurate often, they will occasionally be wrong

I The asynchronous techniques are frequently conservative in
that they may be imprecise but never wrong

I For example two events may be deemed concurrent meaning
that we do not know which occurred first, but we will never
erroneously ascertain that e1 occurred before e2



Any Questions
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Coordination and Agreement

Overview

I In this part of the course we will examine how distributed
processes can agree on particular values

I It is generally important that the processes within a
distributed system have some sort of agreement

I Agreement may be as simple as the goal of the distributed
system

I Has the general task been aborted?
I Should the main aim be changed?

I This is made more complicated than it sounds, since all the
processes must, not only agree, but be confident that their
peers agree.

I We will look at:
I mutual exclusion to coordinate access to shared resources
I The conditions necessary in general to guarantee that a global

consensus is reached
I Perhaps more importantly the conditions which prevent this



Coordination and Agreement

No Fixed Master

I We will also look at dynamic agreement of a master or leader
process i.e. an election. Generally after the current master has
failed.

I We saw in the Time and Global State section that some
algorithms required a global master/nominee, but there was
no requirement for that master/nominee process to be fixed

I With a fixed master process agreement is made much simpler

I However it then introduces a single point of failure

I So here we are generally assuming no fixed master process



Coordination and Agreement

Synchronous vs Asynchronous

I Again with the synchronous and asynchronous

I It is an important distinction here, synchronous systems allow
us to determine important bounds on message transmission
delays

I This allows us to use timeouts to detect message failure in a
way that cannot be done for asynchronous systems.

Coping with Failures
I In this part we will consider the presence of failures, recall

from our Fundamentals part three decreasingly benign failure
models:

1. Assume no failures occur
2. Assume omission failures may occur; both process and

message delivery omission failures.
3. Assume that arbitrary failures may occur both at a process or

through message corruption whilst in transit.



A Brief Aside

Failure Detectors

I Here I am talking about the detection of a crashed process

I Not one that has started responding erroneously

I Detecting such failures is a major obstracle in designing
algorithms which can cope with them

I A failure detector is a process which responds to requests
querying whether a particular process has failed or not

I The key point is that a failure detector is not necessarily
accurate.

I One can implement a “reliable failure detector”

I One which responds with: “Unsuspected” or “Failed”



Failure Detectors

Unreliable Failure Detectors

I An “unreliable failure detector” will respond with either:
“Suspected” or “Unsuspected”

I Such a failure detector is termed an “unreliable failure
detector”

A simple algorithm

I If we assume that all messages are delivered within some
bound, say D seconds.

I Then we can implement a simple failure detector as:

I Every process p sends a “p is still alive” message to all failure
detector processes, periodically, once every T seconds

I If a failure detector process does not receive a message from
process q within T + D seconds of the previous one then it
marks q as “Suspected”



Failure Detectors

Reliable and Unreliable

I If we choose our bound D too high then often a failed process
will be marked as “Unsuspected”

I A synchronous system has a known bound on the message
delivery time and the clock drift and hence can implement a
reliable failure detector

I An asynchronous system could give one of three answers:
“Unsuspected”, “Suspected” or “Failed” choosing two
different values of D

I In fact we could instead respond to queries about process p
with the probability that p has failed, if we have a known
distribution of message transmission times

I e.g., if you know that 90% of messages arrive within 2
seconds and it has been two seconds since your last expected
message you can conclude there is a:



Failure Detectors

Reliable and Unreliable

I NOT a 90% chance that the process p has failed.

I We do not know how long the previous message was delayed

I Even if so, Bayes theorem tells that, in order to calculate the
probability that p has failed given that we have not received a
message we would also require the probability that p fails
within the given time increment without prior knowledge.

I Bayes: P(a|b) = P(b|a)×P(a)
P(b)

I here a = p has failed and b = the message has failed to be
delivered

I Further the question arises what would the process receiving
that probability information do with it?

I 1. if (p > 90) ...
2. else ...



Coordination and Agreement

Mutual Exclusion

I Ensuring mutual exclusion to shared resources is a common
task

I For example, processes A and B both wish to add a value to a
shared variable ‘a’.

I To do so they must store the temporary result of the current
value for the shared variable ‘a’ and the value to be added.

I

Time Process A Process B
1 t = a + 10 A stores temporary
2 t’ = a + 20 B stores temporary
3 a = t’ (a now equals 25)
4 a = t (a now equal 15)

I The intended increment for a is 30 but B’s increment is
nullified



Coordination and Agreement

Mutual Exclusion

new-next = i.next

(i-1).next = new-next

new-next = (i+1).next

i.next = new-next

Shamelessly stolen from Wikipedia

I A higher-level example is the concurrent editing of a file on a
shared directory

I Another good reason for using a source code control system



Coordination and Agreement

Distributed Mutual Exclusion

I On a local system mutual exclusion is usually a service offered
by the operating system’s kernel.

I But for a distributed system we require a solution that
operates only via message passing

I In some cases the server that provides access to the shared
resource can also be used to ensure mutual exclusion

I But here we will consider the case that this is for some reason
inappropriate, the resource itself may be distributed for
example



Distributed Mutual Exclusion

Generic Algorithms for Mutual Exclusion
I We will look at the following algorithms which provide mutual

exclusion to a shared resource:

1. The central-server algorithm
2. The ring-based algorithm
3. Ricart and Agrawala — based on multicast and logical clocks
4. Maekawas voting algorithm

I We will compare these algorithms with respect to:

1. Their ability to satisfy three desired properties
2. Their performance characteristics
3. How fault tolerant they are



Generic Algorithms for Mutual Exclusion

Assumptions and Scenario
I Before we can describe these algorithms we must make

explicit our assumptions and the task that we wish to achieve
I Assumptions:

1. The system is asynchronous
2. Processes do not fail
3. Message delivery is reliable: all messages are eventually

delivered exactly once.
I Scenario:

I Assume that the application performs the following sequence:
1. Request access to shared resource, blocking if necessary
2. Use the shared resource exclusively — called the critical

section
3. Relinquish the shared resource

I Requirements:
1. Safety: At most one process may execute the critical section at

any one time
2. Liveness: Requests to enter and exit the critical section

eventually succeed.



Generic Algorithms for Mutual Exclusion

Assumptions and Scenario

I The Liveness property assures that we are free from both
deadlock and starvation — starvation is the indefinite
postponement of the request to enter the critical section from
a given process

I Freedom from starvation is referred to as a “fairness” property

I Another fairness property is the order in which processes are
granted access to the critical section

I Given that we cannot ascertain which event of a set occured
first we instead appeal to the “happened-before” logical
ordering of events

I We define the Fairness property as: If e1 and e2 are requests
to enter the critical section and e1 → e2, then the requests
should be granted in that order.

I Note: our assumption of request-enter-exit means that process
will not request a second access until after the first is granted



Generic Algorithms for Mutual Exclusion

Assumptions and Scenario

I Here we assume that when a process requests entry to the
critical section, then until the access is granted it is blocked
only from entering the critical section

I In particular it may do other useful work and send/receive
messages

I If we were to assume that a process is blocked entirely then
the Fairness property is trivially satisfied



Generic Algorithms for Mutual Exclusion

Assumptions and Scenario

I Here we are considering mutual exclusion of a single critical
section

I We assume that if there are multiple resources then either:
I Access to a single critical section suffices for all the shared

resources, meaning that one process may be blocked from
using one resource because another process is currently using a
different resource or

I A process cannot request access to more than one critical
section concurrently or

I Deadlock arising from two (or more) processes holding each of
a set of mutually desired resources is avoided/detected using
some other means

I We also assume that a process granted access to the critical
section will eventually relinquish that access



Generic Algorithms for Mutual Exclusion

Desirable Properties — Recap
I We wish our mutual exclusion algorithms to have the three

properties:

1. Safety — No two processes have concurrent access to the
critical section

2. Liveness — All requests to enter/exit the critical section
eventually succeed.

3. Fairness — Requests are granted in the logical order in which
they were submitted



Distributed Mutual Exclusion Algorithms

Central Server Algorithm
I The simplest way to ensure mutual exclusion is through the

use of a centralised server
I This is analogous to the operating system acting as an arbiter
I There is a conceptual token, processes must be in possesion of

the token in order to execute the critical section
I The centralised server maintains ownership of the token
I To request the token; a process sends a request to the server

I If the server currently has the token it immediately responds
with a message, granting the token to the requesting process

I When the process completes the critical section it sends a
message back to the server, relinquishing the token

I If the server doesn’t have the token, some other process is
“currently” in the critical section

I In this case the server queues the incoming request for the
token and responds only when the token is returned by the
process directly ahead of the requesting process in the queue
(which may be the process currently using the token)



Distributed Mutual Exclusion Algorithms

Central Server Algorithm

I Given our assumptions that no failures occur it is straight
forward to see that the central server algorithm satisfies the
Safety and Liveness properties

I The Fairness property though is not

I Consider two processes P1 and P2 and the following sequence
of events:

1. P1 sends a request r1 to enter the critical section
2. P1 then sends a message m to process P2

3. P2 receives message m and then
4. P2 sends a request r2 to enter the critical section
5. The server process receives request r2
6. The server process grants entry to the critical section to

process P2

7. The server process receives request r1 and queues it

I Despite r1 → r2 the r2 request was granted first.
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Distributed Mutual Exclusion Algorithms

Ring-based Algorithm

I A simple way to arrange for mutual exclusion without the
need for a master process, is to arrange the processes in a
logical ring.

I The ring may of course bear little resemblance to the physical
network or even the direct links between processes.

1 2 3 4 1 2 3 4

8 7 6 5 8 7 6 5



Distributed Mutual Exclusion Algorithms

Ring-based Algorithm

I The token passes around the ring continuously.
I When a process receives the token from its neighbour:

I If it does not require access to the critical section it
immediately forwards on the token to the next neighbour in
the ring

I If it requires access to the critical section, the process:

1. retains the token
2. performs the critical section and then:
3. to relinquish access to the critical section
4. forwards the token on to the next neighbour in the ring



Distributed Mutual Exclusion Algorithms

Ring-based Algorithm

I Once again it is straight forward to determine that this
algorithm satisfies the Safety and Liveness properties.

I However once again we fail to satisfy the Fairness property



Ring-based Algorithm

P1 2 token
3 4

8 7 6 P2

I Recall that processes may send messages to one another
independently of the token

I Suppose again we have two processes P1 and P2 consider the
following events

1. Process P1 wishes to enter the critical section but must wait
for the token to reach it.

2. Process P1 sends a message m to process P2.
3. The token is currently between process P1 and P2 within the

ring, but the message m reaches process P2 before the token.
4. Process P2 after receiving message m wishes to enter the

critical section
5. The token reaches process P2 which uses it to enter the critical

section before process P1



Distributed Mutual Exclusion Algorithms

Multicast and Logical Clocks

I Ricart and Agrawala developed an algorithm for mutual
exclusion based upon mulitcast and logical clocks

I The idea is that a process which requires access to the critical
section first broadcasts this request to all processes within the
group

I It may then only actually enter the critical section once each
of the other processes have granted their approval

I Of course the other processes do not just grant their approval
indiscriminantly

I Instead their approval is based upon whether or not they
consider their own request to have been made first



Distributed Mutual Exclusion Algorithms

Multicast and Logical Clocks

I Each process maintains its own Lamport clock

I Recall that Lamport clocks provide a partial ordering of events
but that this can be made a total ordering by considering the
process identifier of the process observing the event

I Requests to enter the critical section are multicast to the
group of processes and have the form {T , pi}

I T is the Lamport time stamp of the request and pi is the
process identifier

I This provides us with a total ordering of the sending of a
request message {T1, pi} < {T2, pj} if:

I T1 < T2 or
I T1 = T2 and pi < pj



Multicast and Logical Clocks

Requesting Entry

I Each process retains a variable indicating its state, it can be:

1. “Released” — Not in or requiring entry to the critical section
2. “Wanted” — Requiring entry to the critical section
3. “Held” — Acquired entry to the critical section and has not

yet relinquished that access.

I When a process requires entry to the critical section it
updates its state to “Wanted” and multicasts a request to
enter the critical section to all other processes. It stores the
request message {Ti , pi}

I Only once it has received a “permission granted” message
from all other processes does it change its state to “Held” and
use the critical section



Multicast and Logical Clocks

Responding to requests
I Upon receiving such a request a process:

I Currently in the “Released” state can immediately respond
with a permission granted message

I A process currently in the “Held” state:

1. Queues the request and continues to use the critical section
2. Once finished using the critical section responds to all such

queued requests with a permission granted message
3. changes its state back to “Released”

I A process currently in the “Wanted” state:

1. Compares the incoming request message {Tj , pj} with its own
stored request message {Ti , pi} which it broadcasted

2. If {Ti , pi} < {Tj , pj} then the incoming request is queued as if
the current process was already in the “Held” state

3. If {Ti , pi} > {Tj , pj} then the incoming request is responded
to with a permission granted message as if the current process
was in the “Released” state



Multicast and Logical Clocks

Safety, Liveness and Fairness

I Safety — If two or more processes request entry concurrently
then whichever request bares the lowest (totally ordered)
timestamp will be the first process to enter the critical section

I All others will not receive a permission granted message from
(at least) that process until it has exited the critical section

I Liveness — Since the request message timestamps are a total
ordering, and all requests are either responded to immediately
or queued and eventually responded to, all requests to enter
the critical section are eventually granted

I Fairness — Since lamport clocks assure us that e1 → e2

implies L(e1) < L(e2):
I for any two requests r1, r2 if r1 → r2 then the timestamp for r1

will be less than the timestamp for r2
I Hence the process that multicast r1 will not respond to r2

until after it has used the critical section
I Therefore this algorithm satisfies all three desired properties



Distributed Mutual Exclusion Algorithms

Maekawas voting algorithm

I Maekawa’s voting algorithm improves upon the
multicast/logical clock algorithm with the observation that
not all the peers of a process need grant it access

I A process only requires permission from a subset of all the
peers, provided that the subsets associated with any pair of
processes overlap

I The main idea is that processes vote for which of a group of
processes vying for the critical section can be given access

I The processes that are within the intersection of two
competing processes can ensure that the Safety property is
observed



Distributed Mutual Exclusion Algorithms

Maekawas voting algorithm

I Each process pi is associated with a voting set Vi of processes
I The set Vi for the process pi is chosen such that:

1. pi ∈ Vi — A process is in its own voting set
2. Vi ∩ Vj 6= {} — There is at least one process in the overlap

between any two voting sets
3. |Vi | = |Vj | — All voting sets are the same size
4. Each process pi is contained within M voting sets



Distributed Mutual Exclusion Algorithms

Maekawas voting algorithm

I The main idea in contrast to the previous algorithm is that
each process may only grant access to one process at a time

I A process which has already granted access to another process
cannot do the same for a subsequent request. In this sense it
has already voted

I Those subsequent requests are queued

I Once a process has used the critical section it sends a release
message to its voting set

I Once a process in the voting set has received a release
message it may once again vote, and does so immediately for
the head of the queue of requests if there is one



Maekawas voting algorithm

The state of a process

I As before each process maintains a state variable which can
be one of the following:

1. “Released” — Does not have access to the critical section and
does not require it

2. “Wanted” — Does not have access to the critical section but
does require it

3. “Held” — Currently has access to the critical section

I In addition each process maintains a boolean variable
indicating whether or not the process has “voted”

I Of course voting is not a one-time action. This variable really
indicates whether some process within the voting set has
access to the critical section and has yet to release it

I To begin with, these variables are set to “Released” and False
respectively



Maekawas voting algorithm

Requesting Permission

I To request permission to access the critical section a process
pi :

1. Updates its state variable to “Wanted”
2. Multicasts a request to all processes in the associated voting

set Vi

3. When the process has received a “permission granted”
response from all processes in the voting set Vi : update state
to “Held” and use the critical section

4. Once the process is finished using the critical section, it
updates its state again to “Released” and multicasts a
“release” message to all members of its voting set Vi



Maekawas voting algorithm

Granting Permission/Voting

I When a process pj receives a request message from a process
pi :

I If its state variable is “Held” or its voted variable is True:

1. Queue the request from pi without replying

I otherwise:

1. send a “permission granted” message to pi

2. set the voted variable to True

I When a process pj receives a “release” message:
I If there are no queued requests:

1. set the voted variable to False

I otherwise:

1. Remove the head of the queue, pq:
2. send a “permission granted” message to pq

3. The voted variable remains as True



Maekawas voting algorithm

Deadlock

I The algorithm as described does not respect the Liveness
property

I Consider three processes p1, p2 and p3

I Their voting sets: V1 = {p1, p2}, V2 = {p2, p3} and
V3 = {p3, p1}

I Suppose that all three processes concurrently request
permission to access the critical section

I All three processes immediately respond to their own requests

I All three processes have their “voted” variables set to True

I Hence, p1 queues the subsequently received request from p3

I Likewise, p2 queues the subsequently received request from p1

I Finally, p3 queues the subsequently received request from p2

I _̈



Maekawas voting algorithm

Safety, Liveness and Fairness

I Safety — Safety is achieved by ensuring that the intersection
between any two voting sets is non-empty.

I A process can only vote (or grant permission) once between
each successive “release” message

I But for any two processes to have concurrent access to the
critical section, the non-empty intersection between their
voting sets would have to have voted for both processes

I Liveness — As described the protocol does not respect the
Liveness property

I It can however be adapted to use Lamport clocks similar to the
previous algorithm

I Fairness — Similarly the Lamport clocks extension to the
algorithm allows it to satisfy the Fairness property



Mutual Exclusion Algorithms

Performance Evaluation

I We have four algorithms: central server, ring based, Ricart
and Agrawala’s and Maekawa’s voting algorithm

I We have three logical properties with which to compare them,
we can also compare them with respect to performance:

I For performance we are interested in:

1. The number of messages sent in order to enter and exit the
critical section

2. The client delay incurred at each entry and exit operation
3. The synchronisation delay, this is delay between one process

exiting the critical section and a waiting process entering

I Note: which of these is (more) important depends upon the
application domain, and in particular how often critical section
access is required



Mutual Exclusion Performance Evaluation

Central Server Algorithm

I Entering the critical section:
I requires two messages, the request and the reply — even when

no other process currently occupies it
I The client-delay is the time taken for this round-trip

I Exiting the critical section:
I requires only the sending of the “release” message
I Incurs no delay for the client, assuming asynchronous message

passing.

I The synchronisation-delay is also a round-trip time, the time
taken for the “release” message to be sent from client to
server and the time taken for the server to send the “grant”
message to the next process in the queue.



Mutual Exclusion Performance Evaluation

Ring-based Algorithm

I Entering the critical section:
I Requires between 0 and N messages
I Delay, these messages are serialised so the delay is between 0

and N

I Exiting the critical section:
I Simply requires that the holding process sends the token

forward through the ring

I The synchronisation-delay is between 1 and N-1 messages



Mutual Exclusion Performance Evaluation

Ricart and Agrawala

I Entering the critical section:
I This requires 2(N - 1) messages, assuming that multicast is

implemented simply as duplicated message, it requires N-1
requests and N-1 replies.

I Bandwidth-wise this may be bad, but since these messages are
sent and received concurrently the time taken is comparable to
the round-trip time of the previous two algorithms

I Exiting the critical section:
I Zero if no other process has requested entry
I Must send up to N-1 responses to queued requests, but again

if this is asynchronous there is no waiting for a reply

I The synchronisation-delay is only one message, the holder
simply responds to the queued request



Mutual Exclusion Performance Evaluation

Maekawa’s Voting algorithm

I Entering the critical section:
I This requires 2×√N messages
I As before though, the delay is comparable to a round-trip time

I Exiting the critical section:
I This requires

√
N messages

I The delay though is comparable to a single message
I The total for entry/exit is thus 3×√N which compares

favourably to Ricart and Agrawala’s total of 2(N − 1) where
N > 4.

I The synchronisation-delay is a round-trip time as it requires
the holding process to multi-cast to its voting set the
“release” message and then intersecting processes must send
a permission granted message to the requesting process



Mutual Exclusion Performance Evaluation

Further Considerations

I The ring-based algorithm continuously consumes bandwidth
as the token is passed around the ring even when no process
requires entry

I Ricart and Agrawala — the process that last used the critical
section can simply re-use it if no other requests have been
received in the meantime



Mutual Exclusion Algorithms

Fault Tolerance

I None of the algorithms described above tolerate loss of
messages

I The token based algorithms lose the token if such a message
is lost meaning no further accesses will be possible

I Ricart and Agrawala’s method will mean that the requesting
process will indefinitely wait for (N - 1) “permission granted”
messages that will never come because one or more of them
have been lost

I Maekawa’s algorithm cannot tolerate message loss without it
affecting the system, but parts of the system may be able to
proceed unhindered
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Fault Tolerance

Process Crashes

I What happens when a process crashes?

1. Central server, provided the process which crashes is not the
central server, does not hold the token and has not requested
the token, everything else may proceed unhindered

2. Ring-based algorithm — complete meltdown, but we may get
through up to N-1 critical section accesses in the meantime

3. Ricart and Agrawala — complete meltdown, we might get
through additional critical section accesses if the failed process
has already responded to them. But no subsequent requests
will be granted

4. Maekawa’s voting algorithm — This can tolerate some process
crashes, provided the crashed process is not within the voting
set of a process requesting critical section access
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Mutual Exclusion Algorithms

Fault Tolerance

I All of these algorithms may be adapted to recover from
process failures

I Given a failure detector(s)

I Note, however, that this problem is non-trivial

I In particular because for all of these algorithms a failed
process looks much like one which is currently using the
critical section

I The key point is that the failure may occur at any point

I A synchronous system may be sure that a process has failed
and take appropriate action

I An asynchronous system cannot be sure and hence may steal
the token from a process currently using the critical section

I Thus violating the Safety property



Mutual Exclusion Fault Tolerance

Considerations
I Central server

I care must be taken to decide whether the server or the failed
process held the token at the time of the failure

I If the server itself fails a new one must be elected, and any
queued requests must be re-made.

I Ring-based algorithm
I The ring can generally be easily fixed to circumvent the failed

process
I The failed process may have held or blocked the progress of

the token
I Ricart and Agrawala

I Each requesting process should record which processes have
granted permission rather than simply how many

I The failed process can simply be removed from the list of
those required

I Maekawa’s voting algorithm
I Trickier, the failed process may have been in the intersection

between two voting sets
I Even if not, it must be determined whether the failed process

was in the “Held” state



Coordination and Agreement

Elections
I Several algorithms which we have visited until now required a

master or nominee process, including:

1. Berkley algorithm for clock synchronisation
2. Distributed Debugging
3. The central server algorithm for mutual exclusion

I Even other algorithms may need a nominee to actually report
the results of the algorithm

I For example Chandy and Lamport’s snap shot algorithm
described how to record the local state at each process in
such a way that a consistent global state could be assembled
from the local states recorded at different times

I To actually be useful these local states must be gathered
together, a simple way to do this is for each local process to
send their locally recorded state to a nominee process



Elections

No Fixed Master/Nominee

I A simple way to provide a master process, is to simply name
one

I However if the named process fails there should be a recovery
plan

I A recovery plan requires that we dynamically decide who
should become the new master/nominee

I Even with a fixed order this is non-trivial, in particular as all
participants must agree that the current master as failed

I A more dynamic election process can allow for greater
flexibility of a running system



Elections

Assumptions and Scenario

I We will assume that any of the N processes may call for an
election of a nominee process at any time

I We will assume that no process calls more than one such
election concurrently

I But that all N processes may separately call for an election
concurrently



Elections

Requirements

I We require that the result of the election should be unique
I (no hung-parliaments or coalitions)
I Even if multiple processes call for an election concurrently
I We will say that the elected process should be the best choice:

I For our purposes we will have a simple identifier for each
process, and the process with the highest identifier should
“win” the election

I In reality the identifier could be any useful property, such as
available bandwidth

I The identifiers should be unique and consist of a total ordering
I In practice this can be done much like equal Lamport time

stamps can be given an artificial ordering using a process
identifier/address

I However care would have to be taken in the case that several
properties were used together such as uptime, available
bandwidth and geographical location



Elections

Assumptions and Scenario

I Each process at any point in time is either a participant or a
non-participant corresponding to whether the process itself
believes it is participating in an election

I Each process pi has a variable electedi which contains the
identifier of the elected process

I When the process pi first becomes a participant, the electedi

variable is set to the special value ⊥
I This means that the process does not yet know the result of

the election



Elections

Requirements

I Safety A participant process pi has electedi = ⊥ or
electedi = P, where P is chosen as the non-crashed process at
the end of the run with the largest identifier

I Liveness All processes participate and eventually either crash
or have electedi 6= ⊥

I Note that there may be some process pj which is not yet a
participant which has electedj = Q for some process which is
not the eventual winner of the election

I An additional property then could be specified as, no two
processes concurrently have electedi set to two different
processes

I Either one may be set to a process and the other to ⊥
I But if they are both set to a process it should be the same one
I We’ll call this property Total Safety



Elections

Election/Nominee Algorithms
I We will look at two distributed election algorithms

1. A ring-based election algorithm similar to the ring-based
mutual-exclusion algorithm

2. The bully election algorithm

I We will evaluate these algorithms with respect to their
performance characteristics, in particular:

I The total number of messages sent during an election — this
is a measure of the bandwidth used

I The turn-around time, measured by the number of serialised
messages sent:

I Recall Ricart and Agrawala’s algorithm for mutual exclusion
that required 2(N − 1) messsages to enter the critical section,
but that that time only amounted to a turn-around time, since
the only serialisation was that each response message followed
a request message.



Elections

Ring-based Election Algorithm

I As with the ring-based mutual exclusion algorithm the
ring-based election algorithm requires that the processes are
arranged within a logical ring

I Once again this ring is logical and may bear no resemblance
to any physical or geographical structure

I As before all messages are sent clockwise around the ring

I We will assume that there are no failures after the algorithm
is initiated

I It may have been initiated because of an earlier process
failure, but we assume that the ring has been reconstructed
following any such loss

I It is also possible that the election is merely due to high
computational load on the currently elected process



Ring-based Election Algorithm

Initiating an election

I Initially all processes are marked as “non-participant”

I Any process may begin an election at any time
I To do so, a process pi :

1. marks itself as a “participant”
2. sets the electedi variable to ⊥
3. Creates an election message and places its own identifier

within the election message
4. Sends the election message to its nearest clockwise neighbour

in the ring



Ring-based Election Algorithm

Receiving an election message
I When a process pi receives an election message:

1. Compares the identifier in the election message with its own
2. if its own identifier is the lower:

I It marks itself as a participant
I sets its electedi variable to ⊥
I forwards the message on to the next clockwise peer in the ring

3. if its own identifier is higher:
I It marks itself as a participant
I sets its electedi variable to ⊥
I Substitutes its own identifier into the election message and

forwards it on to the next clockwise peer in the ring

4. if its own identifier is in the received election message:
I Then it has won the election
I It marks itself as non-participant
I sets its electedi variable to its own identifier
I and sends an “elected” message with its own identifier to the

next clockwise peer in the ring
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Ring-based Election Algorithm

Receiving an elected message
I When a process pi receives an elected message:

1. marks itself as a non-particpant
2. sets its electedi variable to the identifier contained within the

elected message
3. if it is not the winner of the election:

I forward the elected message on to the next clockwise peer in
the ring

4. otherwise The election is over and all peers should have their
electedi variable set to the identifier of the agreed upon elected
process



Ring-based Election Algorithm

Required Properties
I Safety:

I A process must receive its own identifier back before sending
an elected message

I Therefore the election message containing that identifier must
have travelled the entire ring

I And must therefore have been compared with all process
identifiers

I Since no process updates its electedi variable until it wins the
election or receives an elected message no participating process
will have its electedi variable set to anything other than ⊥

I Liveness:
I Since there are no failures the liveness property follows from

the guaranteed traversals of the ring.



Ring-based Election Algorithm

Performance

I If only a single process starts the election

I Once the process with the highest identifier sends its election
message (either initiating or because it received one), then the
election will consume two full traversals of the ring.

I In the best case, the process with the highest identifier
initiated the election, it will take 2× N messages

I The worst case is when the process with the highest identifier
is the nearest anti-clockwise peer from the initiating process
In which case it is (N − 1) + 2× N messages

I Or 3N − 1 messages

I The turn-around time is also 3N − 1 since all the messages are
serialised



Elections

The Bully Election Algorithm

I Developed to allow processes to fail/crash during an election

I Important since the current nominee crashing is a common
cause for initiating an election

I Big assumption, we assume that all processes know ahead of
time, all processes with higher process identifiers

I This can therefore not be used alone to elect based on some
dynamic property

I There are three kinds of messages in the Bully algorithm

1. election — sent to announce an election
2. answer — sent in response to an election message
3. coordinator — sent to announce the identity of the elected

process



The Bully Election Algorithm

Failure Detector

I We are assuming a synchronous system here and so we can
build a reliable failure detector

I We assume that message delivery times are bound by Ttrans

I Further that message processing time is bound by Tprocess

I Hence a failure detector can send a process psuspect a message
and expect a response within time T = 2× Ttrans + Tprocess

I If a response does not occur within that time, the local failure
detector can report that the process psuspect has failed



The Bully Election Algorithm

A simple election

I If the process with the highest identifier is still available

I It knows that it is the process with the highest identifier

I It can therefore elect itself by simply sending a coordinator
message

I You may wonder why it would ever need to do this
I Imagine a process which can be initiated by any process, but

requires some coordinator
I For example global garbage collection
I For which we run a global snapshot algorithm
I And then require a coordinator to:

1. collect the global state
2. figure out which objects may be deleted
3. alert the processes which own those objects to delete them

I The initiator process cannot be sure that the previous
coordinator has not failed since the previous run.

I Hence an election is run each time
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The Bully Election Algorithm

An actual election

I A process which does not have the highest identifier:

I Begins an election by sending an election message to all
processes with a higher identifier

I It then awaits the answer message from at least one of those
processes

I If none arrive within our time bound T = 2×Ttrans + Tprocess

I Our initiator process assumes itself to be the process with the
highest identifier who is still alive

I And therefore sends a coordinator message indicating itself to
be the newly elected coordinator

I otherwise The process assumes that a coordinator message
will follow. It may set a timeout for this coordinator message
to arrive.

I If the timeout is reached before the coordinator message
arrives the process can begin a new election



The Bully Election Algorithm

Receiving Messages

I coordinator If a process receives a coordinator message it sets
the electedi variable to the named winner

I election If a process receives an election message it sends back
an answer message and begins another election (unless it has
already begun one).



The Bully Election Algorithm

Starting a process

I When a process fails a new process may be started to replace
it

I When a new process is started it calls for a new election

I If it is the process with the highest identifier this will be a
simple election in which it simply sends a coordinator message
to elect itself

I This is the origin of the name: Bully



The Bully Election Algorithm

Properties
I The Liveness property is satisfied.

I Some processes may only participate in the sense that they
receive a coordinator message

I But all non-crashed processes will have set electedi to
something other than ⊥.

I The Safety property is also satisfied if we assume that any
process which has crashed, either before or during the
election, is not replaced with another process with the same
identifier during the election.

I Total Safety is not satisfied



The Bully Election Algorithm

Properties
I Unfortunately the Safety property is not met if processes may

be replaced during a run of the election
I One process, say p1, with the highest identifier may be started

just as another process p2 has determined that it is currently
the process with the highest identifier

I In this case both these processes p1 and p2 will concurrently
send coordinator messages announcing themselves as the new
coordinator

I Since there is no guarantee as to the delivery order of messages
two other processes may receive these in a different order

I such that say: p3 believes the coordinator is p2 whilst p4

believes the coordinator is p1.

I Of course things can also go wrong if the assumption of a
synchronous system is incorrect



The Bully Election Algorithm

Performance Evaluation
I In the best case the process with the current highest identifier

calls the election
I It requires (N - 1) coordinator messages
I These are concurrent though so the turnaround time is 1

message

I In the worst case though we require O(N2) messages
I This is the case if the process with the lowest identifier calls

for the election
I In this case N − 1 processes all begin elections with processes

with higher identifiers

I The turn around time is best if the process with the highest
identifier is still alive. In which case it is comparable to a
round-trip time.

I Otherwise the turn around time depends on the time bounds
for message delivery and processing



Election Algorithms Comparision

Ring-based vs Bully
Ring Based Bully

Asynchronous Yes No
Allows processes to crash No Yes
Satisfies Safety Yes Yes/No
Dynamic process identifiers Yes No
Dynamic configuration of processes Maybe Maybe
Best case performance 2× N N − 1
Worst case performance 3× N − 1 O(N2)



Global Agreement

MultiCast

I Previously we encountered group multicast

I IP multicast and Xcast both delivered “Maybe” semantics

I That is, perhaps some of the recipients of a multicast message
receive it and perhaps not

I Here we look at ways in which we can ensure that all
members of a group have received a message

I And also that multiples of such messages are received in the
correct order

I This is a form of global consensus



Global Agreement

Assumptions and Scenario

I We will assume a known group of individual processes
I Communication between processes is

I message based
I one-to-one
I reliable

I Processes may fail, but only by crashing
I That is, we suffer from process omission errors but not process

arbitrary errors

I Our goal is to implement a multicast(g , m) operation

I Where m is a message and g is the group of processes which
should receive the message m



Global Agreement

deliver and receive

I We will use the operation deliver(m)

I This delivers the multicast message m to the application layer
of the calling process

I This is to distinguish it from the receive operation

I In order to implement some failure semantics not all multicast
messages received at process p are delivered to the application
layer



Global Agreement

Reliable Multicast
I Reliable multicast, with respect to a multicast operation

multicast(g , m), has three properties:

1. Integrity — A correct process p ∈ g delivers a message m at
most once and m was multicast by some correct process

2. Validity — If a correct process multicasts message m then
some correct process in g will eventually deliver m

3. Agreement — If a correct process delivers m then all other
correct processes in group g will deliver m

I Validity and Agreement together give the property that if a
correct process which multicasts a message it will eventually
be delivered at all correct processes



Global Agreement

Basic Multicast

I Suppose we have a reliable one-to-one send(p, m) operation
I We can implement a Basic Multicast: Bmulticast(g , m) with

a corresponding Bdeliver operation as:
1. Bmulticast(g , m) = for each process p in g :

I send(p, m)

2. On receive(m) : Bdeliver(m)

I This works because we can be sure that all messages will
eventually receive the multicast message since send(p, m) is
reliable

I It does however depend upon the multicasting process not
crashing

I Therefore Bmulticast does not have the Agreement property



Global Agreement

Reliable Multicast

I We will now implement reliable multicast on top of basic
multicast

I This is a good example of protocol layering

I We will implement the operations:

I Rmulticast(g , m) and Rdeliver(m)

I which are analogous to their Bmulticast(g , m) and
Bdeliver(m) counterparts but have additionally the Agreement
property



Global Agreement

Reliable Multicast — Using Basic Multicast

I On initialisation: Received = {}
I Process p to Rmulticast(g , m):

I Bmulticast(g ∪ p, m)

I On Bdeliver(m) at process q:
I If m 6∈ Received

I Received = Received ∪ {m}
I If p 6= q : Bmulticast(g , m)
I Rdeliver(m)



Global Agreement

Reliable Multicast

I Note that we insist that the sending process is in the receiving
group, hence:

I Validity — is satisfied since the sending process p will deliver
to itself

I Integrity — is guaranteed because of the integrity of the
underlying Bmulticast operation in addition to the rule that m
is only added to Received at most once

I Agreement — follows from the fact that every correct process
that Bdelivers(m) then performs a Bmulticast(g , m) before it
Rdelivers(m).

I However it is somewhat inefficient since each message is sent
to each process | g | times.



Global Agreement

Reliable Multicast Over IP

I So far our multicast (and indeed most of our algorithms) have
been described in a vacuum devoid of other communication

I In a real system of course there is other communication going
on

I So a reasonable method of implementing reliable multicast is
to piggy-back acknowledgements on the back of other
messages

I Additionally the concept of a “negative acknowledgement” is
used

I A negative acknowledgement is a response indicating that we
believe a message has been missed/dropped



Global Agreement

Reliable Multicast
IP

I We assume that groups are closed — not something assumed
for the previous algorithm

I When a process p performs an Rmulticast(g , m) it includes in
the message:

I a sequence number Sp
g

I acknowledgements of the form {q, Rq
g }

I An acknowledgement {q, Rq
g } included in message from

process p indicates the latest message multicast from process
q that p has delivered.

I So each process p maintains a sequence number Rq
g for every

other process q in the group g indicating the messages
received from q

I Having performed the multicast of a message with an Sp
g

value and any acknowledgements attached, process p then
increments its own stored value of Sp

g

I In other words: Sp
g is a sequence number



Global Agreement

I The sequence numbers Sp
g attached to each multicast

message, allows the recipients to learn about messages which
they have missed

I A process q can Rdeliver(m) only if the sequence number
Sp

g = Rp
g + 1.

I Immediately following Rdeliver(m) the value Rp
g is

incremented

I If an arriving message has a number S ≤ Rp
g then process q

knows that it has already performed Rdeliver on that message
and can safely discard it

I If S > Rp
g then the receiving process q knows that it has

missed some message from p destined for the group g

I In this case the receiving process q puts the message in a
hold-back queue and sends a negative acknowledgement to
the sending process p requesting the missing message(s)



Global Agreement

Properties

I The hold-back queue is not strictly necessary but it simplifies
things since then a simple number can represent all messages
that have been delivered

I We assume that IP-multicast can detect message corruption
(for which it uses checksums)

I Integrity is therefore satisfied since we can detect duplicates
and delete them without delivery

I Validity property holds again because the sending process is in
the group and so at least that will deliver the message

I Agreement only holds if messages amongst the group are sent
indefinitely and if sent messages are retained (for re-sending)
until all groups have acknowledged receipt of it

I Therefore as it stands Agreement does not formally hold,
though in practice the simple protocol can be modified to give
acceptable guarantees of Agreement



Global Agreement

Uniform Agreement

I Our Agreement property specifies that if any correct process
delivers a message m then all correct processes deliver the
message m

I It says nothing about what happens to a failed process

I We can strengthen the condition to Uniform Agreement

I Uniform Agreement states that if a process, whether it then
fails or not, delivers a message m, then all correct processes
also deliver m.

I A moment’s reflection shows how useful this is, if a process
could take some action that put it in an inconsistent state and
then fail, recovery would be difficult

I For example applying an update that not all other processes
receive



Global Agreement

Ordering

I There are several different ordering schemes for multicast
I The three main distinctions are:

1. FIFO — If a correct process performs mulitcast(g , m) and
then multicast(g , m′) then every correct process which delivers
m′ will deliver m before m′

2. Causal — If mulitcast(g , m)→ multicast(g , m′) then every
process which delivers m′ delivers m before m′

3. Total — If a correct process delivers m before it delivers m′

then every correct process which delivers m′ delivers m before
m′

I Note that Causal ordering implies FIFO ordering

I None of these require or imply reliable multicast
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Global Agreement

Total Ordering

I As we saw Causal ordering implies FIFO ordering

I But Total ordering is an orthogonal requirement

I Total ordering only requires an ordering on the delivery order,
but that ordering says nothing of the order in which messages
were sent

I Hence Total ordering can be combined with FIFO and Causal
ordering

I FIFO-Total ordering or Causal-Total ordering



Multicast Ordering

Implementing FIFO Ordering

I Our previous algorithm for reliable multicasting

I More generally sequence numbers are used to ensure FIFO
ordering



Multicast Ordering

Implementing Causal Ordering

I To implement Causal ordering on top of Basic Multicast
(bmulticast)

I Each process maintains a vector clock

I To send a Causal Ordered multicast a process first uses a
bmulticast

I When a process pi performs a bdeliver(m) that was multicast
by a process pj it places it in the holding queue until:

I It has delivered any earlier message sent by pj

I and
I It has delivered any message that had been delivered at pj

before pj multicast m

I Both of these conditions can be determined by examining the
vector timestamps



Global Agreement

Implementing Total Ordering
I There are two techniques to implementing Total Ordering:

1. Using a sequencer process
2. Using bmulticast to illicit proposed sequence numbers from all

receivers



Implementing Total Ordering

Using a sequencer

I Using a sequencer process is straight forward

I To total-ordered multicast a message m a process p first sends
the message to the sequencer

I The sequencer can determine message sequence numbers
based purely on the order in which they arrive at the
sequencer

I Though it could also use process sequence numbers or
Lamport timestamps should we wish to, for example, provide
FIFO-Total or Causal-Total ordering

I Once determined, the sequencer can either bmulticast the
message itself

I Or, to reduce the load on the sequencer, it may just respond
to process p with the sequence number which then itself
performs the bmulticast



Implementing Total Ordering

Using Collective Agreement

I To total-order multicast a message, the process p first
performs a bmulticast to the group

I Each process then responds with a proposal for the agreed
sequence number

I And puts the message in its hold-back queue with the
suggested sequence number provisionally in place

I Once the process p receives all such responses it selects the
largest proposed sequence number and replies to each process
(or uses bmulticast) with the agreed upon value

I Each receiving process then uses this agreed sequence number
to deliver (that is TO-deliver) the message at the correct point



Ordered Multicast

Overlapping Groups

I So far we have been happy to assume that each receiving
process belongs to exactly one multicast group

I Or that for overlapping groups the order is unimportant

I For some applications this is insufficient and our orderings can
be updated to account for overlapping groups



Ordered Multicast

Overlapping Groups

I Global FIFO Ordering If a correct process issues
multicast(g , m) and then multicast(g ′, m′) then every correct
process in g ∩ g ′ that delivers m′ delivers m before m′

I Global Causal Ordering If multicast(g , m)→ multicast(g ′, m′)
then every correct process in g ∩ g ′ that delivers m′ delivers m
before m′

I Pairwise Total Ordering If a correct process delivers message
m sent to g before it delivers m′ sent to g ′ then every correct
process in g ∩ g ′ which delivers m′ delivers m before m′

I A simple, but inefficient way, to do this is force all multicasts
to be to the group g ∪ g ′, receiving processes then simply
ignore the multicast messages not intended for them.

I e.g. process p ∈ g − g ′ ignore multicast messages sent to g ′
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Summary

Further Thoughts

I These algorithms to perform mutual exclusion, nominee
election and agreed multicast suffer many drawbacks

I Many are subject to some assumptions which may be
unreasonable

I Particularly when the network used is not a Local Area
Network

I These problems can be, and are, overcome

I But for each individual application the designer should
consider whether the assumptions are a problem

I It may be that coming up with a solution which is less optimal
but does not rely on, say, a reliable communication network,
may be the best approach

I For example, Routing Information Protocol



Consensus

Three Kinds

I The problems of mutual exclusion, electing a nominee and
multicast are all instances of the more general problem of
consensus.

I Consensus problems more generally then are described as one
of three kinds:

1. Consensus
2. Byzantine Generals
3. Interactive Consensus



Global Agreement

Consensus

I A set of processes {p1, p2, . . . pn} each begins in the
undecided state

I Each proposes a single value vi

I The processes then communicate, exchanging values

I To conclude, each process must set their decision variable di

to one value and thus enter the decided state
I Three desired properties:

I Termination: each process sets its decisioni variable
I Agreement: If pi and pj are correct processes and have both

entered the decided state, then di = dj

I Integrity: If the correct processes all proposed the same value
v , then any correct process pi in the decided state has di = v



Global Agreement

Byzantine Generals

I Imagine three or more generals are to decide whether or not
to attack

I We assume that there is a commander who issues the order

I The others must decide whether or not to attack

I Either the lieutenants or the commander can be faulty and
thus send incorrect values

I Three desired properties:
I Termination: each process sets its decisioni variable
I Agreement: If pi and pj are correct processes and have both

entered the decided state, then di = dj

I Integrity: If the commander is correct then all correct
processes decide on the value proposed by the commander

I When the commander is correct, Integrity implies Agreement,
but the commander may not be correct



Global Agreement

Interactive Consensus

I Each process proposes its own value and the goal is for each
process to agree on a vector of values

I Similar to consensus other than that each process contributes
only a part of the final answer which we call the decision
vector

I Three desired properties:
I Termination: each process sets its decisioni variable
I Agreement: The final decision vector of all processes is the

same
I Integrity: If pi is correct and proposes vi then all correct

processes decide on vi as the ith component of the decision
vector



Global Agreement

Relating the three
I Assuming we had a solution to any of the three problems we

could construct a solution to the other two
I For example, if we have a solution to Interactive Consensus,

then we have a solution to Consensus, all we require is some
way consistent function for choosing a single component of
the decision vector

I We might choose a majority function, maximum, minimum or
some other function depending on the application

I It only requires that the function is context independent
I If we have a solution to the Byzantine Generals then we can

construct a solution to Interactive Consensus
I To do so we simply run the Byzantine Generals solution N

times, once for each process
I The point is not necessarily that this would be the way to

implement such as solution (it may not be efficient)
I However if we can determine an impossibility result for one of

these problems we know that we also have the same result for
the others

I We are interested in how many incorrect processes f a system
with a total number of N processes can tolerate
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Byzantine Generals in a Synchronous System

p1
commander

p2 p3

1 says v 1 says v

2 claims 1 says v

3 claims 1 says x
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Global Agreement

Impossible
I Recall:

I Agreement: If pi and pj are correct processes and have both
entered the decided state, then di = dj

I Integrity: If the commander is correct then all correct
processes decide on the value proposed by the commander

I In both scenarios, process p2 receives different values from the
commander p1 and the other process p3

I It can therefore know that one process is faulty but cannot
know which one

I By the Integrity property then it is bound to choose the value
given by the commander

I By symmetry the process p3 is in the same situation when the
commander is faulty.

I Hence when the commander is faulty there is no way to
satisfy the Agreement property, so no solution exists for three
processes
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N ≤ 3× f

I In the above case we had three processes and at most one
incorrect process, hence N = 3 and f = 1

I It has been shown, by Pease et al that more generally no
solution can exist whenever N ≤ 3× f

I However there can exist a solution whenever N > 3× f

I Such algorithms consist of rounds of messages

I It is known that such algorithms require at least f + 1
message rounds

I The complexity and cost of such algorithms suggest that they
are only applicable where the threat is great

I That means either the threat of an incorrect or malicious
process is great

I and/or the cost of failing due to inability to reach consensus is
large



Global Agreement

Consensus in an Asynchronous System
I Fisher et al have shown that it is impossible to design an

algorithm which is guaranteed to reach consensus in an
asynchronous system, under the following condition:

I We allow a single process crash failure

I Even if we have 1000s of processes, and the failure is a crash
rather than an arbitrary failure of just a single process, any
consensus algorithm is not guaranteed to reach consensus

I Clearly this is a pretty benign set of circumstances
I We therefore know that there is no solution in an

asynchronous system to either:

1. Byzantine generals (and hence consensus or interactive
consensus)

2. Totally order and reliable multicast
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So what to do?
I The important word in the previous impossibility result is:

guarantee
I There is no algorithm which is guaranteed to reach consensus
I Consensus has been reached in asynchronous systems for years
I Some techniques for getting around the impossibility result:

I Masking process failures, for example using persistant storage
such that a crashed process can be replaced by one in
effectively the same state

I Thus meaning some operations appear to take a long time,
but all operations do eventually complete

I Employ failure detectors:
I Although in an asynchronous system we cannot achieve a

reliable failure detector
I We can use one which is “perfect by design”
I Once a process is deemed to have failed, any subsequent

messages that it does send (showing that it had not failed) are
ignored

I To do this the other processes must agree that a given process
has failed
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Back to the pair of attacking generals
A = Acknowledge Attack!

left
general

right
general

Attack! AAAAAAAA

I If the probability of any one message being dropped is 0.5
I Then the probability that two acknowledgements fail to be

returned is 0.25
I For 3 it is 0.125 etc, for 8 it is 1

256 = 0.0039
I In reality we have to consider the probability that the message

is not dropped but not received by some time out value t
I This complicates the calculation but not the general idea
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Summary
I We looked at the problem of Mutual Exclusion in a distributed

system
I Giving four algorithms:

1. Central server algorithm
2. Ring-based algorithm
3. Ricart and Agrawala’s algorithm
4. Maekawa’s voting algorithm

I Each had different characteristics for:

1. Performance, in terms of bandwidth and time
2. Guarantees, largely the difficulty of providing the Fairness

property
3. Tolerance to process crashes

I We then looked at two algorithms for electing a master or
nominee process

I Then we looked at providing multicast with a variety of
guarantees in terms of delivery and delivery order



Coordination and Agreement

Summary

I We then noted that these were all specialised versions of the
more general case of obtaining consensus

I We defined three general cases for consensus which could be
used for the above three problems

I We noted that a synchronous system can make some
guarantee about reaching consensus in the existance of a
limited number of process failures

I But that even a single process failure limits our ability to
guarantee reaching consensus in an asynchronous system

I In reality we live with this impossibility and try to figure out
ways to minimise the damage
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Distribution and Operating Systems

Overview

I This part of the course will be chiefly concerned with the
components of a modern operating system which allow for
distributed systems

I We will examine the design of an operating system within the
context that we expect it to be used as part of a network of
communicating peers, even if only as a client

I In particular we will look at providing concurrency of
individual processes all running on the same machine

I Concurrency is important because messages take time to send
and the machine can do useful work in between messages
which may arrive at any time

I An important point is that in general we hope to provide
transparency of concurrency, that is each process believes that
it has sole use of the machine

I Recent client machines such as smartphones, have, to some
extent, shunned this idea
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Operating Systems

I An Operating System is a single process which has direct
access to the hardware of the machine upon which it is run

I The operating system must therefore provide and manage
access to:

I The processor
I System memory
I Storage media
I Networks
I Other devices, printers, scanners, coffee machines etc

http://fotis.home.cern.ch/fotis/Coffee.html
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Operating Systems
I As a provider of access to physical resources we are interested

in the operating system providing:
I Encapsulation: Not only should the operating system provide

access to physical resources but also hide their low-level details
behind a useful abstraction that applications can use to get
work done

I Concurrent Processing: Applications may access these physcial
resources (including the processor) concurrently, and the
process manager is responsible for achieving concurrency
transparency

I Protection: Physical resources should only be accessed by
processes with the correct permissions and then only in safe
ways. Files for example can only be accessed by applications
started by users with the correct permissions.
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Encapsulation
I For example application programmers work with “files” and

“sockets” rather than “disk blocks” and “raw network access”
I Application programmers work as though the system memory

was limitless (though not costless) and the operating system
provides the concept of virtual memory to emulate the
existance of more memory
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Concurrent Processing

I Through encapsulation applications operate as though they
had full use of the computer’s hardware

I It is the task of the operating system not only to maintain this
pretence but also fully utilise the machine’s hardware

I In general Input/Output requests take a relatively long time
to process, for example saving to persistent storage

I When a particular program makes such a request it is placed
in the “BLOCKED” state and another process is given use of
the machine’s CPU

I In this way the machine’s CPU should never be idle whilst
some process wishes to do some useful processesing

I The operating system also must provide ways for separate
processes to communicate with one another
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Protection

I The aim of protection within an operating system is to make
sure that a single process cannot unduly disrupt the running
of other processes or the physical resources that they share

I The process from which we require protection may be either
faulty or deliberately malicious

I There are two kinds of operations from which the operating
system can protect the physical resources

1. Unauthorised access
I As an example using the file system, the operating system

does not allow a process to update (write to) a file for which
the owner (a user) of the process does not have write access to

2. Invalid operations
I An example again using the file system would be that a

process is not allowed to arbitrarily set the file pointer to some
arbitrary value
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Kernel Mode

I Most processors have two modes of operation: Kernel mode
and User mode, also known as: priviledged mode and
unpriviledged mode

I Generally operating system writers try to write code so that as
little as possible is run in Kernel mode

I Even other parts of the operating system itself may be run in
User Mode, thus providing protection even from parts of the
operating system

I Although there is sometimes a performance penalty for
operating in User Mode as there is a penalty for a so-called
system call

I There have been some attempts to avoid this, such as Typed
Assembly Language, in which such code is type-safe and
hence can be trusted (more) to run in Kernel mode.
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Operating System Components

I Process Manager: Takes care of the creation of processes.
Including the scheduling of each process to physical resources
(such as the CPU)

I Thread Manager: Thread, creation, synchronisation and
scheduling.

I Communication Manager: Manages the communication
between separate processes (or threads attached to separate
processes).

I Memory Management: Management of physical and virtual
memory. Note this is not the same as automatic memory
management (or garbage collection) provided by the runtime
for some high-level languages such as Java.

I Supervisor: The controller for interrupts, system call traps and
other kinds of exceptions (though not, generally, language
level exceptions).
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Monolithic vs Microkernel
I A monolithic kernel provides all of the above services via a

single image, that is a single program initialised when the
computer boots

I A microkernel instead implements only the absolute minimum:
Basic virtual memory, Basic scheduling and Inter-process
communication

I All other services such as device drivers, the file system,
networking etc are implemented as user-level server processes
that communicate with each other and the kernel via IPC

I www.dina.dk/~abraham/Linus_vs_Tanenbaum.html
Historical spat between Andrew Tanenbaum and Linus
Torvalds (and others) on the merits of Minix (a microkernel)
and Linux (a monolithic kernel)

I Linux and Minix are both examples of a Network Operating
System. Also mentioned in the above is Amoeba, an example
of a Distributed Operating System
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The Microkernel Approach
I The major advantages of the microkernel approach include:

I Extensibility — major functionality can be added without
modifying the core kernel of the operating system

I Modularity — the different functions of the operating system
can be forced into modularity behind memory protection
barriers. A monolithic kernel must use programming language
features or code conventions to attempt to ensure this

I Robustness — relatively small kernel might be likely to contain
fewer bugs than a larger program, however, this point is rather
contentious

I Portability — since only a small portion of the operating
system, its smaller kernel, relies on the particulars of a given
machine it is easier to port to a new machine architecture

I Not just an architecture, a different purpose, such as
mainframe server or a smartphone
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The Monolithic Approach

I The major advantage of the monolithic approach is the
relative efficiency with which operations may be invoked

I Since services share an address space with the core of the
kernel they need not make system calls to access core-kernel
functionality

I Most operating systems in use today are a kind of hybrid
solution

I Linux is a monolithic kernel, but modules may be dynamically
loaded and unloaded at run time.

I Mac OS X and iOS are built around the Darwin core, which is
based upon the XNU hybrid kernel that includes the Mach
micro-kernel.
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Network vs Distributed Operating Systems
I Network Operating Systems:

I There is an operating system image at each node
I Each node therefore has control over which processes run at

that physcial location
I A user may invoke a process on another node, for example via

ssh, but the operating system at the user’s node has no
control over the processes running at the remote node

I Distributed Operating Systems:
I Provides the view of a single system image maintaining all

processes running at every node
I A process, when invoked, or during its run, may be moved to a

different node in the network
I Generally the reason for this is that the current node is more

computationally loaded than the target node
I It could also be that the target node is physically closer to

some physical resource required by the process
I The idea is to maximise the configuration of processes to

nodes in a way which is completely transparent to the user
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Network vs Distributed Operating Systems

I Today there are no distributed operating systems in general
use

I Part of this may be down mostly to momentum
I In a similar way to CISC vs RISC processors back in the 90s

I Part of it though is likely due to users simply preferring to
maintain some control over their own resources

I In particular everyone believes their applications to be of
higher priority than their neighbours’

I In contrast the Network Operating System provides a good
balance as stand-alone applications can be run on the users’
own machine whilst the network services allow them to
explicitly take advantage of other machines when appropriate
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I A process within a computer system is a separate entity which
may be scheduled to be run on a CPU by the operating system

I It has attached to it an execution environment consisting of:
its own code, its own memory state and higher-level resources
such as open files and windows

I Each time the kernel performs a context-switch, allowing a
different process to run on the CPU, the old execution
environment is switched out and is replaced with the new one

I Several processes, or execution environments, may reside in
memory simultaneously.

I However each process believes it has sole use of memory and
hence accesses to memory go through a mapping, which maps
the accessed address to the address at which it currently,
physically resides

I In this way the OS can move execution environments about in
memory and even out to disk
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Processes and Threads

I Traditionally processes were used by computers to perform
separate tasks

I Even a single application could be split into several related
processes that communicated amongst each other

I However, for many purposes these separate processes meant
that sharing between related activities was awkward and
expensive

I For example a server application might have a separate
process to handle each incoming request (possibly setting up a
connection)

I But each such process was running the same code and
possibly using the same resources to handle the incoming
requests (such as a set of static web-pages for example)
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Threads
I Hence separate processes were inappropriate for such tasks
I An early work-around was for the application to write its own

basic ‘sub-process scheduler’
I For example allowing a request object time to run before

‘switching’ to the next request object
I But this was throwing out a lot of the advantages of

operating system level separate processes
I So threads were introduced as a lightweight - operating

system provided, alternative
I Now a process consists of its address-space, and a set of

threads attached to that process
I The operating system can perform less expensive context

switches between threads attached to the same process
I And threads attached to the same process can access the

same memory etc, such that communication/synchronisation
can be much cheaper and less awkward



Processes and Threads

Shared Memory
I A server application generally consists of:

I A single thread, the receiver-thread which receives all the
requests, places them in a queue and dispatches those requests
to be dealt with by the

I worker-threads

I The worker-thread which deals with the request may be a
thread in the same process or it may be a thread in another
process

I There must be a portion of shared memory though, for the
queue resides in memory owned by the receiver-thread

I A thread in the same process automatically has access to the
same part of memory

I If separate processes are used then there must be a portion of
shared memory such that the worker-thread can access any
request which the receiver-thread has dispatched to it
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A server utilising threads

I Imagine a server application, suppose that the receiver-thread
places all incoming requests in a queue accessible by the
worker-thread(s)

I Let us suppose that each request takes 2ms of processing and
8ms of Input/Output

I If we have a single worker thread then the maximum
throughput of serviced requests is 100 per-second, since each
request takes 2ms + 8ms = 10ms
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A server utilising threads
I Now consider what happens if there are two threads:

I The second thread can process a second request whilst the
first is blocked waiting for Input/Output

I Under the best conditions each thread may perform its 2ms of
processing whilst the other thread is blocked waiting for
Input/Output

I In calculating throughput then we can assume that the 2ms of
processing occurs concurrently with the proceeding request

I Hence on average each request takes 8ms meaning the
maximum throughput is 1000/8 = 125 requests per-second
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Threading and the Cache

I The cache of the processor is a small piece of hardware which
stores recently accessed elements of memory

I Separate processes have separate memory address spaces
I Hence when a process switch occurs the cache is flushed

I Separate threads belonging to the same process however share
the same execution environment

I Hence when switching between threads belonging to the same
process no flush of the cache is performed

I It’s possible then that using threads can reduce the processing
time for each individual request, since any access to memory
may result in a cache hit even if the current request hasn’t
accessed the same part of memory



Server Threads

Possible Strategies
I There are three general threading strategies in use for servers

1. A thread per request
2. A thread per connection
3. A thread per server object

I Which one is used depends on the application and in particular
whether connections are long-lived and “busy” or not

I/O

Thread per 
request

Thread per 
connection

Thread per 
object

I/O

I/O Receiving 
Thread

Worker 
thread

Remote object



Thread strategies

I In the thread per-request many threads are created and
destroyed, meaning that there is a large amount of thread
maintenance overhead

I This can be overcome to some extent by re-using a thread
once it has completely finished with a request rather than
killing it and starting a new one.

I In the thread per-connection and thread per-object strategies
the thread maintenance over-head is lower

I However, the risk is that there may be low utilisation of the
CPU, because a particular thread has several waiting requests,
whilst other threads have nothing to do

I That one thread with many requests may require to wait for
some I/O to be completed, whilst the remaining threads sit
idle because they have no waiting requests.

I If you have many concurrent connections (or objects) this may
not be a concern
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Main Arguments for Threads

I Creating a new thread within an existing process is cheaper
than creating a new process

I Switching to a new thread within the same process is cheaper
than switching to a thread within a different process

I Threads within the same process can share data and other
resources more efficiently and conveniently than threads
within separate processes

Main Arguments for Processes

I Threads within the same process are not protected from each
other

I In particular they share memory and therefore may
modify/delete an object still in use by another thread

Rebuttal

I However modern type-safe languages can provide similar
safety guarantees
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Operating Systems Support vs User Library

I Most major operating systems today support multi-threaded
processes allowing the operating system to schedule threads

I Alternatively the OS knows only of separate processes and
threading is implemented as a user-level library

I Such an implementation suffers from the following drawbacks:

1. The threads within a process cannot take advantage of a
multi-processor

2. When a thread makes a blocking system call (e.g., to access
input/output), the entire process is blocked, thus the threaded
application cannot take advantage of time spent waiting for
I/O to complete

3. Although this can be mitigated by using kernel level
non-blocking I/O, other blocks such as a page-fault will still
block the entire process

4. Relative prioritisation between processes and their associated
threads becomes more awkward
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Operating Systems Support vs User Library
I In contrast the thread implementation as a user-level library

has the following advantages:

1. Some operations are faster, for example switching between
threads does not automatically require a system call

2. The thread-scheduling module can be customised for the
particular application

3. Many more user-level threads can be supported than can be by
the kernel
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Threads in the Client

I Threads are clearly useful for the server what about the client?

I Imagine a web-browser which visits a particular page, the first
request is returned with the HTML for the page in question

I Within that HTML may be a number of image tags

I <img src="smiley.gif" height="42" width="42">

I The client must then make a further request for each image
(some images might not even be hosted at the same server —
hotlinking)

I But it doesn’t particularly matter in which order these requests
are made, or, crucially, in which order they are received

I Hence the web-browser can spawn a thread for each image
and request them concurrently
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Communication Primitives

I Some operating systems provide kernel level support for
high-level communication primitives such as remote
procedure-call, remote method invocation and group
communication

I Although this can increase efficiency due a decrease in the
required number of systems calls, such communication
abstractions are usually left to the middleware

I Operating systems tend to provide the well known sockets
abstraction for connection-based communication using TCP
and connectionless communication using UDP

I Middleware provides the higher-level communication
abstractions since it is then more flexible, different
implementations and protocols can be updated more readily
than for an entire operating system



Distribution and Operating Systems

Remote Invocation — Performance

I A null invocation is an invocation to a remote procedure
which takes zero arguments, executes a null procedure and
returns no values

I The time taken for a null invocation between user processes
connected by a LAN is of the order of a tenth of a millisecond

I By comparison, using the same sort of computer, a local
procedure call takes a small fraction of µ-second — let’s say
at most 0.0001 milliseconds

I Hence, over the LAN it is around 1000 times slower

I For the null invocation we need to transfer a total of around
100 bytes — over Ethernet it is estimated that the total
network time for this is around 0.01 milliseconds
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Remote Invocation — Performance

I The observed delay then is 0.0001 + 0.01 + x = 0.1 where x is
the delay accounted for by the operating system and user-level
remote procedure-call code

I x = 0.0899 — or 89% of the delay

I This was a rough calculation but clearly the operating system
and RPC protocol code is responsible for much of the delay

I The cost of a remote invocation increases if we add
arguments and return values, but the null invocation provides
a measure of the latency

I The latency can be important since it is often large in
comparison to the remainder of the delay

I In particular we frequently wish to know if we should make
one remote invocation with large arguments/results or many
smaller remote invocations
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Latency

I Message transmission time = latency + length
data transfer rate

I Though longer messages may require segmentation into
multiple messages

I Latency affects small frequent message passing which is
common for distributed systems



Distribution and Operating Systems

Virtualisation

I The goal of system virtualisation is to provide multiple virtual
machines running on top of the actual physical machine
architecture

I Each virtual machine has its own instance of an operating
system

I The operating system on each virtual machine need not be
the same

I In a similar way in which each operating system schedules the
the individual processes the virtualisation system manages the
allocation of physical resources to the virtual machines which
are running atop it



Virtualisation

Why?

I The system of user processes already provides some level of
protection for each user against the actions of another user

I System virtualisation offers benefits in terms of increased
security and backup

I A user can be charged for the time that their virtual machine
is run on the actual physical machine

I It’s a good way of running a co-location service, since the user
can essentially pay for the virtual machine performance that is
required/used rather than a single physical machine

I Sharing a machine is difficult, in particular the upgrade of
common libraries and other utilities, but system virtualisation
allows each user’s machine/process to exist in a microcosm
separate to any other user’s processes
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Server Farms

I An organisation offering several services can assign a single
virtual machine to each service

I Virtual machines can then be dynamically assigned to physical
servers

I Including the ability to migrate a virtual machine to a
different physical server — something not quite so easy to do
for a process

I This allows the organisation to reduce the cost of investment
in physical servers

I And can help reduce energy requirements as fewer physical
servers need be operating in times of low-demand
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Cloud Computing

I More and more computing is now being done “in the cloud”

I This is both in terms of “platform as a service” and “software
as a service”

I The first can be directly offered via virtualisation as the user
can be provided with one or more virtual machines

I Interesting blog post of a developer who ditched his macbook
for an ipad and a Linode instance

I http://yieldthought.com/post/12239282034/
swapped-my-macbook-for-an-ipad
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Dynamic Resource Demand

I Developers of distributed applications may require the efficient
dynamic allocation of resources

I Virtual machines can be easily created and destroyed with
little overhead

I For example online multiplayer games, may require additional
servers when the number of hosted games increases

Testing Platforms

I A completely separate use is a single desktop developer of a
multiplatform application

I Such a developer can easily run instances of popular operating
systems on the same machine and easily switch between them
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Is it my turn to run?

I It is interesting now to note that there are several hierarchical
layers of scheduling

I The virtualisation layer decides which virtual machine to run

I The operating system then decides the execution environment
of which process to load

I The operating system then decides which thread within the
loaded execution environment to run

I If user-level threads are implemented on top of this then the
user-level thread library decides which thread object to run
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Summary

I Distributed Operating Systems are an ideal allowing processes
to be migrated to the physical machine more suitable to run it

I However, Network Operating Systems are the dominant
approach, possibly more due to human tendancies than
technical merit

I We looked at microkernels and monolithic kernels and noted
that despite several advantages true microkernels were not in
much use

I This was mostly due to the performance overheads of
communication between operating system services and the
kernel

I Hence a hybrid approach was common
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Summary

I We looked at processes and how they provide concurrency, in
particular because such an application requires concurrency
because messages can be received at any time and requests
take time to complete, time that is best spent doing
something useful

I but noted that separate processes were frequently ill-suited for
an application communicating within a distributed system

I Hence threads became the mode of concurrency offering
lightweight concurrency.

I Multiple threads in the same process share an execution
environment and can therefore communicate more efficiently
and the operating system can switch between them more
efficiently
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Summary

I We also looked at the costs of operating system services on
remote invocation

I Noting that it is a large factor and any design of a distributed
system must take that into account — in particular the choice
of protocol is crucial to alleviate as much overhead as possible

I Finally we looked at system virtualisation and noted that it is
becoming the common-place approach to providing
cloud-based services

I Virtualisation also offers some of the advantages of a
microkernel including increased protection from other users’
processes
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US Presidential Election

As a distributed system
I For those of you that don’t know, the US presidential election

is tomorrow November the 6th
I Each state has allocated to it a number of “electoral college”

votes based on the size of the population of the state
I Each state then votes and allocates all of the state’s electoral

college votes to the party with the highest vote share in the
state



US Presidential Election

Popular Vote

I I am not arguing that this is a good system

I Why not just take the popular vote?

I That is, count up all the votes in the entire election and the
party/candidate with the most votes wins the election?

I Mostly historical reasons, arguably accuracy reasons

I

Candidate George W. Bush Al Gore

EC Votes 271 266

Popular Vote 50,456,002 50,999,897

Percentage 47.9 48.4



US Presidential Election

Efficiency

I

Candidate George W. Bush Al Gore

Alaska 167,398 79,004

New York 2,403,374 4,107,697

New Mexico 286,417 286,783

Florida 2,912,790 2,912,253

I In highly partisan states counting need not be accurate

I In highly contested states, maybe we better have a recount

I Note that this means the popular vote may be incorrect,
whilst the electoral college vote less likely so

I A statewide vote may order a recount if a candidate wins by
less than 1000 votes

I Nationally we might require a margin of at least 100, 000
votes to forego a recount

I A national recount is more expensive than a statewide recount
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Robustness

I We term each state as either Democrat or Republican

I But as the previous table shows most states are split quite
closely

I New Hampshire — fivethirtyeight.com projections:
DEM REP MARGIN

Polling average 48.9 46.3 Obama +2.6
Adjusted polling average 49.0 46.2 Obama +2.8
State fundamentals 50.4 44.4 Obama +6.0
Now-cast 49.1 46.0 Obama +3.1
Projected vote share ±3.7 51.2 48.0 Obama +3.2
Chance of winning 80% 20%

I With the electoral college votes each state’s influence is
known and limited

I Hence a corrupted state can have only a known and limited
effect on the final outcome
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Robustness

I This year may see another robustness result come significantly
in to play

I Hurricane Sandy has devastated parts of the north east coast

2008 Electoral College Results Map
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Robustness

I Suppose we had three states, each with a single EC vote

I Each has a population of 1000 voters:

I

State Dem Votes Rep Votes

Left Carolina 700 300
North Fencia 550 450
Right Carolina 300 700

Total Pop Vote 1550 1450
Total EC 2 1



US Presidential Election

Robustness

I Now suppose Left Carolina is hit by a hurricane the week
before the election, and only 500 people vote

I

State Dem Votes Rep Votes

Left Carolina 350 150
North Fencia 550 450
Right Carolina 300 700

Total Pop Vote 1200 1300
Total EC 2 1

I I’m not arguing that this is a good electoral system

I Just that it has some redeeming qualities

I and that those qualities could be put to use in some
distributed algorithm for an application in which the final
result need not necessarily be exactly correct, but not horribly
wrong
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Peer-to-Peer Systems

Overview

I This section of the course will discuss peer-to-peer systems

I We will look at the motivations for a such a system

I The limitations of a such a system

I Characterstics of such systems and hence the suitable types of
applications for peer-to-peer systems

I As well as how to provide middleware frameworks for creating
peer-to-peer applications which have the additional difficulty
that they must be application agnostic
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Google’s Daily Processing of Bytes

I Apparently Google (as of around 2009) processes around 24
petabytes of data every day

I This is quite a lot

I How much?
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Rice Bytes

I Let’s imagine that a single byte is represented by a single
grain of rice
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Rice Bytes
I A kilobyte, 1K or 1024 bytes then is a 1024 grains of rice, or

about a bowl
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Rice Bytes
I A megabyte then, represented as rice, is a sack of rice:
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Rice Bytes

I Next up is 1024 megabytes, commonly referred to as a
gigabyte

I This is represented as two large shipping containers full of rice

I 1 shipping unit = 1 TEU (twenty-foot equivalent unit)

I We could feed everyone in Edinburgh two bowls of rice
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Rice Bytes

I So what is a 1024 gigabytes?
I Less well known, but it is a terabyte
I With this many grains of rice we would require 2048 shipping

containers
I It is also enough rice to feed a meal to everyone in the

European Union (about 500 million people), twice

This particular ship has a capacity of 1618 TEU
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Rice Bytes

I The largest container ships are the Mærsk fleet

I Each can carry 15,500 TEU (containers)

I A petabyte is equivalent to 2097152 containers

I Hence we would need 135 of the largest ever container ship.

I Enough to feed everyone on the planet 146 bowls of rice or
cover New York City with about a metre of rice
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I That’s one petabyte, Google gets through 24 or so a day

I Or 1920 bowls of rice for every one of the 7 billion people on
the planet today

I Or covering New York City to a depth of 24 metres in rice

thanks to: http://noiseinmyhead.wordpress.com/2008/06/26/visualizing-huge-amounts-of-data/
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Centralised Servers

I Providing a service via a single centralised named server is an
obvious architecture

I It simplifies much of the design

I But it has an obvious flaw, as the number of clients grows so
too does the work done by the centralised server

I Even if we had more computer capacity, we may be limited by
the available physical bandwidth to that particular site
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A Plausible Solution

I Peer-to-peer systems arose from the realisation that users
could contribute some of their own resources to the growing
system

I Meaning that as the number of users grows, so too does the
number of available resources

I Clay Shirky termed this: exploiting the resources “on the edge
of the Internet”

I These resources can be:
I storage
I compute cycles
I bandwidth
I content
I human presence

I
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Google Down

I In a very timely fashion Google was unreachable for around
3-5% of the Internet on Monday evening PST.

I Recall the Routing Information Protocol, it is essentially a
trust based protocol

I If a particular router claims to be able to route packets to a
particular network which it cannot, some other routers may
believe

I If so they start sending packets to a network which will be
unable to deliver them

I Hence some hosts, will find the target network unreachable
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Border Gateway Protocol

I The RIP is a highly simplified version of what is used
throughout the Internet

I Often referred to as BGP or Border Gateway Protocol

I Being more complex allows it to be more robust, but at the
same time “route leakage” can occur

I This is when the faulty route is leaked out, such that gateways
and routers further afield start to route via the faulty route

I In this case, California couldn’t reach Google (located in
California) because of a faulty route originating from an ISP
in Indonesia

I This was likely due to a “fat fingered” address than a
malicious attempt to subvert Google
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Common Features:

1. Their design ensures that each user contributes resources to
the system

2. Although their resources may differ, all nodes have the same
functionality, capabilities and responsibilities

3. Their correct operation does not depend on the existence of
any centrally administered systems

4. They can be designed to offer a limited degree of anonymity
to the providers and users of resources

5. A key issue for their efficient operation is the choice of an
algorithm for the placement of data (resources) across many
hosts and subsequent access to it in a manner that balances
the workload and ensures availability without adding undue
overheads
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Unreliability of Providers

I The owners of the computers sharing resources in a
peer-to-peer system may be a variety of individuals and
organisations

I None of them provide any level of service guarantee, in
particular nodes join and leave the system at will

I Leading to unpredictable availability of any particular
process/node

I Meaning that the provision of any particular resource should
not depend upon the continued availability of any particular
node

I Preparing for this requires redundancy in a way which may
help against malicious attack or unpredicted outages

I The required redundancy may even help with performance

I As a last resort, we may simply have to put up with
unavailability of certain resources
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Popular Uses

I These features mean that a corporations hoping to collect
revenue from a service have shied from such systems

I It is difficult to make any kind of service level guarantees

I However peer-to-peer have been very popular for file-sharing
systems mostly because such systems do not pretend to offer
any particular level of service, they operate a strictly “maybe”
policy

I In addition a relatively large level of service can be obtained
from very little outlay

I Academics have therefore also been somewhat drawn to
peer-to-peer systems
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Distributed Computation

I Peer-to-peer systems are generally associated with the sharing
of data resources and the bandwidth required to access those
shared data resources, but we noted other resources

I The famous SETI@Home project aims to use individuals’ spare
computing cycles to perform part of the larger computation of
analysing received radio signals for intelligent communication

I SETI@Home is an interesting example as it does not require
communication between individual nodes

I That is, each segment may be analysed in isolation

I A brand of computation that is termed “embarrasingly
parallelisable”

I Utilising the Internet’s vast array of computers for a broader
range of tasks will depend upon the development of a
distributed platform which supports communication between
participating nodes
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Distributed Computation

I There is a further threat to the platform of distributed
computing

I Climate Change

I When distributed computing first became popular it was seen
as a very green use of otherwise idle (but switched on)
computers

I Computers at the time used roughly the same amount of
energy to remain switched and idle as when doing some
calculation

I Hence using those idle computers to do anything remotely
useful was seen as a great re-use of resources

I Today though, computers use much less energy when idle and
hence running them at full power to perform a large
computation is seen as a waste of energy unless that
computation is somewhat important
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Three generations

I Although peer-to-peer systems have existed since at least the
1980s, they first really became popular when always-on
broadband became generally available (start of this century)

I We can identify three generations of peer-to-peer systems:

1. Napster music exchange — relied in part on a central server
2. File sharing systems — with greater fault tolerance and no

reliance on a central server, examples include:
I Gnutella
I DirectConnect
I Kazaa
I Emule
I Bittorrent
I FreeNet

3. The emergence of middleware layers for peer-to-peer systems
— making possible the application independent provision of
resources
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Napster

I Napster was an early offering in peer-to-peer style systems

I Offering the ability for users to share data files it quickly
became popular with those sharing music files

I However Napster was shut down as a result of:
I People sharing copyrighted music
I This lead the owners of the copyrighted material to instigate

legal proceedings against the Napster service operators
I This in turn caused the Napster service to be shut down
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Napster’s Modus Operandi
I Napster relied upon a central index of files available for

download
I Each new peer that joined the network, communicated to the

central service a list of all available files
I When a user had a request for a particular file the following

steps where executed:
1. A file location request is made by a user to the centrally

managed Napster index
2. The Napster server responds to the request with a list of peers

who have the requested file available
3. The user then requests that file from one of the list of peers
4. The peer from which the file is requested then delivers the file

directly to the requesting user, without central server
intervention

5. Finally, once the requested file is received by the user it
informs the centrally managed Napster server such that the
index of files may be updated

I That is, the requesting user now has the particular file



Napster

Key point

I The indexing system was not distributed (though it was
replicated)

I The distributed resources were both the available files
I In terms of the fact that they are stored on peer computers

and not any centrally managed machines
I Additionally in that they originated from the users themselves
I And finally the bandwidth available at each peer, since files are

delivered straight from peer to peer without going via a central
server
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Legal Proceedings

I Napster argued that they were not liable for the copyright
infringement because they were not part of the copying
process

I The argument ultimately failed as the index servers were
viewed as an essential part of the copying process

I The index servers were at known network addresses, meaning
that their owners could not retain anonymity

I Hence they could be targeted by lawsuits
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Napster Lessons and legacy

I Napster performed load balancing, directing user requests to
users closer (in terms of network hops) to the requesting user

I Thus avoiding all users requesting a file from the same user

I Napster used a replicated, unified index of all available music
files, this didn’t represent a huge limitation since there was
little requirement for the replicated indexes to be consistent

I But it could be a limitation for another application

I Napster also took advantage of the fact that music files are
immutable data resources, they do not get updated

I No guarantees were made about the availability of any
particular file. A user made a request which may or may not
be satisfied
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I Napster then was ultimately shutdown

I But many derivative file-sharing networks live on

I Independence from any centrally managed server makes legal
action far harder to pursue and ultimately less potent

I Whatever your views on the sharing of c© material it is not
particularly difficult to imagine “legitimate” uses

I Many people around the world are opressed in particular
without right to the freedom of expression

I Many countries for example do not allow access to Facebook
or Twitter

I During the “Arab Spring” the use of sites such as Twitter and
Facebook are well known to have been crucial

I Both were blocked by several governments in an attempt to
quash an uprising
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Peer-to-Peer Middleware

I With the third generation of peer-to-peer systems came about
the development of middleware on top of which peer-to-peer
systems could be built

I Developing middleware is more problematic than a single
application because we cannot take advantage of any
application specific assumptions

I Such as the file sharing assumption that there need be no
guarantee of the availability of any particular file
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Indexing

I Restricting ourselves for the moment to providing access to
data resources, a key problem is the indexing of available files
to hosts at which those files are available

I Napster, used a central server with a known address

I Gnutella and other second generation peer-to-peer file-sharing
systems use a partioned and distributed index

I Both systems made the assumption that different users could
have different results when requesting access to a specific
resource
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Functional Requirements

I The aim of peer-to-peer middleware is to simplify the
construction of services implemented over widely distributed
hosts

I Any node must therefore be able to locate and communicate
with any individual resource which is made available

I The system must be able to cope with the arbitrary addition
or removal of resources and hosts

I As with all middleware, peer-to-peer middleware (if it is to be
widely adopted) must offer a simple/appropriate programming
interface
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Non-functional Requirements

I Global Scalability — the very idea of peer-to-peer systems is
to both cope with and exploit large numbers of users.
Peer-to-peer systems must therefore be able to support
applications that access millions of objects on hundreds of
thousands of hosts

I A peer-to-peer system should be able to take advantage of the
ability for service provision to grow dynamically as the number
of users increase

I In the previous part of the course we saw how system
virtualisation can aid a central service in dynamically adjusting
service provision but for a peer-to-peer system this should not
be necessary
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Non-functional Requirements

I Load Balancing — The performance of any system exploiting
large numbers of hosts, even if those hosts were co-located,
depends upon being able to distribute the load across those
hosts evenly.

I This can be achieved to some extent by randomly placing
resources and replicating heavily used resources

Web searches for “Nate Silver”
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Non-functional Requirements
I Optimisations for local interactions — The “network

distance” between peers has a large impact on the latency of
individual interactions. Additionally network traffic is highly
impacted if there are many distant interactions

I We saw an example of this for Napster, that attempted to
return to a requesting user, provider hosts which were
“network near” to the requesting host
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Non-functional Requirements
I Accomodating highly adaptable host availability — Most

peer-to-peer systems are constructed such that hosts are free
to join or leave at any time. Some studies of peer-to-peer
networks have shown large turnover in participating hosts.
Re-distribution of load when hosts join and leave is a major
technical challenge

I Note that it may even be that all members interested in a
particular resource leave, but that that resource should not
disapear

I Consider a peer-to-peer social network, say a peer-to-peer
Facebook

I A single user’s profile must be retained even when not only
that user has left but also all the friends of that particular user
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Non-functional Requirements
I Security of Data — Particularly in an environment of

heterogeneous trust.
I File sharing systems do not by their very nature require much

of security of data, the whole point is that data is shared
I Consider again the peer-to-peer version of Facebook
I A single user’s profile must be stored on several machines, but

should only be available to a group of authorised users (that
user’s friends)
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Non-functional Requirements
I Anonymity and Deniability — Anonymity is a legitimate

concern for many applications
I In particular situations demanding a resistance to censorship.
I “whistleblowing” on a company or group

I A related requirement is that hosts demand a root to
deniability if they are to be used to store/forward data
originating from other users. Otherwise the risk in involving
oneself in a peer-to-peer network is high. Here the use of a
large number of hosts can actually be an advantage. The key
phrase is “plausible deniability”

I Key disclosure laws — some countries inforce that the user
supply a key to law enforcement/government representatives
for any encrypted data (or enforce mandatory decryption)

I In the UK at least three people have been prosecuted and
convicted for refusing to supply decryption keys

I The defence is to “prove” that one does not possess the
encryption key or that the data is random
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Obvious Solution

I Recall that we want a service such that: Any node is able to
locate and communicate with any individual resource which is
made available

I The obvious solution is to maintain a database at each node
of all resource (objects) of interest

I This isn’t going to work though for several reasons:

1. It does not scale
2. It involves a heavy amount of traffic to relay all updates to all

nodes
3. Not all nodes are always available, hence re-joining the

network would have a heavy cost associated with it

I Knowledge of the locations of all objects must be partitioned
and distributed throughout the network

I A high degree of replication is required to counteract the
intermittent availability of hosts
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Telephone Trees

I Not so common now since we have convenient broadcast of
messages via text or email

I The goal is to broadcast some message to a group of people,
I generally these were the parents of a group of children
I the message related to say the ETA back from some group

excursion

I Each parent knew the phone numbers of up to four others

I When they received a call giving information, it was then their
duty to inform the “branches” of which they knew

I This was, in a sense, a routing overlay, built upon the routing
mechanism already in place for the telephone system

I Although of course in this case it was used for broadcasting
rather than locating a resource
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GUIDs

I Peer-to-Peer systems usually store multiple copies of any
given resource object as a redundancy guard against
unavailability of a single copy

I Each object is associated with a GUID (globally unique
identifier)

I Each person in the phone-tree did not need to know the
names, addresses, or anything about those individuals to
which they should forward the call

I They only required to know their GUID, which was in this
case their phone number

I GUIDs should be opaque, that is, they reveal nothing about
the object to which it refers or its location (see later)

I In this sense they are nothing like a postal address
I More like your mobile phone number
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GUIDS — small aside

I The Open Software Foundation recommends an algorithm for
generating GUIDs

I V1 of this algorithm used, as a part of the GUID, the network
card MAC address

I Meaning that the creator of a GUID (and hence a document
to which it is attached) could be determined from the GUID
alone

I This fact was used to David L. Smith the person who released
the Melissa virus into the wild

I He was sentenced to 10 years (serving 20 months) and fined
$5000

I V4 of the algorithm does not do this
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Routing Overlays

I A distributed algorithm known as a routing overlay takes
responsibility for routing requests to some node which holds
the object

I The object of interest may be placed at, and subsequently
relocated at any node in the network

I It is termed an overlay since it implements in the client a
routing algorithm that is quite separate from the routing of
individual IP packets

I The routing overlay ensures that any node can access any
object through a sequence of nodes, by exploiting the
knowledge at each of them to locate the destination object
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Main Tasks of the Routing Overlay
I Routing of Requests to Objects

I A client wishing to perform some act upon a particular object
must send that that request, with the GUID attached, through
the routing overlay

I Insertion of Objects
I A node wishing to insert a new object, must compute a new

GUID for that object and announce it to that routing overlay
such that that object is available to all nodes

I Deletion of Objects
I When an object is deleted the routing overlay must make it

unavailable for other clients

I Node addition and removal
I Nodes may join and leave the service at will. The routing

overlay must organise for new nodes to take over some of the
responsibilities of other (hopefully nearby) nodes

I When a node leaves, the routing overlay must distribute its
responsibility to remaining nodes
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Distributed Hash Tables
I A distributed hash table has three operations:

1. put(GUID, data): stores data at all nodes responsible for the
object identified by GUID

2. remove(GUID): deletes all references to GUID and the
associated data

3. get(GUID) : retrieves the data associated with GUID from one
of the nodes responsible for it

I Note then that operations may be subject to mutual-exclusion
style race conditions

I A count of something for example involves first retrieving the
current count and storing the incremented count. These two
operations could clearly be interleaved by two concurrent
processes
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Distributed Object Location and Routing
I DOLR has the following operations:

1. publish(GUID): Makes the node performing the publish the
host for the object corresponding to GUID. The GUID should
be computed from the object (or a part of it).

2. unpublish(GUID): Makes the object corresponding to GUID
unavailable.

3. sendToObj(msg , GUID, [n]): Sends a message to the target
object. This could be a request to update the object, or more
likely, a request to open a connection in order to transfer the
data associated with the object.

I [n] is optional and specifies the number of replicas that the
delivery of the same message should reach
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Replication

I In order that an object remains available across node addition
and removal, storage of an object must occur at more than
one node

I For a Distributed Hash Table, some replication factor r is
chosen (an appropriate choice gives a very high probability of
continuous availability)

I The object is then replicated at r nodes which are the r nodes
numerically closest to the host node

I For the Distributed Object Location and Routing protocol,
locations for the replicas of data objects are decided outwith
the routing layer.

I The DOLR layer is notified of these host address of each
replica using the publish operation
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Readable Object Identifiers
I GUIDs, nice though they are, are not human readable
I Client applications must therefore obtain the GUIDs for

resources using some human-readable name or search request
I Ideally, such a lookup is also stored in a peer-to-peer manner
I This avoids a centralised service a la Napster and the

associated disadvantages of such a centralised service
I Bittorrent is an interesting example, it uses individual web

pages to publish “stub” files
I The stub file includes the object’s GUID and:
I The URL of a tracker which holds an up-to-date list of network

addresses willing to provide the requested object
I Note that it essentially uses existing search engines as the

search facilities
I Websites with particular object “stub” files may be “attacked”,

but:
I There may be many of them
I Each web site may only host a small number, perhaps only a

single, stub file
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Pastry

I Implements a Distributed Hash Table

I Can be used for any application for which objects are stored
and retrieved

I generally more useful if the objects are immutable or updated
rarely

I Squirrel is an application built upon Pastry, it is a peer-to-peer
web-cache system

I This works well as although the objects may be updated it is
not crucial that all replicas are consistent
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Pastry Routing Overlay

I In Pastry each object and node is given an opaque 128-bit
GUID

I In a network with N participating nodes the Pastry routing
algorithm will deliver a message to an object or node within
O(logN) steps

I If the GUID identifies a currently inactive node then the
message is delivered to the node with a GUID numerically
closest to the target GUID

I Each step along the route involves the use of an underlying
transport protocol, usually UDP.

I Each such step, transfers the message from the current node
to a node which is numerically closer to its destination

I Closer here though is in the entirely artificial GUID space and
may in fact involve routing the message geographically more
distant to the target node than the current node
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Routing Overlay — Ring based
I Each node stores a vector L of size 2× l containing the GUIDs

and IP addresses of nodes whose GUIDs are numerically
closest on each side: l nodes above and l nodes below

I The vector L is known as the leaf set, and leaf sets are
updated when nodes join or leave the network

I The GUID space is treated as circular, so GUID 0’s lower
neighbour is 2128 − 1 and vice versa

I Any node with GUID D upon receiving a message for D ′:
I If D ′ is in L then M can be directly forwarded to the target

node
I Otherwise M is forwarded to the GUID in L numerically closest

to D ′. Which will be either the left most or the right most
node in L

I It is the right most, if D ′ > D and D ′ − D < 2128−1
2

or

D > D ′ and D − D ′ > 2128−1
2

I And the left most node otherwise

I To deliver a message we require at most N
2×l hops
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Ring-Based

0 2^128 - 1

Routing Node

l = 2, Leaf Set
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Routing Overlay — Using Routing Tables

I Each node maintains a tree-structured routing table giving
GUIDs and IP addresses for a set of nodes spread throughout
the entire range 0 . . . 2128 − 1

I However the routing table for node with GUID D will have an
increased density of coverage for GUIDs which are numerically
close to D
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GUID Routing Table
The routing table for a node with GUID 90B . . .

0 0 1 2 3 4 5 6 7 8 9 A B C
n0 n1 n2 n3 n4 n5 n6 n7 n8 nA nB nC

1 90 91 92 93 94 95 96 97 98 99 9A 9B 9C
n91 n92 n93 n94 n95 n96 n97 n98 n99 n9A n9B n9C

2 900 901 902 903 904 905 906 907 908 909 90A 90B 90C
n900 n901 n902 n903 n904 n905 n906 n907 n908 n909 n90A n90C

. . . the table has as many rows as there are hexadecimal digits in a 128 bit number, 32

I 128 bit GUIDs are examined as a string of 32 hexadecimal digits

I Each row has 15 entries (curtailed here for space)

I One for each value that does not match the current node’s prefix

I The entry in each cell is the IP address of a node with a GUID with
the prefix corresponding to the row and column
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The Pastry Routing Algorithm
I To handle a message M addressed to GUID D at node A,

where R[p, i ] is the element at column i , row p of the routing
table at node A:

1. If(L−l < D < Ll)
2. Forward M to the element Li of the leaf set with the GUID

closest to D or the current node A
3. else
4. Find p, the length of the longest common prefix of D and

A, and i , the (p + 1)th hexadecimal digit of D
5. If (R[p, i ] 6= null)
6. Forward M to R[p, i ]
7. else
8. Forward M to any node in L (or R) with a common

prefix of length p but a GUID that is numerically closer

I The lines in grey implement the previous ring-based algorithm,
hence we can be sure that the algorithm will succeed in
routing each message
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I Each table must have the property that:
I The GUID of the node addressed in R[p, i ] has a common

prefix with the target GUID D of length at least p + 1
I Provided of course that D[p] = i

I Another way of saying this is, should we have the cell: | 16A2C
n |

I Then n addresses a node with a GUID with the prefix 16A2C
I Note that we would not have such a cell if the current node

had the prefix 16A2C
I Hence each time a message is forwarded it is forwarded to a

node with a GUID that has longer matching prefix than the
current node, so eventually it must be forwarded to the correct
node

0 0 1 2 3 4 5 6 7 8 9 A B C
n0 n1 n2 n3 n4 n5 n6 n7 n8 nA nB nC

1 90 91 92 93 94 95 96 97 98 99 9A 9B 9C
n91 n92 n93 n94 n95 n96 n97 n98 n99 n9A n9B n9C

2 900 901 902 903 904 905 906 907 908 909 90A 90B 90C
n900 n901 n902 n903 n904 n905 n906 n907 n908 n909 n90A n90C

. . . the table has as many rows as there are hexadecimal digits in a 128 bit number, 32



Pastry Overlay Routing

Host Integration

I When a host joins the network it must follow a specific
protocol to obtain its table and leaf nodes as well as updating
others

I The new node first computes a suitable GUID for itself

I The joining node should have the address of at least one
existing node, it contacts this (or finds a nearer neighbour,
where nearer is in reference to actual network distance)

I Suppose our new node has GUID X and its first contact has
GUID A. The node sends a join request message to A giving
X as its destination GUID

I The node A then forwards this request message to the node
with the numerically closest GUID to X , let’s call it Z

I Of course A does not in general know what that node is, it
simply forwards on the join message as though routing to
node X



Host Integration

Building the Routing table for X

I The key point is that a node (Z ) must be able to tell that it is
the currently closest (numerically) GUID to X

I It can know this due to its own leaf set

I As the join message is forwarded (ultimately to Z ), the
forwarding nodes help build up the routing table of X

I Note that the first row of X does not really depend upon the
GUID X , so it can simply copy the first row of A.

I It must update it slightly since X and A do not necessarily
share the same first digit

I In place RA[0, i ] where i = A[0] is the first digit of A, there will
be no address, so in slot for X we can simply place the address
of A

I Additionally RX [0, j ] where j = X [0] is the first digit of X can
be left empty even though RA[0, j ] may not be



Host Integration

Concrete example of X and A

I Suppose the GUID of X is number 1(0000 . . . 1)

I The GUID of A is number 2127(1000 . . . 0)

I The first row of A in positions 2 . . . F are perfectly valid

I The value that A has for prefix 0 is worthless to X , but that’s
okay because in that position X will have no address (it’s the
red entry in the first row for X because it is the prefix of X )

I A has no entry in column 1 (it’s A’s red entry in the first
row), but that’s okay because we know a good address to fill
in that column in X ’s first row, the value is the address of A.



Host Integration

Routing of the Join message
I The second row of A’s table though is probably not relevant
I During its travels to the node numerically closest to X , (Z ),

the join message passes through some nodes B, C . . . Y
I Each node B, C . . . Y through which the join message passes,

transmit relevant parts of their routing tables and leaf sets to
D

I Because of the routing algorithm the second row of B ′s table
will be relevant for X , so it simply sends X its second row,
and also forwards the message on to C

I Now the third row of C should be applicable for X since it
shares the same prefix of at least length 2.

I In fact C may have been in row n of B’s table and hence can
send X rows 2 . . . n

I When the message finally arrives at Z , we should have built
up most of X ’s new routing table, and all we require is a good
leaf set



Host Integration

Routing of the Join message

I Z is the numerically closest GUID to X
I Suppose X > Z :

I The left hand side of X ’s leaf set is the left hand side of Z ’s
but Z itself

I The right hand side is exactly the right hand side of Z ’s
original leaf set

I Z however should update the right hand side of its leaf set to
include X as the closest and optionally remove the right most
node from the leaf set.

I Finally then once X has received and built up its own routing
table and leaf nodes, it sends this information to all the nodes
in its leaf node set and routing table such that they may
update their accounts appropriately

I Incorporating this new node into the network requires the
transmission of O(logN) messages



Pastry Overlay Routing

Host Removal

I A host may fail or leave at any time

I When this happens we must repair the routing tables and leaf
sets so as not to contain the departed node

I We will assume that neighbouring nodes can detect a failed
node via periodic polling and consider mostly the case of a
node which departs intentionally

I Assume either way that a node D detects, or is alerted by the
departing node itself, that node X has left the network

I Node D, looks for a close node L′ in its own leaf set and
requests a copy of the leaf set of L′

I The leaf set which L′ sends D should overlap that of D and in
particular contain a node suitable to replace that of X

I Other neighbouring nodes are then informed of the failure and
they perform a similar procedure



Pastry Overlay Routing

Fault Tolerance
I Nodes may gracefully leave the system, but they may also fail,

in a peer-to-peer system this could represent the user
switching off or killing the process

I Failed nodes are detected through a system of “heartbeat”
messages sent by non-failed nodes to their leaf sets

I However, failed node notification will not propagate through
the network quick enough to eliminate routing failures

I If the application in question requires reliable delivery of
messages then a reliable protocol must be built upon the
routing overlay

I Recall at the start of the course we discussed reliable (TCP)
communication and unreliable (UDP) communication

I One reason to use unreliable communication is that the
application built ontop of the communication may be required
to perform its own ommission/error detection/correction

I This is one such example



Pastry Overlay Routing

Fault Tolerance

I Where such a re-try mechanism is used it should allow the
Pastry routing overlay time to adapt to an error

I However, as it stands this may not overcome all errors and
certainly will not help in the presence of a malicious node

I To overcome this, an element of randomness is introduced
into the routing algorithm

I To forward a message a node P, might choose not to
immediately send it it to the node in P’s routing table with
the longest matching prefix, but instead, with a small
probability, send to a node higher up the routing table.

0 0 1 2 3 4 5 6 7 8 9 A B C
n0 n1 n2 n3 n4 n5 n6 n7 n8 nA nB nC

1 90 91 92 93 94 95 96 97 98 99 9A 9B 9C
n91 n92 n93 n94 n95 n96 n97 n98 n99 n9A n9B n9C

2 900 901 902 903 904 905 906 907 908 909 90A 90B 90C
n900 n901 n902 n903 n904 n905 n906 n907 n908 n909 n90A n90C

. . . the table has as many rows as there are hexadecimal digits in a 128 bit number, 32



Pastry Overlay Routing

Locality

I The routing table has an address associated for each possible
digit in the i th position which does not match the current
node’s i th digit

I Each such address has a GUID with a prefix of length i − 1
which matches the current node’s

I In a well populated overlay, and in particular in the early rows
of the table, there will be many such choices

I Each choice is made based on a metric which measures
network locality

I Usually IP hops, or round-trip time

I This cannot guarantee optimal routings but has been shown
in simulations to produce routes that are only 30-50% longer

I It also helps route around failed nodes which have large
round-trip times



Peer-to-Peer Systems

Tapestry

I Tapestry is similar in goals to Pastry

I The Tapestry infrastructure uses a distributed hash table
routing mechanism similar to the one described for Pastry

I However, the exposed Tapestry API is that of a DOLR
(Distributed Object Location and Routing) interface

I Recall: DOLR has the following operations:

1. publish(GUID): Makes the node performing the publish the
host for the object corresponding to GUID. The GUID should
be computed from the object (or a part of it).

2. unpublish(GUID): Makes the object corresponding to GUID
unavailable.

3. sendToObj(msg , GUID, [n]): Sends a message to the target
object. This could be a request to update the object, a request
to open a connection in order to transfer the data associated
with the object.

I [n] is optional and specifies the number of replicas that the
delivery of the same message should reach



Peer-to-Peer Systems

Tapestry

I Because replication is handled by the application rather than
Tapestry itself, this gives applications additional flexibility in
how to handle replication

I For example a file-sharing system may not need to explicitly
handle replication since it done implicitly whenever a user
copies an existing resource

I It is possible that absolutely no replication (of at least some
resources) is necessary or desired

I For example an online game could operate with each player
hosting their own current state

I When the player leaves, the state need not persist
I Though the player’s account may persist, this would be an

example where some, but not all of resources are replicated



Tapestry

I Each object and routing node has a 160-bit identifier (GUID)
associated with it

I In addition each (published) object is associated with exactly
one “root node”

I The root node maintains a table mapping object GUIDs to
the addresses of all replicas

I The root node will be the node with a GUID numerically
closest to the GUID associated with the object

I When a node invokes publish(GUID) the message is routed to
the object’s associated root node

I When a sendToObj(GUID, msg , [n]) message is invoked that
too is routed to the root node of the object

I The root node may then choose how many and which replicas
to send that message to

I The decision obviously being application dependent



Peer-to-Peer Systems

Tapestry Routing



Peer-to-Peer Systems

Structured or Unstructured

I Structured peer-to-peer networks have a specific distributed
data structure maintaining the routing overlay

I The structure imposed means that the peer-to-peer networks
are efficient, offering some bound on, say, the number of
messages required to route a message to an object

I Pastry for example relied upon the logical ring of GUID ids,
and the routing tables made up distributed ‘trees’

I However this is paid for in the cost of maintaining the
distributed data structure underneath the peer-to-peer network

I An alternative is an unstructured peer-to-peer network



Peer-to-Peer Systems

Unstructured

I An unstructured peer-to-peer network does not rely on any
distributed data structure

I Instead it relies upon an ad-hoc system of adding peers as
they become available

I Each node joins the network by following some simple, local
rules.

I A joining node must establish connectivity with a set of
‘neighbours’

I It knows that the neighbours will also be connected to their
own neighbours and so on

I Connectivity to everyone follows from a ‘Kevin Bacon’ style
arrangement, except that there is no special node



Unstructured Peer-to-Peer

Locating an object

I In an unstructured peer-to-peer network then, it is
straightforward and inexpensive to join and leave a network

I However locating an object must be done by searching the
resulting “mish-mash” of connections

I This approach then cannot guarantee to locate any specific
object

I It is also possible that excessive amounts of traffic are used in
locating and using objects

I Still, unstructured peer-to-peer networks have been shown to
work

I In fact they are the dominant paradigm used in the Internet
today



Peer-to-Peer Systems

Unstructured dominance
I I Gnutella

I Limewire
I Freenet
I Bittorrent

I All examples of unstructured peer-to-peer networks

I Many studies have estimated the overall proportion of Internet
traffic which is peer-to-peer

I They vary widely in their estimates from some 20% to over
70%

I Safe to say it is a significant proportion, it’s hard to say what
is taken up with unnecessary transfer of data



Unstructured peer-to-peer systems

Unnecessary Data Transfer

I A variety of reasons, including inefficiency of the peer-to-peer
system in question which may not be satisfying requests,
dropping messages, or simply not pairing up providers with
consumers in a network-efficient manner

I We may also get a lot of dropped connections because peers
may leave at any time — file splitting is used to mitigate this

I Broken files, incorrectly labelled files etc

I Due to the uncertainty of availability many users “download
now, consider later”

I Content may not be offered in the size desired, eg a whole
album as opposed to single song which is desired



Structured vs Unstructured

Comparison
I Structured

I Advantages

1. Guaranteed to locate (existing) objects
2. Relatively low message overhead

I Disdvantages

1. Need to maintain complex overlay structures
2. Slow to adapt to highly dynamic networks
3. Software is difficult to upgrade if it updates the distributed

data structures used

I Unstructured
I Advantages

1. Self-organising and naturally resilient to node failure
2. Different versions of software can often interoperate with little

engineering effort

I Disdvantages

1. Offers no guarantees on locating objects even if they exist
2. Can generate large amounts of messaging overhead



Unstructured Peer-to-Peer

Searching

I When file-sharing, a major problem is the location of desirable
files

I We will stick to the problem of file-sharing but the same
problem exists for many other similar applications

I Whether we are using a structured or unstructured
peer-to-peer network we may still require to do some search to
find an appropriate GUID

I The search strategies we look at now are applicable in a
number of places, but we will specialise the case to search for
a file in an unstructured peer-to-peer network



Peer-to-Peer Systems

File Searching

I The problem of searching for a particular file (or one of a set
which is appropriate) becomes the problem of searching the
entire network

I Näıvely done this could flood the network with many search
requests

I A simple strategy is that a search request is sent to the
nearest neighbours, each of whom respond with success or
forward the search on to their neighbours

I Similar to IP multicast, each such search request has a
time-to-live variable which is decremented each time the
request is forwarded

I The approach though does not scale well



Peer-to-Peer Systems

Improvements
I Expanded Ring Search

I If there is an effective replication strategy in place, many
searches may complete successfully locally

I This is particularly true of file-sharing networks where the most
popular files are those which are searched for the most often

I Expanded ring search does the same as the näıve version but
starts with a very small time-to-live variable

I If that search fails, it tries again with a larger time-to-live
variable

I and so on, up to some limit



Peer-to-Peer Systems

Improvements
I Random Walks

I A search agent can be set off in search of the desired file
I The agent is of course not an actual agent but simply a

message
I When the message arrives at a node, the successfully found file

can be sent directly back to the originator of the random walk
agent

I If not, it is forwarded to one other peer, the choice of peer is
made randomly

I A peer wishing to search may set off several random “agents”
concurrently

I Again they are generally equipped with a time-to-live counter



Peer-to-Peer Systems

Improvements
I Gossiping

I A node sends a request to a neighbour with a given probability
I Hence a request spreads probabilistically through the network
I The Gossiping name alludes to the way in which a search

spreads through the network as a rumour spreads through
social networks

I Sometimes these are called epidemic protocols, because the (in
the case) search spreads through the network like a virus



Peer-to-Peer Systems

Improvements
I Ultra-Peers

I In a pure peer-to-peer network all peers are treated equally
I An ultra-peers system makes the observation that we may

treat peers as equals but that does not reflect reality
I A few selected peers are designated ultra-peers, generally

because they have extra resources and some commitment to
extended availability within the peer-to-peer system

I These ultra-peers are heavily connected with each other, and
ordinary peers connect themselves to one or more ultra-peers

I This can offer dramatic improvements in terms of the number
of hops required for exhaustive search

I The ultra-peers are the Kevin Bacons of the peer-to-peer
system



Peer-to-Peer Systems

Query Routing Protocol

I In this system peers exchange information about the
files/resources they have available

I For example each peer may gather together a set of words in
the file names of their available files.

I These words are then sent to the associated ultra-peer

I The ultra-peer collates all these into a single table of available
‘words’ and exchanges this information with its neighbouring
ultra-peers

I So when a (text based) search query is made each ultra-peer
knows which search paths are likely to obtain positive results



Peer-to-Peer Systems

Peerson

I Peerson (www.peerson.net) is a distributed peer-to-peer
social network akin to Facebook

I Encryption is utilised heavily in order to provide security of
user data

I This is in contrast to centralised servers which may encrypt
stored data, but then the keys are stored in the same place

I In Peerson encryption keys are required to access any files
(parts of a user’s profile)

I The user has control over who may obtain those keys



Peer-to-Peer Systems

Summary
I We began with looking at the motivations behind the

development of peer-to-peer systems
I Break the reliance of the system on a central server which may

be vulnerable from attack, both technical and bureaucratic
I Utilising the resources of those using the server such that

capacity grows with the number of users
I Providing anonymity to content providers

I The now defunct pioneering system Napster
I Napster relied on a central server, but that server hosted no

content, bandwidth to the central server was limited as well
because no content was therefore downloaded from the central
server

I Instead the central server was merely used by remote peers to
locate content and setup independent connections between
peers

I Ultimately though the reliance on a central server proved
enough fodder for the entertainment industry’s lawyers and
Napster was shutdown



Peer-to-Peer Systems

Summary

I Napster however proved the feasibility of the concept and
several services grew into the space left behind by Napster

I Such services do not rely on any single central server and have
so far proved resilient to legal attacks

I However we focused our attention on efforts to provide a
generic framework for building peer-to-peer applications

I Such frameworks currently focus on providing a distributed
hash table, storing objects and replicas at multiple peers for
later retrieval

I Distributed Object Location and Routing systems are an
extension providing a more convenient API, in particular for
objects which may be updated



Peer-to-Peer Systems

Summary

I In general though peer-to-peer systems have and continue to
be used mostly for file sharing

I In particular the sharing of immutable files such as music files
and video files

I Objects tend to be visited exactly once by a user and hence
unstructured networks flourish as the additional structure
provided by a distributed data structure cannot be put to
great use

I The low cost and dynamic service provision mean that they
are continued ot be offered by those with small budgets

I Large corporations such as Microsoft, Apple, Google,
Facebook and Twitter are yet to embrace peer-to-peer
applications
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Security

Overview

I In this part of the course we will look at security in distributed
systems

I Cryptography will provide the basis of secrecy and integrity
I That is, making sure that no unauthorised entity may read any

particular message
I No unintended message is delivered, including a duplication of

an intended message

I We will examine private-key techniques as well as public-key
techniques and digital signatures

I We will look at cryptographic algorithms



Security

Books



Security

Books
I We will focus on threats to distributed systems caused by the

inavoidable exposure of their communication channels
I The largest threat is generally human error
I Bruch Schneier also has a newsletter each month called

“cryptogram” which talks about many security related topics
including cryptography and physical/human related policies



Security

Cryptography

I Although computer security and computer cryptography are
separate subjects, digital cryptography provides the basis for
most of the mechanisms that we use in computer security

I It is only in recent years (the 1990s) that cryptographic
techniques have been wrestled from the domain of the military
into the domain of public knowledge and use

I When Bruce Schneier first published his book “Applied
Cryptography” in 1994 the legal status of including
cryptographic algorithms and techniques was in doubt.



Security

Pre-1999 US Munitions Control

I RSA crypto-algorithms, were, until 1999, classified by the US
State Department as munitions

I Meaning they were classified in the same category as:
chemical and biological weapons, tanks, heavy artillery, and
military aircraft

I Additionally this meant that it was illegal to export such
cryptographic algorithms, with penalties including $1m fines
and long prison sentences

I This was obvious buffoonery:
I It is impossible to enforce
I The technology is widely available throughout the world
I Algorithms published in international journals
I Some cryptographic algorithms were developed outside the US



Security

Pre-1999 US Munitions Control

I Popular email programs such as Netscape Communicator had
to have separate downloads for US based downloaders and
external downloaders

I When it went open-source and became mozilla this was more
nonsense since very quickly the external versions were patched
to include full 160-bit encryption

I People took to methods of highlighting how ridiculous such an
export ban was, one such effort demonstrated that RSA crypto
algorithms can be written in a fairly short amount of Perl code

#!/bin/perl -sp0777i<X+d*lMLa^*lN%0]dsXx++lMlN/dsM0<j]dsj
$/=unpack(’H*’,$_);$_=‘echo 16dio\U$k"SK$/SM$n\EsN0p[lN*1
lK[d2%Sa2/d0$^Ixp"|dc‘;s/\W//g;$_=pack(’H*’,/((..)*)$/)



Security

Pre-1999 US Munitions Control

I So to highlight how ludicrous it was people started attaching
it to emails

I Technically if said emails were sent outwith the US such
people could have been prosecuted

--

The following is classified as munitions by
the US state department:

#!/bin/perl -sp0777i<X+d*lMLa^*lN%0]dsXx++lMlN/dsM0<j]dsj
$/=unpack(’H*’,$_);$_=‘echo 16dio\U$k"SK$/SM$n\EsN0p[lN*1
lK[d2%Sa2/d0$^Ixp"|dc‘;s/\W//g;$_=pack(’H*’,/((..)*)$/)
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Security Model

We will assume

I Wherever you are in the world you have access to
cryptographic protocols and algorithms

I There are a set of nodes which share resources
I Resources may be physical or data/programming objects

I Communication is via message passing only, and hence access
to shared resources occurs via message passing

I The nodes are connected via a network which may be
accessed by any enemy

I An enemy may copy or read any message transmitted through
the network

I They may also inject arbitrary messages, to any destination
purporting to come from any source



Security

Policies and Mechanisms

I There is a distinction between a security policy and a security
mechanism

I Security policies are independent of the security mechanisms
used with that policy

I A system cannot be secured using only security mechanisms

I For example, the door to your accommodation is likely
secured using a lock and key, that is the security mechanism

I But it is near useless without the accompanying policy:
I The last person to leave the building should lock the door



Security

Threats and Attacks

I For most types of network, and certainly wireless networks, it
is generally obvious that an attacker wishing to obtain private
information can simply listen in on all messages

I Doing so means that it is relatively simple to construct a
computer that would simply log all messages between
communicating computers

I Depending on the application simply knowing the contents of
some messages may be enough, otherwise the attacker may
need information about the distributed algorithm in question
in order to construct information from the data in the
messages that were recorded



Security

Threats and Attacks

I A slightly more elaborate attack is to construct a server in
between the client and the intended server

I If the client does not authenticate the server, then it may send
private information to what it believes to be the intended
server

I Often the fake server will then log the information sent to it,
but then also forward it on the real server in question

I Thus the attack is non-trivial to detect.

I This is a common technique for obtaining web-passwords



Security

I Third party “Certificate Authorities” issue digital certificates
containing encryption keys to verify the identity of secure
websites



Security

Threats and Attacks
I Threats and attacks fall into three broad categories:

1. Leakage
I The acquisition of data by unauthorised entities

2. Tampering
I The alteration of data by an unauthorised entity

3. Vandalism
I Distruption to the service in question without gain to the

perpetrators
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Threats and Attacks
I We can further distinguish attacks in a distributed system by

the way in which communication channels are misused:
1. Eavesdropping

I Obtaining copies of messages without authority

2. Masquerading
I Sending or receiving messages using the identity of another

process/entity without their authority

3. Message Tampering
I Intercepting messages and altering them before forwarding

them on to their intended recipient

4. Replaying
I Storing intercepted messages and sending them at a later

date. This attack can be effective even when used against
authenticated and encrypted messages (think of the two
generals problem)

5. Denial of Service
I Flooding a service with requests such that it cannot handle

legitimate requests
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Information Existence

I Regardless of how strong your encryption may be, the
detection of a message transmitted between two processes
may leak information

I The mere existence of such a message may be the source of
information.

I For example a flood of messages to a dealer of a particular set
of stocks may indicate a high-level of trading for a particular
stock

I One possible defence is to regularly send nonsense/ignorable
messages



Security

Trade-offs

I Ultimately all security measures involve trade-offs

I A cost is incurred in terms of computational work and network
usage for use of cryptography and other protocols

I Where a security measure is not correctly specified it may
limit the availability of the service for legitimate users/uses

I These costs must be stacked up against the threat or cost of
failure to maintain security

I Generally we wish to avoid disaster and minimise mishaps
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Assume the worst

I Interfaces are exposed distributed systems are designed such
that processes offer a set of services, or an interface. These
interfaces must be open to allow for new clients. Attackers
therefore are able to send an arbitrary message to any
interface

I Networks are insecure An attacker can send a message and
falisfy the origin address so as to masquerade as another user.
Host addresses may be spoofed so that an attacker may
receive a message intended for another

I Algorithms and program code is available to attackers
Messages sent may be intercepted but that may not be useful
since to make sense of the message an attacker may need to
know the purpose/protocol within which the message is sent.
Assume that that may be the case



Security

Assume the worst

I Attackers may have access to large resources Do not therefore
rely on the fact that you may compute something faster than
an attacker, or that an attacker has a limited timeframe in
which their attack may be valid/dangerous/worthwhile

I Assume all code may have flaws the part of your software
responsible for security must be trusted. Often called the
trusted computing base. It should be minimised, for example
application programmers should not be trusted to protect
data from their users
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Cryptography

I Modern Cryptography relies on the use of algorithms which
distort a message and reverse that distortion using a secrets
called keys

I A simple substitution cyper is an example of this:
I In this case the key is the mapping of characters:

I a 7→ f , b 7→ x , c 7→ j , . . .

I Today’s encryption techniques are believed to have the
property that the decryption key cannot be feasibly guessed
using the cypertext (the encrypted message)



Security

Cryptography
I There are two main algorithms in use:

1. shared secret keys
I both parties must share knowledge of the secret key and it

must not be shared with any other party

2. public/private key pairs
I The sender uses the receiver’s public key to encrypt the

message.
I The encryption cannot be reversed by the public key and can

only be reversed by the receiver’s private key
I The sender needs to know the receiver’s public key but need

not know the receiver’s private key
I Anyone may know the receiver’s public key but the private key

must be known only to the receiver

I Both kinds of algorithms are very useful and widely used
I public/private key algorithms require 100/1000 times more

processing power
I The lack of need for initial secure transfer of the private key

often outweighs the disadvantage
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Some Notation and Characters
I Alice and Bob are participants in security protocols

I Alice has the secret key KA and Bob the secret key KB

I They have a shared secret key KAB

I Alice has a private key KApriv and a public key KApub

I {M}K is a message encrypted with key K

I [M]K is a message signed with key K

I Carol and Dave are extra participants for 3,4 party protocols

I Eve is an eavesdropper

I Mallory is a malicious attacker

I Sara is a server
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Scenario 1. Secure communication

I Cryptography can be used to enable secure communication

I In this instance each message is encrypted and can only be
decrypted with the correct secret key

I So long as that secret key is not compromised then secrecy
can be maintained

I Integrity is generally maintained using some redundant
information within the encrypted message, such as a checksum



Security

Scenario 1. Secure communication

I Alice wishes to send some secret information to Bob

I If they share the secret key KAB then:

I Alice uses the key and an agreed encryption algorithm
E (KAB , M) to encrypt and send any number of messages
{Mi}KAB

I Bob decrypts the messages using the corresponding
decryption algorithm D(KAB , M)

I Two problems:

1. How can Alice initiate this communication by sending the
secret key KAB to Bob securely?

2. How does Bob know that a message {Mi} isn’t a copy of an
earlier encrypted message sent by Alice but intercepted by
Mallory?
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Scenario 2. Authentication

I Cryptography can be used to authenticate communication
between a pair of participants

I If there is a shared secret key known only to two parties, then
a successful decryption of a received message requires that the
message was originally encrypted using the appropriate key

I If only one (other) party knows of that secret key then we can
deduce from whom the message originated



Security

Scenario 2. Authentication

I Alice wishes to communicate with Bob

I Sara is a securely managed authentication server

I Sara stores a secret key for each user, each user knows (or can
generate from a password) their own secret key.

I Sara may generate a ticket which consists of a new shared key
together with the identity of the participant to whom the
ticket is issued



Security

Scenario 2. Authentication
I Steps to secure communication:

1. Alice sends a request to Sara stating who she is and requesting
a ticket for secure communication with Bob.

2. Sara creates a new secret key KAB to be shared between Alice
and Bob. Sara encrypts the ticket using Bob’s secret key and
sends that together with the secret key all encrypted with
Alice’s secret key {({ticket}KB

, KAB)}KA

3. Alice decrypts this message and obtains the shared secret key
and a message containing the ticket encrypted using Bob’s
secret key. Alice cannot decrypt this ticket message

4. Alice sends the ticket together with her identity and a request
for shared communication to Bob

5. Bob decrypts the ticket: {(KAB , Alice)}KB
, confirms that the

ticket was issued to the sender (Alice). Alice and Bob can then
communicate securely using the (now) shared secret key KAB .
Generally the key is used for a limited amount of time before a
new one is requested from Sara.
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Scenario 2. Authentication
I This is a simplified version of Needham and Schroeder

algorithm which is used in Kerberos system (developed at
MIT and used here)

I The simplified version does not protect against a replay
attack, where old authentication messages are replayed

I It is used within organisations since the individual private
keys, KA, KB etc, must be shared between the authentication
server and the participants in some secure way

I It is therefore inappropriate for use with wide area applications
such as eCommerce

I An important breakthrough was the realisation that the user’s
password need not be sent through the network each time
authentication is required. Instead “challenges” are used

I When the server sends Alice the ticket and new shared private
key it encrypts it with Alice’s own private key. An attacker
pretending to be Alice would be defeated at this point
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Scenario 3. Authenticated Communcation with Public Keys

I Assuming that Bob has generated his own public/private key
pair KBpub, KBpriv then Alice and Bob can securely set up a
shared private key KAB

I We also assume that there is some public-key certificate
system such that Alice can obtain Bob’s public key in a way
that she is confident that it is indeed Bob’s public key

1. Alice obtain’s Bob’s public key KBpub

2. Alice creates a new shared key KAB and encrypts it using
KBpub using a public-key algorithm. This she sends to Bob
{KAB}KBpub

3. Bob decrypts this using the appropriate private key to obtain
the shared private key KAB . Shared communication can now
take place
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Scenario 3. Authenticated Communcation with Public Keys

I This is a hybrid cryptographic protocol and is widely used as it
exploits useful features of both public-key and secret-key
encryption algorithms

I The slower public-key algorithm is used to set up the speedier
secret-key communication

I Problem:
I The distribution of public keys. Mallory may intercept Alice’s

initial request to obtain Bob’s public key and simply send Alice
their own public key.

I Mallory then intercepts the sending of the shared key which
they copy and then re-encrypt using Bob’s real public key and
forward it to Bob.

I Mallory can then intercept all subsequent messages since they
have the shared secret key. They may need to in order to
forward the messages on to Bob and Alice depending on the
delivery mechanism.
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Digital Signatures
I Cryptography can be used to implement digital signatures
I Alice can encrypt a message using Bob’s public key such that

only Bob can decrypt the message
I Alice can also encrypt the message using her own secret key
I Anyone can decrypt the message so long as they know Alice’s

public key
I Provided we can be sure that the public key in question really

is that of Alice’s we now know that the message must have
originated from Alice, since only Alice knows Alice’s secret key

I Rather than encrypt the entire message Alice can compute a
digest of the message, where a digest is similar to a checksum
except that two distinct messages are very unlikely to have the
same digest value

I This digest is encrypted and attached to the message, the
receiver can then check that the unencrypted digest matches
the (receiver computed) digest of the contents of the message



Security

Scenario 4. Digital Signatures
I Alice wishes to sign a document M so that any subsequent

receiver can be sure that it originated from Alice

1. Alice computes a fixed length digest of the document
Digest(M)

2. Alice encrypts the digest with her private key and attaches the
result to the message M, {Digest(M)}KApriv

3. Alice makes the document with signature available
4. Bob obtains the signed document, extracts M and computes

d = Digest(M)
5. Bob decrypts {Digest(M)}KApriv

using KApub and compares the
result to d , if they match the signature is valid.



Security

Scenario 4. Digital Signatures
I We have three requirements of digital signatures

1. Authentic It convinces the recipient that the signer deliberately
signed the document and it has not been altered by anyone else

2. Unforgeable It provides proof that no one else deliberately
signed the document. In particular the signature cannot be
copied and placed on another document

3. Non-repudiable The signer cannot credibly deny that the
document was signed by them

I Note that encryption of the entire document, or its digest,
gives good evidence for the signature as unforgeable

I Non-repudiable is the most difficult to achieve for digital
signatures. A signer may simply deliberate disclose their secret
key to others and then claim that anyone could have signed it

I This can be solved through engineering but is generally solved
through social contract “If you give away your secret key you
are liable”
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5. Certificates

I Suppose Alice would like to shop with Carol

I Carol would like to be sure that Alice has some form of bank
account

I Alice has a bank account at Bob’s bank

I Bob’s bank provides Alice with a certificate stating that Alice
does indeed have an account with Bob.

I Such a certificate is digitally signed with Bob’s private key
KBpriv and can be checked using Bob’s public key KBpub



Security

5. Certificates

I Now suppose Alice wished to carry out an attack such that
she convinced Carol that someone else’s account was owned
by herself

I This is quite simple, Alice only requires to generate a new
public-private key pair KBprivFake , KBpubFake

I She then creates a certificate falsely claiming that Alice is the
owner of some account and signs it using KBprivFake

I If she can convince Carol that KBpubFake is the true public key
of Bob’s bank, then this attack should work no problem



Security

5. Certificates

I The solution is for Carol to require a certificate from a trusted
fourth party, Dave from the Bankers’ Federation, whose role it
is to certify the public keys of banks

I Dave issues a public-key certificate for Bob’s public key
KBpub. This is signed using Dave’s private key KDpriv and can
be verified using Dave’s public key KDpub

I Of course now we have a recursive problem, since now we
need to authenticate that KDpub is the legitimate public key of
Dave from the Bankers’ federation.

I We break the recursion by insisting that at some point Carol
must trust one person, say Dave, and to do so may require to
meet them in person.

I Note that Carol only has to trust Dave in order to verify bank
account certificates from a variety of banks



Security

5. Certificates
I To make certificates useful, we require:

1. A standard format such that certificate issuers and users can
construct and interpret them successfully.

2. Agreement on the way in which chains of certificates are
constructed and in particular the notion of a trusted authority

I In addition, we may wish to revoke a certificate, for example if
someone closes their account

I This is problematic since once the certificate is given it can be
copied and stored etc

I The usual solution is for the certificate to have an expiration
date, meaning that the holder of the certificate must
periodically renew it (in the say way that one renews a
passport)



Security

Cryptographic Algorithms
I Until now we have just assumed there is some method of

encrypting the plaintext into the corresponding cyphertext
using a particular key

I Additionally that there is some inverse operation to decrypt
the cyphertext back into the original plaintext, using the same
or corresponding decryption key

I The encryption depends on two things, the method E and the
key K

I A message M has an encrypted version {M}K if:
I {M}K = E (K , M)

I The mathematically minded can think of an encryption
algorithm as describing a (large) family of encryption
functions from which one is selected by any given key

I Decyption of course gives the original message when used
with the correct key

I M = D(K ′, {M}K )



Security

Symmetric Algorithms

I Shared secret key, or symmetric algorithms use the same key
for decryption as for encryption, such that:

I M = D(K , E (K , M)) or M = D(K , {M}K )

I It should be the case that the inverse function
M = E−1({M}K ) is so hard to compute as to be infeasible

I However both E (K , M) and D(K , {M}K ) should be relatively
easy to compute

I Such functions are known as one-way functions



Security

Defence — symmetric algorithms

I Whilst a strong one-way function defends against an attack
which attempts to discover M given {M}K

I It does not necessarily defend against an attack which seeks
to discover K given M and {M}K (and crucially E )

I This has been an important attack and was used heavily
during World War II to break the Nazi enigma encryption
scheme

I The simplest and highly effective attack is a brute-force
attack in which all keys are attempted, computing E (K , M)
to see if it matches {M}K

I The number of possible keys depends on the length of K , if it
has N bits then there are 2N possibilities (though you need
only try 2N−1 on average.



Security

Block Ciphers

I Most algorithms operate on a fixed size of block

I For larger messages we split it up into a number of blocks and
encrypt each one in serial, independently

I Hence the first block is available for transmission as soon as it
is encrypted

I However this is a slight weakness, since the attacker can
recognise repeated patterns and infer the relationship to the
plaintext
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Cipher Block Chaining

I In Cipher Block Chaining each block is combined with the
precedeing block.

I Note that this still means the previous block may be
transmitted as soon as it is ready

I Generally XOR is used, if we have block N of plaintext and
{MN−1}K of cipherext, then block N is encrypted as:
{MN}K = E (K , N ⊕ {MN−1}K )

I Upon decryption, each block is xor’ed with the preceding
block, this works since xor is its own inverse

I This is intended to prevent identical portions of the plaintext
from encrypting to identical portions of ciphertext

I But there is a slight weakness at the start of each stream of of
blocks

I To prevent this we insert a different piece of plaintext in front
of each message, known as the initialisation vector.



Security

Cipher Block Chaining



Security

Cryptographic Algorithms

I There are many well designed cryptographic algorithms such
that E (K , M) = {M}K such that the value of M is concealed
and computing K requires a brute-force attack

I Confusion Non-destructive operations such as xor and circular
shifting are used to combine each block of plaintext with the
key

I This confuses the relationship between M and {M}K
I If the blocks are larger than a few characters then this defeats

attempts at cryptanalysis based on character frequencies

I Diffusion There is usually repetition and redundancy in the
plaintext. Diffusion is used to dissipate regular patterns that
result by transposing portions of each plaintext block.



Security

TEA — Secret Key Algorithm

I k is the key of length four (64-bit integers)

I text is originally the plaintext to be encrypted, two 64-bit
integers

1. delta = 0x9e3779b9, sum = 0

2. y = text[0], z = text[1]

3. for (n= 0; n < 32; n++)

4. sum += delta

5. y += ((z << 4) + k[0]) ⊕ (z+sum) ⊕ ((z >> 5) + k[1])

6. z += ((y << 4) + k[2]) ⊕ (y+sum) ⊕ ((y >> 5) + k[3])

7. text[0] = y; text[1] = z;



Security

TEA — Tiny Encryption Algorithm

I On each of the 32 rounds the two halves of the text are
repeatedly combined with shifted portions of the key and each
other

I The xor and shifted portions of the text provide confusion

I Shifting and swapping of the two portions of the text provide
diffusion

I The non-repeating constant delta is combined with each
portion of the text on each cycle to obscure the key in case it
might be revealed by a section of the text which does not vary
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TEA — Decryption

1. delta = 0x9e3779b9, sum = delta << 5

2. y = text[0], z = text[1]

3. for (n= 0; n < 32; n++)

4. z -= ((y << 4) + k[2]) ⊕ (y + sum) ⊕ ((y >> 5) + k[3])

5. y -= ((z << 4) + k[0]) ⊕ (z + sum) ⊕ ((z >> 5) + k[1])

6. sum -= delta;

7. text[0] = y; text[1] = z;



Security

DES

I The Data Encryption Standard

I Is mostly of historical importance now since its keys are
56-bits long

I Too short to resist brute-force attack using modern hardward

I Maps a 64-bit plaintext into a 64-bit ciphertext using a 56-bit
key

I The algorithm has 16 dependent stages known as rounds

I Algorithm was developed in 1977 and was slow on machines
of the time when written in software

I However the algorithm could be implemented in hardware and
was incorporated into network interface chips
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DES — Cracked

I In June 1997 it was succesfully cracked in a brute-force attack

I The attack was performed as part of a competition to
illustrate the need for 128-bit long keys

I About 14,000 computers took part in a distributed
computation to crack the 56-bit key

I The program was aimed at cracking a known
plaintext/ciphertext pair, to obtain the unknown key (and
then use that to decrypt new ciphertext)

I Later, the EEF developed a machine that could successfully
crack 56-bit keys in around three days
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Triple DES

I One solution to the weakness of 56-bit keys is to simply apply
the algorithm more than once with more than one key

I E3DES(K1, K2, M) = EDES(K 1, DDES(K2, EDES(K1, M)))

I This is equivalent to the strength of a single key with a length
of around 112-bits

I But it is slow since it must be applied three times

I And DES is already considered slow by modern standards
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IDEA

I International Data Encryption Algorithm

I Uses 128-bit keys

I A successor to DES, its algorithm is based on the algebra of
groups, and has 8 rounds of xor , addition modulo 216 and
multiplication

I Like DES uses the same function for encrytion as for
decryption, which is useful if it is to be implemented in
hardware.

I IDEA has been analysed extensively, and no major weaknesses
have been found. It is also around three times faster than the
speed of DES (and hence 9 times faster than triple-DES)



Security

AES

I US National Institute for Standards and Technology invited
proposals for AES (advanced encryption standard)

I The winner, the Rijndael algorithm, was selected from 21
algorithms submitted by cryptographers in 11 countries

I The cipher has variable block and key lengths, with
specifications for keys with lengths 128, 192 or 256 bits to
encrypt blocks with the same lengths

I The number of rounds varies from 9 to 13

I The algorithm can be implemented efficiently on a wide range
of processors and in hardware
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Public-key Algorithms

I There are relatively few practical public-key algorithms

I They depend on the trap-door functions of large numbers to
produce keys

I The keys Ke and Kd are a pair of very large numbers

I The encryption performs an operation such as exponentiation
on one of them

I Decryption is a similar function using the other key.

I If the exponention uses modulo arithmetic it can be shown
that the result is the same as the original value of M, so:

I D(Kd , E (Ke , M)) = M

I RSA is the most widely known public-key algorithm
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RSA

I Rivest, Shamir and Adelman, based on the product of two
very large prime numbers

I Again despite extensive attempts and investigations, no flaws
have been found
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RSA, to find a key pair Ke , Kd

1. We need to find three numbers e, d and N, the keys will be
Ke = e, N and Kd = d , N

2. Choose two large prime number P and Q both larger than
10100 (a googol)

I N = P × Q
I Z = (P − 1)× (Q − 1)

3. For d choose any number that is relatively prime with Z
(gcd(d , Z ) = 1)

4. To find e, solve: e × d = 1 mod Z
I So e × d is the smallest element in the series

Z + 1, 2Z + 1, 3Z + 1, . . . which is divisible by d



Security

RSA

I So the function to encrypt a single block of plaintext M is

I E ′(e, N, M) = Me mod N

I So the largest length of M is log2(N) bits

I And to decrypt a block of text is:

I D ′(d , N, c) = cd mod N

I Rivest, Shamir and Adelman proved that E ′ and D ′ are
mutual inverses, so E ′(D ′(x)) = D ′(E ′(x)) = x for all values
of P in the range 0 ≤ P ≤ N

I Note that encryption requires e and N so Ke = e, N

I And decryption requires d and N so Kd = d , N
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RSA — Concrete Example

1. Choose P and Q as very large prime numbers
I P = 5 and Q = 11

2. N = P × Q and Z = (P − 1)× (Q − 1)
I N = 55 and Z = 40

3. For d choose any number that is a relative prime of Z
I d = 7

4. To find e solve e × d = 1 mod Z
I 41, 81, 121, 161, . . .
I e × 7 = 161, e = 23

5. The numerical value of a block must be less than N, so the
length of a block k must be such that 2k < N here we will be
forced to choose k = 5
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RSA — Concrete Example
I So to encrypt the block M with numerical value 24 using the

Ke = 23, 55

1. E ′(e, N, M) = Me mod N
2. E ′(e, N, M) = 2423 mod N
3. E ′(e, N, M) = 55572324035428505185378394701824 mod 55
4. E ′(e, N, M) = 19

I To decrypt with Kd = 7, 55

I D ′(d , N, c) = cd mod N

I D ′(d , N, c) = 197 mod N

I D ′(d , N, c) = 893871739 mod 55

I D ′(d , N, c) = 24

I tried first with M = 21 but 2123 mod 55 = 21
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RSA — Cracking
I Given that the public key Ke contains N, to figure out e and

d (and hence Kd) an attacker requires to factorise N
I In our example the prime factorisation of 55 is relatively easy

to figure out 5, 11
I The attacker would therefore know Z , they wouldn’t know the

choice of d but could brute-force try all possibilities
I In practice of course P and Q are chosen to be > 10100 so

N > 10200, hence factorisation of N is extremely
computationally expensive

I Factorisation of a number as large as 10200 would take 4
billion years using the best known algorithm on a computer
that performs 1 million instructions per second.

I Intel Core i7 Extreme Edition 3960X (Hex core) = 177,730
MIPS

I (4000000000× 31556900)/177730000000 = 710221
I So 710000 years
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RSA Challenges

I The RSA Corporation issued a challenge to factor numbers of
more than 100 decimal digits

I Numbers up to 232 decimal digits (768 binary digits) have
been successfully factored

I Though there is still a 212 decimal digit (704 binary digits)
number which remains unfactored

I Keys as large as 2048 bits are used in some applications

I All of this security somewhat depends upon the currently
known best factoring algorithms not being improved (either
because it is impossible or simply because no-one figures out
how)
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Public-key algorithms

I It is worth noting a problem for all public-key cryto-algorithms

I An attacker as an unlimited supply of ciphertexts with known
plaintexts

I Since the encryption is done using the public key and the
attacker has access to the public key they can simply create as
many plaintext/ciphertext pairs as they require

I They may even do so with any given text, for example the
zero plaintext

I Additionally if the unknown encrypted message was really
short, one could simply brute-force try all messages of the
same length encrypting them to see if they match the
encrypted message

I This is obviously defeated by making sure that each message is
at least as long as the key such that this form of brute-force
attack is less feasible than a brute-force attack on the key
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XKCD
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Zardoz Jeff Atwood @CodingHorror recently blogged about his
Surface RT authentication:
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Review — Introduction

Definition of Distributed Systems
I We debated over the definition of a distributed system and

decided that the distinguishing features were:
I Independent computers
I Coordination achieved only through message passing

I There is also the notion of transparency of distribution, that is
that the distributed system should appear to the users as a
single computer

I We decided that this was a nice feature but not an essential
one

I We distinguished the study of distributed systems from the
study computer networks by noting:

I Computer networking is the study of how to send messages
between remote computers

I Distributed systems is the study of how to use that capability
to get work done



Review — Introduction

Challenges
I We identified several challenges involved in designing and

building distributed systems:

1. Heterogeniety
2. Openness
3. Security
4. Scalability
5. Handling of failures
6. Concurrency
7. Transparency



Review — Fundamental Concepts

I A distributed algorithm was defined as the steps to be taken
at each process — in particular the sequence of steps taken
globally is not defined

I We defined a synchronous system as one in which we have
known upper and lower bounds for:

I the time taken for each process to execute each step in the
computation

I Time taken for message delivery
I The clock drift rate from real time for each process

I An asynchronous system has no such bounds

I We noted that all asynchronous systems could be made
synchronous by assuming very large bounds

I The defining feature of a synchronous system is that the
bounds were useful

I Synchronous systems allow for simpler algorithms but
determining useful bounds is often difficult



Review — Fundamental Concepts

Models

I We create models of our distributed systems in order to make
explicit all relevant assumptions

I Make generalisations about what is possible given those
assumptions

I The interaction model allows us to determine logical properties
of the algorithm, such as termination, correctness and other
properties more dependent on the application

I The performance model allows us to improve on the abstract
performance available from the interaction model by
combining with performance data of the underlying machines
and network mediums

I The failure model allows us to permit (or exclude) classes of
errors and reason about the effect of those errors on the
operation or performance of our algorithm

I The security model is used to assess risk of information
leakage/distortion even given the use of cryptography



Review — Fundamental Concepts

Network Issues

I Latency is defined as the time it takes for data to first arrive
at the destination after the send is initiated

I data transfer rate is how much data per unit of time may be
transfered

I message delivery time = latency + message length
data transfer rate

I latency affects small frequent messages which are common for
distributed systems



Reliability

Left 1 2 3 4 5 Right

Left 1 2 3 4 5 Right

Left 1 2 3 4 5 Right

Left 1 2 3 4 5 Right

Left 1 2 3 4 5 Right

Red denotes a node at which error detection/correction occurs

I If the probability of a message getting through any channel is
0.5 then completing the trip is 0.56 = 0.016

I Fortunately communication channels are generally more
reliable

I ( 9999
10000)6 = 0.9994 > 999

1000



UDP and TCP

I Two internet protocols provide two alternative transmission
protocols for differing situations with different characteristics

I User Datagram Protocol — UDP
I Simple and efficient message passing
I Suffers from possible omission failures
I Provides error detection but no error correction

I Transmission Control Protocol – TCP
I Built on top of UDP
I Provides a guaranteed message delivery service
I But does so at the cost of additional messages
I Has a higher latency as a stream must first be set up
I Provides both error detection and correction

I IP Multicast has UDP-like failure semantics (maybe)



Review — Fundamental Concepts

Marshalling

I Marshalling is the process of flattening out a complex data
structure into a series of bytes which can be sent in a message

I CORBA, Java Serialisation, XML and JSON

I Some come with instructions to the receiver on how to
re-construct the flattened, others require pre-agreement on
the types of the communicated data structures

I XML more general, JSON becoming popular because
programmers are “fed-up” of parsing



Review — Time and Global State

Synchronising Clocks
I We noted that even in the real world there is no global notion

of time
I We thought that perhaps that didn’t matter because we are

all travelling at slow speeds relative to each other
I However our clocks are not true clocks they are mechanical

and as such are subject to drift and skew
I We nevertheless described algorithms for attempting the

synchronisation between remote computers
I Cristian’s method
I The Berkely Algorithm
I Pairwise synchronisation in NTP

I Despite these algorithms to synchronise clocks it is still
impossible to determine for two arbitrary events which
occurred before the other.

I We therefore looked at methods to impose a meaningful order
on remote events and this took us to logical orderings



Review — Time and Global State

Logical Orderings and States
I Logical orderings based on the intuitive and simple idea of the

“happens-before” relation:
I e1 → e2 if e1 and e2 occur at the same process and e1 occurs

before e2, or:
I e1 is the sending of some message and e2 is the receiving of

that same message, or:
I There exists some event e1.5 such that: e1 → e1.5 → e2

I Lamport and Vector clocks were introduced:
I Lamport clocks are relatively lightweight provide us with the

following e1 → e2 =⇒ L(e1) < L(e2)
I Vector clocks improve on this by additionally providing the

reverse implication V (e1) < V (e2) =⇒ e1 → e2

I Meaning we can entirely determine whether e1 → e2 or
e2 → e1 or the two events are concurrent.

I But do so at the cost of message length and scalability

I The concept of a true history of events as opposed to runs
and linearisations was introduced



Global State — Chandy and Lamport — Reachability

I We looked at Chandy and Lamport’s algorithm for recording a
global snapshot of the system

I Crucially we defined a notion of reachability such that the
snapshot algorithm could be usefully deployed in ascerting
whether some stable property has become true.



Review — Time and Global State

Distributed Debugging
I Finally the use of consistent cuts and linearisations was used

in Marzullo and Neiger’s algorithm
I Used in the debugging of distributed systems it allows us to

ascertain whether some transient property was possibly true at
some point or definitely true at some point.

I Suppose we have a monitor M and two processes P1 and P2
I We start with P1(x = 100) and P2(y = 50)
I M receives a message from P1, x = 50
I M receives a message from P2, y = 100
I The monitor then records four global states:

1. x = 100, y = 50
2. x = 50, y = 50
3. x = 100, y = 100
4. x = 50, y = 100

I Both states 2 and 3 could not have occurred, but we do not
know which occurred

I If we wish to know whether the sum was ever 200 then we say
“possibly” but not “definitely”



Review — Time and Global State

Distributed Debugging

I The purpose of a snapshot algorithm was to record a global
state that is logically consistent with some state which was
actually experienced, but there is no attempt to record a state
which was “actually experienced”

I Distributed debugging on the other hand hopes to record such
“actually experienced” states, and is conservative in the sense
that it considers more states than may actually have occurred



Review — Coordination and Agreement

Mutual Exclusion and Election
I We looked at the problem of Mutual Exclusion in a distributed

system
I Giving four algorithms:

1. Central server algorithm
2. Ring-based algorithm
3. Ricart and Agrawala’s algorithm
4. Maekawa’s voting algorithm

I Each had different characteristics for:

1. Performance, in terms of bandwidth and time
2. Guarantees, largely the difficulty of providing the Fairness

property
3. Tolerance to process crashes

I We then looked at two algorithms for electing a master or
nominee process; ring-based and bully algorithms

I Then we looked at providing multicast with a variety of
guarantees in terms of delivery and delivery order



Review — Coordination and Agreement

General Consensus

I We then noted that these were all specialised versions of the
more general case of obtaining consensus

I We defined three general cases for consensus which could be
used for the above three problems

I We noted that a synchronous system can make some
guarantee about reaching consensus in the existance of a
limited number of process failures

I But that even a single process failure limits our ability to
guarantee reaching consensus in an asynchronous system

I In reality we live with this impossibility and try to figure out
ways to minimise the damage



Review — Distribution and Operating Systems

Operating System Characterisations

I Distributed Operating Systems are an ideal allowing processes
to be migrated to the physical machine more suitable to run it

I However, Network Operating Systems are the dominant
approach, possibly more due to human tendancies than
technical merit

I We looked at microkernels and monolithic kernels and noted
that despite several advantages true microkernels were not in
much use

I This was mostly due to the performance overheads of
communication between operating system services and the
kernel

I Hence a hybrid approach was common
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Concurrency, processes and threads

I We looked at processes and how they provide concurrency, in
particular because such an application requires concurrency
because messages can be received at any time and requests
take time to complete, time that is best spent doing
something useful

I but noted that separate processes were frequently ill-suited for
an application communicating within a distributed system

I Hence threads became the mode of concurrency offering
lightweight concurrency.

I Multiple threads in the same process share an execution
environment and can therefore communicate more efficiently
and the operating system can switch between them more
efficiently
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Operating System Costs and Virtualisation

I We also looked at the costs of operating system services on
remote invocation

I Noting that it is a large factor and any design of a distributed
system must take that into account — in particular the choice
of protocol is crucial to alleviate as much overhead as possible

I Finally we looked at system virtualisation and noted that it is
becoming the common-place approach to providing
cloud-based services

I Virtualisation also offers some of the advantages of a
microkernel including increased protection from other users’
processes
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Motivations and Napster
I We began with looking at the motivations behind the

development of peer-to-peer systems
I Break the reliance of the system on a central server which may

be vulnerable from attack, both technical and bureaucratic
I Utilising the resources of those using the service such that

capacity grows with the number of users
I Providing anonymity to content providers

I The now defunct pioneering system Napster
I Napster relied on a central server, but that server hosted no

content, bandwidth to the central server was limited as well
because no content was therefore downloaded from the central
server

I Instead the central server was merely used by remote peers to
locate content and setup independent connections between
peers

I Ultimately though the reliance on a central server proved
enough fodder for the entertainment industry’s lawyers and
Napster was shutdown



Review — Peer-to-Peer Systems

Peer-to-Peer Frameworks

I Napster however proved the feasibility of the concept and
several services grew into the space left behind by Napster

I Such services do not rely on any single central server and have
so far proved resilient to legal attacks

I However we focused our attention on efforts to provide a
generic framework for building peer-to-peer applications

I Such frameworks currently focus on providing a distributed
hash table, storing objects and replicas at multiple peers for
later retrieval

I Distributed Object Location and Routing systems are an
extension providing a more convenient API, in particular for
objects which may be updated
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Structured vs Unstructured
I Two related problems for the use of a peer-to-peer system:

1. initially finding the resource you are interested in and thus
obtaining its logical address (GUID)

2. Routing to the logical address (GUID) once it is known

I Analogous to internet addresses which first translate the text
url into an integer address and then route to that address

I For internet addresses it is efficient to do this in two stages,
because once you have the integer address you can access the
resource more efficiently and you may do this many times

I For file-sharing, once the file is found, that likely constitutes
the one and only time that that particular user will access that
particular resource

I Hence relying on unstructured search is reasonable
I Even the search is less structured than domain name lookup

since domain names are an exact one-to-one mapping, file
searches are not
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I Although we noted that human error is a large cause of
security breaches our concern here was technical security,
which was mostly achieved through the use of cryptography

I Our assumption is that the network, atop which our
distributed system is constructed, is insecure. Messages may
be, deleted, read, duplicated, modified and inserted

I A man-in-the-middle attack is one in which the attacker
makes independent connections with two victims and relays
the messages between them.

I You can apply this to beat a master in a blind game of Chess
(or Go, etc)

I Set up two games against two masters making sure you are
black in one and white in the other

I Mirror each players moves to the opposite board
I You will win one game and lose the other

I Usually though the man-in-the-middle masquerades as each of
the two
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Cryptography

I Modern cryptography makes use of algorithms which distort a
message such that it is difficult/infeasible to recover the
original message without knowledge of the key

I Shared secret-key algorithms are symmetric and make use of
the same key to both encrypt and decrypt the message

I A message is secure provided that no one else
knows/discovers the shared secret key

I Such that: D(K , E (K , M)) = M

I Public/private key algorithms are not symmetric. One key is
used to encrypt the message whilst a corresponding key is
used to decrypt the encrypted message:

I If Ke and Kd are a key-pair: D(Kd , E (Ke , M)) = M

I Generally a person publishes their public key and anyone can
send a secure message to them by encrypting it with the
public key
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Hybrid Protocols
I If Alice sends a message to bob {M}KBpub

= E (KBpub, M)
I Bob can decrypt this M = D(KBpriv , {M}KBpub

, but to reply
with M ′ Bob must use Alice’s public key:
{M ′}KApub

= E (KApub, M ′)
I Alice can decrypt this with her private key:

M ′ = D(KApriv , {M ′}KApub
)

I This has the attractive advantage that no pre-agreed shared
secret is required. Alice and Bob can be on opposite sides of
the world and still communicate in secret without risk that the
sharing of a shared secret key was eavesdropped

I However public key encryption algorithms are 100/1000 times
slower than shared secret key encryption, if Alice and Bob are
to have a prolonged communication this is slow

I Alternatively M could have been a new shared secret key
I This uses public-key crytography to set up shared secret-key

cryptography giving the benefits of both kinds
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Digital Signature

I Rather than encrypt a message with Bob’s public key Alice
can instead encrypt a message with her own private key

I Doing so means that to decrypt the message requires Alice’s
public key which is generally available, so the message is
insecure

I However, since a message decrypted with Alice’s public key
must have been encrypted with Alice’s secret key we know for
sure that Alice must have encrypted (and sent) the message

I So as to avoid encrypting an entire document, Alice may
compute a digest (similar to a checksum) of the document
and encrypt the digest and attach it to the document

I Digital signatures fulfil well the properties of Authentication
and Unforgeable but can fail to be Non-repudiable
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Certificates

I All public-key cryptography, including digital signatures, suffer
from the problem of authenticating a public key

I That is, being sure that the public key, or the entity providing
the public key, really is that of the entity advertised

I I can claim to be Microsoft
I Just as easily I can give you a public key, claim that that key is

Microsoft’s public key, and that I am therefore Microsoft

I Certificates are essentially digital signatures attached to public
keys (or other digital signatures)

I Of course certificates may also be falsely claimed in the same
way however one “certification authority” may certify many
public-keys/digital signatures, such that the receiver need only
trust the certification authority to enable trust of many others

I For example https signatures
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Key Iteration

I If the attacker knows a plaintext/ciphertext pair (M/Me), it
can simply try all possible keys Kposs until Me = E (Kposs , M)

I This represents a problem for public key cryptography since
the attacker can generate as many plaintext/ciphertext pairs
as they require

I It means that keys must be long enough
I In addition the message must be long enough, suppose the

message was just two bytes long, there are only 65,536
possible messages, and the attack knows the encryption key
(ie. the public key)

I The attacker can therefore simply iterate over all possible
messages, encrypting them with public key to see if they get
the same ciphertext

I Suppose an encrypted message Me is heard by the attacker,
which they know was encrypted with the public key Kp

I The attacker simply tries all possible M ′ until E (Kp, M ′) = Me
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End of the Course!
Thank you for your Attention!
Good luck with your Exams!

Any Questions?


