Question 4 World Health Connorl

No medical teams	1	2	3
	0	0	0
	45	20	50
2	20	45	70
2	30	75	80
4	105	110	100
5	120	150	130

three ruterrelated decisions => three stopes $X_{n} \notin n = 1, 2, 3$) # leous to allocate to country n (stope n) S - state - # of team still avote lable pi(xi) · affectivness of for ollocotrug x; to i choose x1, x2, x3, S.t. $\max \sum_{i=1}^{3} p_i(x_i)$ 5. $z_{i=1}^{3} x_{i} = 5$, $t_{i}, x_{i} > 0$ $f_{u}(S, X_{u}) = \rho_{u}(X_{u}) + \max_{i=u+1}^{3} \rho_{i}(X_{i})$ 3 Z X;=S j=4 $f_{u}^{*}(s) = \max_{x_{u}=0...s} f_{u}(s, x_{u})$

 $= \int f_{n}(S_{1}K_{n}) = p_{n}(K_{n}) + \int_{u+1}^{k} (S-X_{n})$ [f= =0]

 $f_{u}^{*}(s) = \max_{X_{u}=0...s} \{ p_{u}(X_{u}) + f_{u+1}^{*}(s-x_{u}) \}, u=1, 2$ for n = 3, $\int_{3}^{*}(s) = \max_{X_{3}=0,...,s} P_{3}(X_{3})$ Structure of the problem: Stage ut! Stage u S-Xu S)pu(Kn) Ju+1 (S-Xu) $f_{u}(S, X_{u}) =$ $= P_{n}(X_{n}) + f_{n+1}(S-X_{n})$ Using Dynamic programming we work through the problem backwords by using the recursive relationship we formulated above: $\int_{3}^{*}(s)$ X_3 S Hope u=3: 0 50 2 20 2 3 80 3 4 4 100 5 5 130

Clapp	11=2:	$ X_{4} = f_{2}(s, X_{4}) = P_{2}(X_{2}) + f_{3}^{*}(s - x_{2})$						(R×IC)	V ×	
Stafe	M - C -	5 \	0	1	2	3	4	5	52 (3)	2
0	4 2	0	0						0	0
		L	50	20					50	0
		2	70	70	45				-70	0,1
		3	80	90	95	75			<u>95</u>	ź
		4	100	100	415	125	110		125	3
		5	130	120	125	145	160	150	160	4
								ι.		

Stage	u=1:	Xul	f1(5,)	$(1) = \rho_1$	(x1)+f	2 (5	- X1.)		$l^{*}(s)$	X×
		5	Ø	L	2	3	4	5	()	-
		5	460	130	465	160	155	120	170	1
						- 10 		s		

=> Best strategy is: $x_{1}^{*} = 1$; S = 5 - 1 = 4; $x_{3}^{*} = 3$; S = 4 - 3 = 1; $x_{3}^{*} = 1$

$$\frac{\Pr(cblem 2}{4} : Screen the for an Mores
+ Gool - phinise min $\frac{1}{1+1} P_i(x_i)$,
s.l. $\frac{3}{2} x_i = 2$, x_i are all nonnegative
integers

$$\int_{i=1}^{1} (S_i X_n) = \int_{i}^{n} (X_n) \times \min \min \min \frac{3}{i+n+1} P_i(x_i)$$
,
s.l. $\frac{3}{2} x_i = S$, x_i are non negative in tegers,
for $n = 1, 2, 3$.
Thus $\int_{i}^{n} (s) = \min \int_{x_n \in S} \int_{i=1}^{n} (S_i X_n)$.
 $\Rightarrow We nnow \int_{i}^{n} (S_i X_n) = \int_{i}^{n} (X_n) \int_{i+1}^{n+1} (S_i X_n)$
 $\Rightarrow \int_{i}^{n} (S) = \min \int_{x_n \in S} \int_{i=1}^{n} (X_n) \int_{i+1}^{n+1} (S_i X_n)$
 $\Rightarrow \int_{i}^{n} (S) = \min \int_{x_n \in S} \int_{i=1}^{n} (X_n) \int_{i+1}^{n+1} (S_i X_n) \int_{i}^{n} for n = 1, 2$
for $n = 3$, $\int_{i}^{i} (S_i) = \min \int_{x_n \in S} \int_{i=1}^{n} \int_{i=1}^{n} (S_i X_n) \int_{i=1}^{n} \int_{i=1}$$$

Using by neurop programming we worn through the problem been words: Stoge n=3: $\frac{5 \int \int_{3}^{*}(s) |x_{3}^{*}|}{0 \quad 0.8 \quad 0}$ $\frac{1}{2} \quad 0.5 \quad 1$ $2 \quad 0.3 \quad 2$

Stage u=1:
$$X_{11} \frac{f_1(s, X_{\pm}) = p_1(X_{1}) \cdot f_2(s - X_{1})}{2} \frac{f_1^{\pm}(s)}{f_1} \frac{X_{1}}{X_{1}}$$

 $2 0.064 0.06 0.072 0.06 1$

 \Rightarrow The best strategy is $X_3^{*}=1$, $X_2^{*}=0$, $X_3^{*}=1$

Problem 3: Cernival Planning
Weather Report moveilable
$\mathcal{M}(\alpha_{1}) = \sum_{\omega} \mathcal{M}(\alpha_{1}, \omega) \mathcal{P}(\omega) = 0.1 \cdot (-15000) + 0.3 \cdot (-5000) + 0.6 \cdot 5000$
= 3000
$U(e_z) = \sum_{w} U(e_z, w) P(w) = -1000$
=> If we don't some the report, the best we could do is a surprised)
Weather Report avoilable
* Subtract 1000 from all retiliting values to reflect the cost
of the weather report.
* We have Pigion and it is a
P(w){F1- D(P),)P(w) P(W) P(W)
$P(w g) = \frac{P(g w + (w))}{P(g)} = \sum_{w} P(g w P(w))$
* Using that formule we get:
$P(w g) _{W} = R _{W} = C _{W} = S P(g) _{W} + P(g) = \sum_{w} P(g w)P(w)$
f= R 0.368 0.316 0.316 0.19
f = C 0.062 0.563 0.325 0.32
R= S 0.020 0.123 0.875 0.49

* Using these distributions we can calculate the expected which of toning any of the two actions, given a weather forecast.
* Using the marginal distribution we can calculate the expected which of toning the weather forecast at all, assuming we act gotimmelly offer that.
Ty we get a forecast for row for example, these are the expected whilties of the two possible actions:

$$U(a_1, f = r) = \sum_{i=1}^{N} P(w|f) U(w, a_2) = -2000$$

 $= for f = r, a_r^* = a_2$
 $\frac{1}{2} | \frac{a_1}{2} | \frac{U(a_1, f)}{f(1)} | \frac{P(f)}{r} | \frac{r}{2} | \frac{a_1}{2} | \frac{P(h)}{r} | \frac{P(f)}{r} | \frac{r}{r} | \frac{a_1}{2} | \frac{P(h)}{r} | \frac{P(f)}{r} | \frac{r}{r} | \frac{a_1}{r} | \frac{P(f)}{r} | \frac{P(f)}{r} | \frac{r}{r} | \frac{a_1}{r} | \frac{P(f)}{r} | \frac{P(f)}{$

S = 21 = 6655 = 0.48 $= 3 U_{wr} = 5 P(f) U(a_{1,f}^{*}) = 0.18 \times (-2000) + 0.32 \times (-335) + 0.48 \times 6655 = 2563$ $S = 0.18 \times (-2000) + 0.32 \times (-335) + 0.48 \times 6655 = 2563$

Remember Unwo = 3000 => In expectation it is better not to tome the weather report and set up directly.

Problem 3 : Carnival Example Decision Tree

Problem 4: Full decision tree

Problem 4:

Result after solving the decision tree with average-out and fold-back algorithm

