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Objec&ves	of	this	Lecture	

•  Give	a	selec&ve	recap	of	key	ideas	from	control	theory,	as	a	
very	first	approach	to	the	“synthesis	of	robot	mo&on”	
–  If	you	have	studied	control	theory	before,	you	should	recognize	
the	concepts	although	the	narra&ve	may	s&ll	be	new	

–  	If	you	have	not	studied	control	before,	this	might	give	you	
useful	background	that	will	help	contextualize	later	concepts	

•  AEer	the	first	sec&on	surveying	a	few	key	concepts,	we	will	
spend	the	second	half	of	the	lecture	on	case	studies	–	
showing	a	few	worked	examples	of	robot	control	problems	to	
illustrate	design	principles	
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Controller	Synthesis	as	a	Design	Problem	

•  Consider	a	prac&cal	
problem:	cruise	control	
(keep	your	distance	with	
respect	to	car	in	front)	

•  How	would	you	specify	
what	the	task	entails?	
–  Discuss	

•  How	would	you	synthesize	a	
control	strategy	that	
sa&sfies	these	
specifica&ons?	
–  Role	of	model	based	design?	
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[Source: Volvo V60] 



An	Example	of	a	Design	Specifica,on	

•  Consider	how	to	say	that	the	following	car	f	should	be	behind	
another	leading	car	l 

•  With	v	represen&ng	velocity	and	b, B	represen&ng	braking	
power	(B > b),	

	
•  Such	a	safe	distance	formula	is	an	invariant	requirement	
•  So	is	the	fact	that	physical	laws	will	hold	true	
•  Two	ques&ons:	

1.  What	is	the	language	for	such	specs	in	robo&cs,	in	general?	
2.  What	techniques	exist	to	check	if	spec	holds?	
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Linear	Time	Invariant	(LTI)	Systems	

•  Consider	the	simple	spring-mass-damper	system:	
•  The	force	applied	by	the	spring	is		
•  Correspondingly,	for	the	damper:	
•  The	combined	equa&on	of	mo&on	of	the	mass	becomes:	

•  One	could	also	express	this	in	state	space	form:	

1/2/19	 5	

M	

Fs Fd 

Linear ODE 



Linear	ODE:	Solu&ons	and	Proper&es	

•  Consider	the	simplest	possible	linear	ODE:	

•  Given	an	ini&al	condi&on,	φ(0) = x0,	what	is	x(t)? 
•  Solu&on	is	in	terms	of	exponen&als:	

•  All	linear	dynamical	systems	will	admit	solu&ons	in	terms	of	
such	exponen&als	
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Solu&on	of	a	Linear	ODE	

1/2/19	 7	

The multivariate case: 

This is state transition matrix φ(t) : 
In linear algebra, there are numerous ways to compute this… 



Example	
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Unforced: 
Which symbol  
is affected? 



Example,	contd.	
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Example,	contd.	
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Basic	No&on:	Stability	

•  Simple	ques&on:	
	Given	the	system,		
	where	in	phase	space,											,	will	it	come	to	rest	eventually?	

	
	

•  This	point	is	called	the	equilibrium	point	
–  If	ini&alized	there,	dynamics	will	not	take	it	away	
–  If	perturbed,	system	will	eventually	return	and	stay	there	
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Any guesses?  
Think about solution in previous slide… 



Stability	
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Some worked examples 

•  General solution of linear autonomous plane systems 

•  Classification of orbits of a linear system 
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Stability	for	an	LTI	System,																.	

	Unforced	(homogeneous)	response:		
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Stability	for	an	LTI	System	

If	you	differen&ate	the	homogeneous	response,	
	
	
	
	
The	system	being	considered	is																							,	so:		

1/2/19	 15	



LTI	Stability,	in	algebraic	equa&ons	

•  The	above	equa&on	leads	to	an	eigenvalue	problem:	

•  For	this	to	have	nontrivial	solu&ons:	
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Characteristic eqn. 



Stability:	LTI	System,														.		

	For	the	spring-mass-damper	example,	the	eigenvalues	are:	
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With positive damping, we 
get asymptotic stability 
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Worked examples on the board 

•  Simple example of Lyapunov’s method for establishing 
stability 
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Other	Related	No&ons:	
Orbital	Stability	

•  Stability	doesn’t	only	refer	to	being	at	rest	at	a	point	
–  could	be	defined	in	terms	of	staying	in	a	subset,	e.g.,	path	
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Stability	in	the	Real	World	
Some	AircraEs	are	by	Design		
Sta&cally	Unstable!	Why?	
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Jump	to	
2:07	for	
exci&ng	
bit!	

[https://www.youtube.com/watch?v=2CUyoi634wc] 



Nonlinear	Systems	

•  What	do	solu&ons	to	nonlinear	ODEs	look	like?	
•  Consider	a	simple	system:	
•  One	could	apply	a	transforma&on	to	write,	

	
•  Integra&ng	this	yields,	
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Relationship between  
position and velocity 
(phase space) 



Case	Study:	
Global	Control	of	the	Inverted	Pendulum	
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B.J. Kuipers, S. Ramamoorthy, Qualitative modeling and heterogeneous control of global system behavior. In C. 
J. Tomlin & M. R. Greenstreet (Eds.), Hybrid Systems: Computation and Control, LNCS 2289: 294-307, 2002. 



Objec&ves	for	Pendulum	Case	Study	

•  Show	one	concrete	example	–	fully	worked	out	–	of	a	non-
trivial	nonlinear	control	problem	
–  Just	complex	enough	to	be	non-trivial	
–  Amenable	to	analy&cal	solu&on	to	illustrate	ideas	

•  Demonstrate	the	process	of	addressing	design	requirements,	
and	proving	them	to	be	sa&sfied	by	a	controller	

•  In	the	process,	exposing	you	to	the	idea	of	structure	in	the	
dynamics	
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Pendulum	Phase	Space	

•  Phase	space	is	organized	into	families	(open	sets)	of	trajectories	
•  Trajectories	may	be	parameterized	by	a	single	variable:	energy	
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Design	Strategy:	Use	Natural	Dynamics	

•  Passively	“ride”	orbits	ó	Energy	Efficiency	
•  Parameterized	families	of	trajectories	ó	Flexibility	
•  Topology,	structural	stability	ó	Robustness	

Increasing 
Energy 

1/2/19	
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Using	Natural	Dynamics	for	Mo&on	Planning	

Generate	trajectories,	on-line,	
–  From	the	whole	phase	space	
–  To	inverted	posi&on		

	

Solu&on:	
–  Change	E	to	move	towards	separatrix	
–  Two	trajectory	classes:	

	pump	(libra&on)/	spin	(rota&on)	
–  Ride	the	separatrix,	once	there	

	
	
Let	us	now	walk	through	this	construc&on	in	some	detail!	
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Remarks:	Use	of	Qualita,ve	Models	

•  A	qualita&ve	differen&al	equa&on	(QDE)	expresses	par&al	
knowledge	of	a	dynamical	system.	
–  One	QDE	describes	a	set	of	ODEs,	
–  non-linear	as	well	as	linear	systems.	

•  A	QDE	can	express	par&al	knowledge	of	a	plant	or	a	
controller	design.	

•  QSIM	can	predict	all	possible	behaviors	of	all	ODEs	
described	by	the	given	QDE.	
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Qualita&ve	Design	of	a		
Heterogeneous	Controller	

•  Design	local	models	with	the	desired	behavior.	
•  Iden&fy	qualita&ve	constraints	to	guarantee	the	right	

transi&ons.	
•  Provide	weak	condi&ons	sufficient	to	guarantee	desired	

behavior.	
–  Remaining	degrees	of	freedom	are	available	for	
op&miza&on	by	any	other	criterion.	

•  Demonstrate	with	a	global	pendulum	controller.	
–  Local	models:		Pump,	Balance,	Spin.	
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Some	Remarks	about	QSIM	nota&on	

•  Each	variable	is	a	reasonable	func&on.	
–  Con&nuously	differen&able,	etc.	
–  Range	described	by	landmark	values	and	intervals.	

•  Constraints	link	variables.	
–  ADD,	MULT,	MINUS,	D/DT	
– Monotonic	func&ons:		y=f(x)	for	f	in	M0

+	
–  [x]0=sign(x)	

There	are	QSIM	soEware	tools	to	for:	
•  Compu&ng	semi-quan&ta&ve	bounds	
•  Predic&ng	all	possible	behaviors	over	&me	
•  Temporal	logic	model-checking	
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The	Monotonic	Damped	Spring	

•  The	spring	is	defined	by	Hooke’s	Law:	

•  Include	damping	fric&on	

•  Rearrange	and	redefine	constants	

•  Generalize	to	a	Qualita&ve	Differen&al	Equa&on	
(QDE)	with	monotonic	func&ons	f	and	g 

F =ma =m!!x = −k1x

m!!x = −k1x − k2 !x

!!x + b!x + cx = 0

!!x + f ( !x)+ g(x) = 0
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Lemma	1:	
The	Monotonic	Damped	Spring	

Let	a	system	be	described	by	

			where	

			Then	it	is	asympto&cally	stable	at	(0,0),	with	
a	Lyapunov	func&on:	

•  Proof	in	the	paper	(link	on	course	web	page)	

!!x + f ( !x)+ g(x) = 0

f ∈M0
+ and [g(x)]0 = [x]0

V (x, !x) = 1
2 !x

2 + g(x)dx
0

x

∫
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What does knowing  
such a V enable? 



Lemma	2:	
The	Spring	with	An&-Damping	

Suppose	a	system	is	described	by	

				where			

			Then	the	system	has	an	unstable	fixed-point	
at	(0,0),	and	no	limit	cycle	(i.e.,	stable	
periodic	orbit).	

•  Proof	in	the	paper.	

!!x − f ( !x)+ g(x) = 0

f ∈M0
+ and [g(x)]0 = [x]0
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Pendulum	Models:	
Equa&ons	of	Mo&on	

•  Near	the	top.	 •  Near	the	bopom.	

€ 

θ

φ

!!φ + f ( !φ)− k sinφ = 0 !!θ + f ( !θ )+ k sinθ = 0
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Balance	the	Pendulum	

•  Design	the	control	input	u	to	make	the	pendulum	
into	a	damped	spring.	

•  Define	the	Balance	controller:	

				such	that	

•  Lemma	1	shows	that	it	converges	to	(0,0).	

!!φ + f ( !φ)− k sinφ +u(φ, !φ) = 0

u(φ, !φ) = g(φ)

[g(φ)− k sinφ]0 = [φ]0

!!φ + f ( !φ)+ g(φ)− k sinφ = 0
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The	Balance	Region:	Underactua,on	

•  If	the	control	ac&on	has	upper	bound	umax	then	
gravity	defines	the	limi&ng	angle:	

•  Energy	defines	maximum	velocity	at	top:	

•  Define	the	Balance	region:	

umax = k sinφmax

1
2
!φmax
2 = g(φ)− k sinφ dφ

0

φmax∫

φ 2

φmax
2 +

!φ 2

!φmax
2 ≤1

1/2/19	 35	



Pump	the	Hanging	Pendulum	

•  Define	the	control	ac&on	u	to	make	the	pendulum	
into	a	spring	with	nega&ve	damping.	

•  Define	the	Pump	controller	

				such	that	

				gives	
	
•  Lemma	2	proves	it	pumps	without	a	limit	cycle.	

!!θ − (h− f )( !θ )+ k sinθ = 0

u(θ, !θ ) = −h( !θ )

h− f ∈M0
+
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Slow	the	Spinning	Pendulum	

If	the	pendulum	is	spinning	rapidly,	define	the	
Spin	control	law	to	augment	natural	fric&on:	

					
	 	such	that	

u(θ, !θ ) = f2 ( !θ )

f2 ∈M0
+
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The	Pump-Spin	Boundary	

•  Prevent	a	limit-cycle	behavior	that	cycles	between	
Pump	and	Spin	regions,	overshoo&ng	Balance.	

•  Define	the	Pump-Spin	boundary	to	be	the	separatrix	
of	the	undamped	pendulum.	

•  Pump	and	Spin	create	what	is	known	as	a	sliding	
mode	controller	
–  Special	type	of	switching	based	control	strategy	

•  The	separatrix	leads	straight	to	the	heart	of	Balance.	
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The	Separatrix	as	Boundary	

•  A	separatrix	is	a	trajectory	that	begins	and	ends	at	
the	unstable	saddle	point	of	the	undamped,	
uncontrolled	pendulum:	

•  Points	on	the	separatrix	have	the	same	energy	as	
the	balanced	pendulum:	

•  Simplify	to	define	the	separatrix:	

!!θ + k sinθ = 0

KE +PE = 1
2
!θ 2 + k sinθ dθ

0

θ

∫ = 2k

s(θ, !θ ) = 1
2
!θ 2 − k(1+ cosθ ) = 0
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The	Sliding	Mode	Controller	

•  Differen&ate	to	see	how	s	changes	with	&me:	

•  In	the	Pump	region:	

•  In	the	Spin	region:	

•  Therefore,	both	regions	approach		

!s = − !θ f ( !θ )− !θ u(θ, !θ )

s < 0  and !s = !θ (h− f )( !θ ) ≥ 0

s > 0  and !s = − !θ ( f + f2 )( !θ ) ≤ 0

s = 0
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The	Global	Pendulum	Controller	

Pump Spin 

Balance 

sliding 
mode 

!s ≤ 0!s ≥ 0
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The	Global	Controller	

The	control	law:	
				if	Balance	

				else	if	Pump	

				else	Spin	

Constraints:	

u(φ, !φ) = g(φ) [g(φ)− k sinφ]0 = [φ]0

u(θ, !θ ) = −h( !θ ) h− f ∈M0
+

u(θ, !θ ) = f2 ( !θ ) f2 ∈M0
+
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Pendulum	Controller	Example	

System:
!!θ + c !θ + k sinθ +u(θ, !θ ) = 0 c = 0.01,k =10,umax = 4

Pump:
u = −(c+ c3) !θ

Balance:
u = (c11 + k)(θ −π )+ c12 !θ

c3 = 0.5

Spin:
u = c2 !θ

c11 = 0.4,c12 = 0.3

c2 = 0.5

φmax = 0.4, !φmax = 0.3
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Pendulum	Example,	cont.	

The	switching	strategy:	
				If		 	then	Balance	
				else	if	 							then	Pump	
				else	Spin	

α ≤1

s < 0

α =
φ 2

φmax
2 +

!φ 2

!φmax
2 s = 1

2
!θ 2 − k(1+ cosθ )
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The	Controlled	Pendulum	

1/2/19	 45	



The	Controlled	Pendulum	
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Now	quite	the	full	system,	yet:	
The	Cart-Pole	System	

Cart Pole System:
!!φ + f ( !φ)− k sinφ − !!xcosφ = 0
!!θ + f ( !θ )+ k sinθ + !!xcosθ = 0

!!x : Control Action
φ =θ +π
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Example:	
Heterogeneous	Cart-Pole	Controller	

!!x = sat −
f1( !x)
cosθ

−
g1(x)
cosθ

+
u(θ, !θ )
cosθ

⎧
⎨
⎩

⎫
⎬
⎭

0cossin)( =+++ θθθθ xkf !!!!!
The Cart-Pole System

Compare to Pivot-Torque Pendulum System:

Heterogeneous Cart-Pole Controller:

0),(sin)( =+++ θθθθθ !!!! ukf
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Heterogeneous	Cart-Pole	Controller	

•  Pivot	torque	controller	stabilizes	the	pole	
(heterogeneous,	3	regions)	

•  Nega&ve	feedback	stabilizes	the	cart,	Lemma	1	
•  Combina&on	of	the	two	should	preserve	sliding	mode	

for	the	heterogeneous	pole	controller	
•  We	can	derive	the	desired	constraints:	

[(h− f )( !θ )+ f1( !x)+ g1(x)]0 = [ !θ ]0
[( f + fd )( !θ )− f1( !x)− g1(x)]0 = [ !θ ]0
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The	Controlled	Cart-Pole	System	
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The	Controlled	Cart-Pole	System	
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Take	Home	Messages	from	Pendulum	

•  Control	can	be	thought	of	as	“shaping	of	dynamics”	
•  Specifica&ons	for	realis&c	systems	can	be	non-trivial	

–  Can	be	stated	in	the	language	of	dynamical	systems	
–  Represented	in	terms	of	linear	algebra	and	constraints	

•  Hybrid	systems	(switching	between	different	dynamical	
system	models/regimes)	address	global	issues	beper	

•  Reasoning	qualita&vely	with	dynamical	systems	models	
provides	a	useful	approach	to	specifying	non-linear	controller:	
–  iden&fies	weak	sufficient	condi&ons	
–  any	instance	of	QDE	will	achieve	the	behavior.	So,	separa&on	of	
concerns	between	specifica&on	and	op&miza&on.	
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Case	Study:	Juggling	
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Objec&ves	for	Juggling	Case	Study	

•  Show	an	example	that	is	clearly	beyond	the	realm	of	
tradi&onal	state	feedback	control	
–  S&ll	admits	a	solu&on	that	is	based	only	on	rela&vely	
simple	local	control	laws	

•  Solu&on	strategy	that	has	genuinely	been	implemented	very	
successfully	on	real	robots	

•  Give	a	concrete	another	concrete	example	of	a	hybrid	system,	
where	a	planner	decides	on	controller	choice	
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1-dim	Mirror	Law	

	Start	with	a	line	juggler	 	An	open	loop	way	would	be	
to	enforce	post-contact	vel.	

	
	The	free	dynamics	of	the	
ball	is	simply	(       are	
robot/ball	vel.,	γ	is	accel.):	

	
	
	

Remark:	These	two	sets	of	equa&ons	
apply	in	turn,	between	hits.	This	loop	
works	but	can	be	sensi&ve	to	noise.	

Task:	
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ḃ0 = ↵ḃ+ (1 + ↵)ṙ

b(t) = b0 + ḃ0t� 1

2
�t2

ḃ(t) = ḃ0 � �t

ṙ, ḃ

Q: What would happen if we removed the cylinder? 



A	Slightly	More	Complex	Juggling	Task:	
Dynamically	Dexterous	Manipula&on	

•  Robot	with	flat	paddle	
–  required	to	strike	repeatedly	at	thrown	ball	
–  un&l	ball	is	brought	to	rest	on	the	paddle	at	specified	
loca&on	

•  Reachable	workspace	is	disconnected	
–  Ball	and	paddle	can’t	remain	in	contact	and	approach	goal	
loca&on	

–  Forces	machine	to	let	go	for	a	&me	to	bring	the	ball	to	
desired	state	
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The	Buhgler	Arm	
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[Burridge, R. R., Rizzi, A. A., & Koditschek, D. E. (1999). 
 Sequential composition of dynamically dexterous robot behaviors.  
International Journal of Robotics Research, 18(6), 534-555.] 



Technical	Ques&ons	

	Poten,al	func,ons	were	
designed	as	a	simple	way	to	
handle	two	concerns:	(a)	path	
planning	w.r.t.	obstacles,	(b)	
actuator-level	control,	locally	

	Can	we	go	further	with	this	
style	of	reasoning?	

	
	(How)	can	we	encode	a	
complex	dynamically	
dexterous	behaviour	involving:	

•  Large	unforeseen	disturbances	
•  	requiring	some	understanding	

of	global	dynamic	behaviour	
•  With	natural	limits	on	sensing	

and	actua&on	
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Feedback	Strategies	(Controllers)		
as	Funnels	

•  For	our	purposes,	
feedback	strategies	result	
in	invariant	regions	

•  These	invariant	regions	
are	characterized	by	
monotonically	decreasing	
“energy	func&ons”	(e.g.,	
as	in	Lyapunov	stability)	 State	space	

“Tim
e”	

1/2/19	 59	

Set of x(0) 

Set of x(T) 



Sequen&al	Controller	Composi&on	

•  Controller	composi&ons	guarantee	that	a	ball	introduced	in	
the	“safe	workspace”	remains	there	and	is	ul&mately	brought	
to	the	goal	

•  Par&&on	of	state	space	induced	by	a	palepe	of	pre-exis&ng	
feedback	controllers	

•  Each	cell	associated	with	a	unique	controller,	chosen	such	
that	entry	into	a	cell	guarantees	passage	to	successively	
“lower”	cells	un&l	the	“lowest”	goal	cell	is	reached	
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Behaviours	=	Effect	of	“Local	Controllers”	

•  Robo&c	implementa&ons	of	user	specified	tasks	
– Might	need	different	local	controller	based	on	specs	

•  Amenable	to	representa&on	as	state	regula&on	(via	feedback)	
to	specified	goal	set,	in	the	presence	of	obstacles	

•  Closed	loop	dynamics	of	a	plant	opera>ng	under	feedback	

•  No	single	feedback	algorithm	will	successfully	stabilize	the	
large	range	of	ini&al	condi&ons	
– We	already	saw	this	with	the	pendulum	case	study	
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Feedback	Strategies	with	Obstacles	

•  Most	meaningful	tasks	
include	obstacles	of	one	
kind	or	another	

•  Obstacles	tend	to	‘warp’	
the	shape	of	the	funnels	

•  In	severe	cases,	obstacles	
can	result	in	“disjoint	
func&ons”	in	state/
configura&on	space	
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Sequen&al	Composi&on	
-	Visual	Depic&on	of	the	Core	Idea	
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Note: Will need a planner (back-chaining) to pick sequence 



Physical	Sesng	for	Paddle	Experiment	

	Hardware	
–  3	DOF	direct	drive	machine	
–  2	cameras	detect	ball	at	60	Hz	
–  Obstacle	is	a	beam	just	above	the	paddle’s	height	
–  State	space	(T	refers	to	tangent	space,	as	in	phase	plane	
analysis)	
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Tb = (b, ḃ) 2 TB

q = (�, ✓, )

Tq = (q, q̇) 2 TQ



Physical	Sesng	

	SoEware	
–  Ball	states,	Tb,	interpreted	at	60	Hz	by	vision	
–  Vision	data	used	by	observer	to	es&mate	true	Tb,	
interpolated	at	330	Hz	

–  A	memory-less	transforma&on	(mirror	law)	produces	
reference	robot	posi&ons	

–  The	reference	robot	posi&ons	fed	to	an	inverse	
dynamics,	joint-space	controller	

Discuss: Why do you need the “mirror law”? 
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The	control	system	
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[Figure from the Burridge et al. paper] 



The	Closed	Loop	System	

•  Repe&&ve	con&nuous	
trajectories	represented	
as	“return	map”	
–  A	discrete	system	from	hit-

to-hit,	with	a	dynamics	
equa&on	at	that	level	

•  Discrete	event	sampled	
mapping	of	the	periodic	
orbit	
–  This	is	also	known	as	a	

“Poincare	sec,on”	in	
dynamical	systems	
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Discuss on board 
(related to orbital stability) 



Mirror	Law	Control	

	Define	a	mapping	from	the	phase	space	of	ball	to	
configura&on	space	of	robot	arm	(as	in	slide	on	1-dim	case)	
	Mirror	law	is	based	on	gesng	the	effector	to	
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FYI:	Appendix	on	Mirror	Law	

•  Define	ver&cal	energy	and	radial	distance	as:	

•  The	“mirror	law”	has	the	following	form	for	different	
components:	

Note:	Sophis&ca&on	
of	these	expressions	is		
minimal…	(PD,	really)	
The	controller	itself	is	of		
low	complexity!	
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⌘ = �bz +
1

2
ḃ2z

⇢b = sin(✓b)sb



Domain	of	the	“mirror	law”	mj	

•  No	closed	form	expression	of	return	map	(hard	to	
write	down	explicitly)	

•  Therefore,	difficult	to	ascertain	the	shape	of	the	
boundaries	of	domain	of	aprac&on	

•  Use	experimental	data	to	formulate	an	
approxima&on	of	safe	domain	

•  To	speed	up	deployment,	create	numerical	
simula&on	of	the	juggler	and	use	it	to	determine	
domain	of	aprac&on	
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Domain	of	mj	:	Experiments	
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Complete	Control	Strategy	

•  A	set	of	controllers		
	is	designed	to	handle	
various	scenarios	

•  Scenarios	include:	
–  Juggle	(mirror	law)	
–  Palming	
–  Catching		
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Composi&on	of	Domains	

1/2/19	 73	



A	Typical	Run	
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What	do	the	Results	Look	Like?	
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Results:	Effect	of	Obstacle	

1/2/19	 76	



Funnels	in	the	“Real”	World	
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[Grizzle et al. Automatica 50.8 (2014)] 
Also see: Pratt’s VMC (link on course web site) 


