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Objectives of this Lecture

Give a selective recap of key ideas from control theory, as a
very first approach to the “synthesis of robot motion”

— If you have studied control theory before, you should recognize
the concepts although the narrative may still be new

— If you have not studied control before, this might give you
useful background that will help contextualize later concepts

After the first section surveying a few key concepts, we will
spend the second half of the lecture on case studies —
showing a few worked examples of robot control problems to
illustrate design principles



Controller Synthesis as a Design Problem

* Consider a practical
problem: cruise control
(keep your distance with

respect to carin front) ADAPTIVE CRUISE CONTROL

WITH QUEUE ASSIST

 How would you specify
what the task entails?

— Discuss \f) =
] /‘// ” 340
* How would you synthesizea § //
control strategy that

satisfies these [Source: Volvo V60]
specifications?
— Role of model based design?
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An Example of a Design Specification

Consider how to say that the following car f should be behind
another leading car [

With v representing velocity and b, B representing braking
power (B > b),

2 2
U v
(zp<z)A(z#1) — <$f<33l/\17f+2—{) <:cl+$/\-vf20/\z.rlzo>

Such a safe distance formula is an invariant requirement
So is the fact that physical laws will hold true

Two questions:
1. Whatis the language for such specs in robotics, in general?
2. What techniques exist to check if spec holds?
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Linear Time Invariant (LTI) Systems

* Consider the simple spring-mass-damper system:
* The force applied by the spring is Fs = —k=(t)
* Correspondingly, for the damper: F£a=72(1)
* The combined equation of motion of the mass becomes:
z3(t) = —74(t) — k2(t)
* One could also express this in state space form:
z(t) = [z1(t), 22(t)] = [2(2), 2(t)]

0= (30) = (et i)

) 0 1
Linear ODE <— (t) = ( _ ) x(t) = Ax(t)

m m
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Linear ODE: Solutions and Properties

* Consider the simplest possible linear ODE:

r=kr.x €R

* Given an initial condition, ¢(0) = x,,, what is x(¢)?

e Solution is in terms of exponentials:

o(t) = erxg

* All linear dynamical systems will admit solutions in terms of
such exponentials
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Solution of a Linear ODE

The multivariate case:

:L(t) — eA(t_tO):l:O

Al AZ‘(t—to)z
Alt—to) |
- Z 7!

1=0

A2(t — tg)?
(t —to) N

— In.x'n, + A(t — tO) + o

This is state transition matrix ¢(t) :

In linear algebra, there are numerous ways to compute this...
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Example

Determine the matrix exponential, and hence the state transition matrix, and
the homogeneous response to the initial conditions z;(0) = 2, x5(0) = 3 of the
system with state equations:

Si?l = —2271 +u
Unforced: To = T — To.
Which symbol
is affected?

The system matrix is

[

1/2/19



1/2/19

Example, contd.

eAt

o T

Lol -2 0], [ 40|
0 1 1 -1 -3 1 ]2

!—8 0]1&3
+ — +

AQt‘z A3t3 Aktk
(I + At + + + .. >

7 —1 1| 3l
[ A2 8t3
1 — 2t + 2'—3' 0
0 3t2 Tt - 2 3
] + —?4—? — +§—§+...




1/2/19

Example, contd.
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Basic Notion: Stability

* Simple question:
Given the system (t) = Axz(t)
where in phase space, (z.) , will it come to rest ?

Any guesses?
Think about solution in previous slide...

e This point is called the equilibrium point
— If initialized there, dynamics will not take it away
— If perturbed, system will eventually return and stay there
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Stability

An equilibrium position z = 0 is stable (in Lyapunov’s sense) if given € > 0,
46 > 0 (not dependent on t). s.t. Vzg, |zo| < d the solution satisfies |o(t)| < e,
vt >0

Asymptotic stability: Lyapunov stabile and limy— 4~ ¢(t) = 0

x(0)

/’
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Some worked exa mples

* General solution of lnear autonomous plane systems

* Classification of orbits of a linear system

1/2/19
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Stability for an LTI System, i(t) = Az(t)

n
Unforced (homogeneous) response  zi(t) =D mi e
j=1

[ x1(t) | "My My ... My, | [ eMtT
I2(t) Mo1r Moo ... Moy e)"ﬁ
. | | | At
| z,(T) | Mp1 Mp2 ... Mpy | | €70
—_ eAlt —
e)\-zt
Xh (t) =M
=
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Stability for an LTI System

dx; -

: : At
If you differentiate the homogeneous response, i > \jmyje
. =
T Ay AoMia ... AyMin et
To AMo1 AoMMog ... AoMop, er2t
T AMMp1 Aom A, ernt
R | N1/l 201Mtn2 .. n'ltnn | L © _
The system being considered is i(t) = Az(t) , SO:
[ A\ymyy Aomis ... Aymay, | [ eMt] "My Mo ... My, | [ eMt]
A1 AoMaog ... AoMap ezt Moy Moy ... Mo et
= A
L )‘1772'711 >“27nn‘2 «o /\n. Mpn ] L e/\nt i | Mp1 Myp2 .. Mpp | [ e/\nt i
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LTI Stability, in algebraic equations

* The above equation leads to an eigenvalue problem:
A;m; = Amy; 1 =1,2,....n.

ANI—Alm; =0

 For this to have nontrivial solutions:

Characteristic eqn.

Nt a, AN a, AP+ +aNt+ag=0

A=A)A=Xa)...(A=\,) =0.
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Stability: LTI System, (t) = Ax(t)

Theorem. Ler \;, i € {1,2,...,n} denote the eigenvalues of A. Let re(\;) denote
the real part of A\i. Then the following holds:

1. xz¢ = 0is stable if and only if re(\;) < 0, Vi
2. xe = 0is asymptotically stable if and only if re(\;) < 0, Vi

3. xe = 0is unstable if and only if re(\;) > 0, for some i

For the spring-mass-damper example, the eigenvalues are:

—~ =+ \/72 — 4km

2m > With positive damping, we
get asymptotic stability
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Worked examples on the board

© Sumple example of Lyapunov’s method for establishing
stability

1/2/19
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Other Related Notions:
Orbital Stability

» Stability doesn’t only refer to being at rest at a point
— could be defined in terms of staying in a subset, e.g., path

Definition. An orbit v(x) is orbitally stable if for any € > 0, there is a neighbour-
hood V' of x so that for all x in'V, ya and v are e-close.
Loosely speaking, |y(x) —v(2)| < € at all times.

/W\[l(’()
o y

X //\/\/—71\
X v(X)

1/2/19 19



Stability in the Real World

Some Aircrafts are by Design
Statically Unstable! Why?

Jump to
2:07 for

exciting
bit! ,

[https://www.youtube.com/watch?v=2CUy0i634wc]



Nonlinear Systems

e What do solutions to nonlinear ODEs look like?

2

 Consider a simple system: &+ w“sinz =0

* One could apply a transformation to write,

—(=x wesinx =0
dr "2 )+
* Integrating this yields,
|
5;1?‘ —w?cosxz =C

Relationship between
position and velocity

. ‘ 1
r = \/§<C + wz COS 217) = (phase space)
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Case Study:
Global Control of the Inverted Pendulum

B.J. Kuipers, S. Ramamoorthy, Qualitative modeling and heterogeneous control of global system behavior. In C.
J. Tomlin & M. R. Greenstreet (Eds.), Hybrid Systems: Computation and Control, LNCS 2289: 294-307, 2002.

1/2/19
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Objectives for Pendulum Case Study

 Show one concrete example — fully worked out — of a non-
trivial nonlinear control problem

— Just complex enough to be non-trivial
— Amenable to analytical solution to illustrate ideas

 Demonstrate the process of addressing design requirements,
and proving them to be satisfied by a controller

* In the process, exposing you to the idea of structure in the
dynamics

1/2/19

23



Pendulum Phase Space

Physical Space

Phase Space

1.25- 28~
25+
l-
20
75
0.75 15-
0.5- 10-
Z
0.25- g 5-
™
S 0= o -E 0-
-0.25- g -5-
<L
-0.5- -10-
-0.75- 157
-20-
1- &b
.25 -
-1.25- | 1 1 | | | -28-) ' ' 1 1 1 | 1
-1.25 -1 -0.5 0 0.5 1 1.25 8 -6 4 -2 0 2 4 6
X Angle

* Phase space is organized into families (open sets) of trajectories
* Trajectories may be parameterized by a single variable: energy
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Design Strategy: Use Natural Dynamics

 Passively “ride” orbits <> Energy Efficiency
 Parameterized families of trajectories < Flexibility
* Topology, structural stability <~ Robustness

Increasing4
Energy

1.5
1T -
sl Q

9’ - b Libration Orbits

Separatrix
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Using Natural Dynamics for Motion Planning

Generate trajectories, on-line,
—  From the whole phase space 0 .

— Toinverted position

Solution:

— Change E to move towards separatrix

— Two trajectory classes:

6.00]
4.00

pump (libration)/ spin (rotation)
— Ride the separatrix, once there o

Let us now walk through this construction in some detail!
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Remarks: Use of Qualitative Models

* A qualitative differential equation (QDE) expresses partial
knowledge of a dynamical system.

— One QDE describes a set of ODEs,

— non-linear as well as linear systems.

A QDE can express partial knowledge of a plant or a
controller design.

* QSIM can predict all possible behaviors of all ODEs
described by the given QDE.
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Qualitative Design of a
Heterogeneous Controller

Design local models with the desired behavior.

|dentify qualitative constraints to guarantee the right
transitions.

Provide weak conditions sufficient to guarantee desired
behavior.

— Remaining degrees of freedom are available for
optimization by any other criterion.

Demonstrate with a global pendulum controller.
— Local models: Pump, Balance, Spin.

28



Some Remarks about QSIM notation

* Each variable is a reasonable function.
— Continuously differentiable, etc.
— Range described by landmark values and intervals.

e Constraints link variables.
— ADD, MULT, MINUS, D/DT
— Monotonic functions: y=f(x) for fin M,*
— [x]o=sign(x)
There are QSIM software tools to for:
* Computing semi-quantitative bounds
* Predicting all possible behaviors over time

 Temporal logic model-checking



The Monotonic Damped Spring

* The spring is defined by Hooke’ s Law:
F=ma=mx=-kx
* Include damping friction
mx =—k,.x —k,x
 Rearrange and redefine constants
X+bx+cx=0

* Generalize to a Qualitative Differential Equation
(QDE) with monotonic functions fand g

X+ f(x)+g(x)=0

1/2/19
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Lemma 1:
The Monotonic Damped Spring

Let a system be described by
X+ f(x)+g(x)=0

where
fEM;and[g(x)], =[x],

Then it is asymptotically stable at (0,0), with
a Lyapunov function:

V(.X,).C) = %x2 + fg(x) dx What does knowing
0

such a V enable?

* Proof in the paper (link on course web page)
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Lemma 2:
The Spring with Anti-Damping

Suppose a system is described by
X—f(x)+g(x)=0

where
f €M, and [g(x)], =[x],

Then the system has an unstable fixed-point
at (0,0), and no limit cycle (i.e., stable
periodic orbit).

* Proofin the paper.
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Pendulum Models:
Equations of Motion

* Near the top.  Near the bottom.

0

¢+ f($)—ksing =0 G+ £(6)+ksin® =0

1/2/19
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Balance the Pendulum

* Design the control input u to make the pendulum
into a damped spring.

¢+ f(9)—ksing +u(p,¢)=0

e Define the Balance controller:

u(¢,9) = g(9)
such that
[g(¢) —ksing], =[],

 Lemma 1 shows that it converges to (0,0).

O+ f()+g(9)—ksing=0



The Balance Region: Underactuation

* If the control action has upper bound u,_, then
gravity defines the limiting angle:

u =ksing_

ax

* Energy defines maximum velocity at top:
¥ ¢§nax .
Lr = [ 8(¢)—ksingd

* Define the Balance region:

¢2+.¢2 <1

2 2
¢max ¢max

1/2/19
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Pump the Hanging Pendulum

e Define the control action u to make the pendulum
into a spring with negative damping.

* Define the Pump controller
u(6,0) = -h(0)
such that
h-fEM:
gives .
O-(h-f)O0)+ksmnO=0

* Lemma 2 proves it pumps without a limit cycle.



Slow the Spinning Pendulum

If the pendulum is spinning rapidly, define the
Spin control law to augment natural friction:

u(0,0) = £,(0)

suchthat /, € MJ

1/2/19
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The Pump-Spin Boundary

Prevent a limit-cycle behavior that cycles between
Pump and Spin regions, overshooting Balance.

Define the Pump-Spin boundary to be the separatrix
of the undamped pendulum.

Pump and Spin create what is known as a sliding
mode controller
— Special type of switching based control strategy

The separatrix leads straight to the heart of Balance.



The Separatrix as Boundary

* A separatrix is a trajectory that begins and ends at
the unstable saddle point of the undamped,
uncontrolled pendulum:

0 +ksin® =0

* Points on the separatrix have the same energy as
the balanced pendulum:

KE + PE =16’ +f6ksin9d¢9 =2k
0

e Simplify to define the separatrix:

s(0,0) = %92 —k(l1+cosB)=0



The Sliding Mode Controller

* Differentiate to see hoyv S ghanges wijch time:
s=-01(0)-0u(0,0)
In the Pump region:
s<0 and $=6(h-1)O)=0
In the Spin region:

s>0 and §$=-0(f+£)0)=<0

* Therefore, both regions approach §=0
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The Global Pendulum Controller

sliding
mode
Pump Spin

o

Balance
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The Global Controller

The control law: Constraints:
if Balance
u(¢,P) = g(¢) [8(¢) - ksing], =[¢],
else if Pump
u(6,0) = —h(0) h-fEM;
else Spin

u(0,0) = £,(0) L EM;
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Pendulum Controller Example

System:

6+ cO + ksin +u(6,0) =0 c=00Lk=10,u,, =4
Balance: ¢, =04,c,=03
u=(c, +k)60-m)+c,0 ¢ =049 =03
Spin:

u = 626. CZ = 05

Pump:

u=—(c+c3)9 c;=0.5
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Pendulum Example, cont.

The switching strategy:
If a=<1 then Balance
else if s<0then Pump
else Spin
¢ ¢ l
Q= ¢§m +¢5iax s=502—k(l+cost9)

1/2/19
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The Controlled Pendulum
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The Controlled Pendulum
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Now quite the full system, yet:
The Cart-Pole System

m,l

M X : Control Action

o @ p=0+m

Cart Pole System:

¢+ f(P)—ksing —xXcosgp =0
O+ f(0)+ksinO + ¥cosO =0

47



Example:
Heterogeneous Cart-Pole Controller

The Cart-Pole System
0+ f(0)+ksin@+icosf =0

Compare to Pivot-Torque Pendulum System:

0+ f(0)+ksin@+u(d,0)=0

Heterogeneous Cart-Pole Controller:

) {_ L) &) u(e,m}

X = sat
cos® cos@ cosO

1/2/19
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Heterogeneous Cart-Pole Controller

Pivot torque controller stabilizes the pole
(heterogeneous, 3 regions)

Negative feedback stabilizes the cart, Lemma 1

Combination of the two should preserve sliding mode
for the heterogeneous pole controller

We can derive the desired constraints:

[(h= £)O)+ f,(%) + g ()], =[6],
[(f + £,)(0) = £.(x) - g, ()], =[6],

49
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The Controlled Cart-Pole System
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The Controlled Cart-Pole System
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Take Home Messages from Pendulum

Control can be thought of as “shaping of dynamics”

Specifications for realistic systems can be non-trivial
— Can be stated in the language of dynamical systems
— Represented in terms of linear algebra and constraints

Hybrid systems (switching between different dynamical

system models/regimes) address global issues better
Reasoning qualitatively with dynamical systems models
provides a useful approach to specifying non-linear controller:
— identifies weak sufficient conditions

— any instance of QDE will achieve the behavior. So, separation of
concerns between specification and optimization.



Case Study: Juggling
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Objectives for Juggling Case Study

* Show an example that is clearly beyond the realm of
traditional state feedback control

— Still admits a solution that is based only on relatively
simple local control laws

* Solution strategy that has genuinely been implemented very
successfully on real robots

* Give a concrete another concrete example of a hybrid system,
where a planner decides on controller choice
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1-dim

Start with a line juggler

NS
o —

Guiding
Wires

Juggling
Plane

H‘r Puck

Billard
Cushion

Direct Drive
Molor

r, b
i sl
. }
Task: _. S @--
! -7

Mirror Law

An open loop way would be
to enforce post-contact vel.

b = ab+ (14 a)r
The free dynamics of the
ball is simply (7,6 are
robot/ball vel., yis accel.):
: 1
b(t) =b +b't — 57752
b(t) = b — 4t
Remark: These two sets of equations

apply in turn, between hits. This loop
works but can be sensitive to noise.

Q: What would happen if we removed the cylinder?

1/2/19
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A Slightly More Complex Juggling Task:
Dynamically Dexterous Manipulation

 Robot with flat paddle
— required to strike repeatedly at thrown ball

— until ball is brought to rest on the paddle at specified
location

* Reachable workspace is disconnected

— Ball and paddle can’t remain in contact and approach goal
location

— Forces machine to let go for a time to bring the ball to
desired state
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The Buhgler Arm

[Burridge, R. R., Rizzi, A. A., & Koditschek, D. E. (1999).
Sequential composition of dynamically dexterous robot behaviors.
International Journal of Robotics Research, 18(6), 534-555.]
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Technical Questions

Potential functions were
designed as a simple way to
handle two concerns: (a) path
planning w.r.t. obstacles, (b)
actuator-level control, locally

saddle

1/2/19

Can we go further with this
style of reasoning?

(How) can we encode a
complex dynamically
dexterous behaviour involving:

Large unforeseen disturbances

requiring some understanding
of global dynamic behaviour

With natural limits on sensing
and actuation
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Feedback Strategies (Controllers)

as Funnels

* For our purposes,
feedback strategies result
In invariant regions

 These invariant regions
are characterized by
monotonically decreasing
“energy functions” (e.g.,
as in Lyapunov stability)

1/2/19

;;,_;_f‘-“Set of x(O)»i :_‘__

Set of x(T)

State space

Ilal'lJ !-I-II

59



Sequential Controller Composition

* Controller compositions guarantee that a ball introduced in
the “safe workspace” remains there and is ultimately brought
to the goal

* Partition of state space induced by a palette of pre-existing
feedback controllers

e Each cell associated with a unique controller, chosen such
that entry into a cell guarantees passage to successively
11 7 . 11 b4 .
lower " cells until the "lowest ™ goal cell is reached
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Behaviours = Effect of “Local Controllers”

Robotic implementations of user specified tasks
— Might need different local controller based on specs

Amenable to representation as state regulation (via feedback)
to specified goal set, in the presence of obstacles

Closed loop dynamics of a plant operating under feedback

No single feedback algorithm will successfully stabilize the
large range of initial conditions

— We already saw this with the pendulum case study



Feedback Strategies with Obstacles

 Most meaningful tasks
include obstacles of one
kind or another

* Obstacles tend to ‘warp’ v | ~
the shape of the funnels _

* |n severe cases, obstacles
. 11 e . .
can result in “disjoint
functions’ in state/
configuration space

1/2/19
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Sequential Composition
- Visual Depiction of the Core ldea

.
< - C
P S o
¥ 7 —
~ D ~
—’ "
Vi o
v 4 - -~
T S -
7 e
e — 4 J S
o~ = ~— V7 -
< \ P -~
- e |4
— — .
-~ L Jus
— 2
) e N
{ - ~
] % ————
— p—— T T
— _1-_'1 —— ————— "
| T -
< -
_— I —

Note: Will need a planner (back-chaining) to pick sequence
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Physical Setting for Paddle Experiment

Hardware
— 3 DOF direct drive machine
— 2 cameras detect ball at 60 Hz
— Obstacle is a beam just above the paddle’s height
— State space (T refers to tangent space, as in phase plane
analysis)
Tb = (b,b) € TB
qd = (¢7 97 ¢)
Tg=1(q,¢) € TQ
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Physical Setting

Software
— Ball states, Tb, interpreted at 60 Hz by vision

— Vision data used by observer to estimate true Tb,
interpolated at 330 Hz

— A memory-less transformation (mirror law) produces
reference robot positions

— The reference robot positions fed to an inverse
dynamics, joint-space controller

Discuss: Why do you need the “mirror law”?

1/2/19
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The control system

__——fk
~ TN
b, 6 ﬁﬁﬁﬁﬁﬁﬁ ' 6, E) ‘//\, f, i9 }: T Q, d
—» V > O » m — C —» A
N j_ L

Fig. 6. Flow chart showing the various functional blocks of
the system: vision, V; observer, O; mirror law, m; control,

C; and actuation, A. The parameters of interest to this paper
all reside in m.

[Figure from the Burridge et al. paper]
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The Closed Loop System

* Repetitive continuous
trajectories represented
as “return map’

— A discrete system from hit-
to-hit, with a dynamics
equation at that level

e Discrete event sampled
mapping of the periodic
orbit

— This is also known as a
“Poincare section” in
dynamical systems

1/2/19

[b,b 9,9

k E |«

Fig. 7. The closed-loop dynamics, Fg,induced by @ and the
environment, E.

Discuss on board
(related to orbital stability)
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Mirror Law Control

Define a mapping from the phase space of ball to
configuration space of robot arm (as in slide on 1-dim case)

Mirror law is based on getting the effector to ¢(b) = (¢», 05, 0)

1. ¢, = ¢ causes the paddle to track under the ball at all

times.

6, mirrors the vertical motion of the ball (as it evolves in

Op): as the ball goes up. the paddle goes down. and vice-

versa. meeting at zero height. Differences between the

desired and actual total ball energy lead to changes in
paddle velocity at impact.

. Radial motion or offset of the ball causes changes in 6,.
resulting in a slight adjustment of the normal at impact.
tending to push the ball back toward the set point.

4. Angular motion or offset of the ball causes changes in

¥, again adjusting the normal so as to correct for lateral
position errors.

1

)
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FYI: Appendix on Mirror Law

1.
* Define vertical energy and radial distance as: 7 = Vb, + 553

pp = sin(6y)sp

* The “mirror law” has the following form for different
components:

- @) - -
7S
” . . . .
—= = (ko + K1(n ~ 7)) (05 + 1) + Note: Sophlshcapon .
o 2/ of these expressions is
m(w) = G — minimal... (PD, really)
koo(ps — Pb) + Ko1pb The controller itself is of
) (i) _ low complexity!
510(‘% - Pp) + K11 ¢g
L (iv) 47
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Domain of the “mirror law” m;

No closed form expression of return map (hard to
write down explicitly)

Therefore, difficult to ascertain the shape of the
boundaries of domain of attraction

Use experimental data to formulate an
approximation of safe domain

To speed up deployment, create numerical
simulation of the juggler and use it to determine
domain of attraction



Domain of m; : Experiments

as

Q4+

04+

Q8 F

Fig. 8. Empirical data used to estimate the juggling domain, D(d ). Each dot (+ sign) represents in apex coordinates a ball
trajectory that was successfully (unsuccessfully) handled under the action of ;. Because of the properties of the vertical
subsystem, most of these points are at nearly the same height. so only the horizontal coordnates are plotted.
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Complete Control Strategy

e Aset of controllers u = (&, ..., dy)

is designed to handle
various scenarios

* Scenarios include:
— Juggle (mirror law)
— Palming
— Catching

1/2/19

o

)

. Let the queue contain ®;. Let C(dy) = D(P;). N =

1. U'(1) = {®1}. and D1 (U) = D(Dy).

Remove the first element of the queue. and append the
list of all controllers which prepare it to the back of the
list.

. While the first element of the queue has a previously

defined cell. €. remove the first element without further
processing.
For & ;. the first unprocessed element on the queue.
let C(P;) = D)) — Dy(U). Let W' (N +1) =
U U{P;}. and Dy+1(U') = Dy(U) U D(P;). In-
crement N.

-

. Repeat steps 2. 3. and 4 until the queue is empty.
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Composition of Domains

Table 1. The Full Deployment, with Controller Types, Goal

Points, and Domain Types?
Goal: Domain ur
Ellipses Type (,;) Tvpe
| bp 0.3 Dp 0.8
2 de 0.3 De
3 &y 0.3 Dy
4 dy 0.15 Dy 04
S5-8 by 0.0 D
9 &, —0.64 Dy
[0 Iy —0.81 Dy 02r
[ Ny —0.97 Dy
12 by —1.12 Dy
13 Dy -1.26 Do o
14 b, ~14 Do
a. All goal points have the same radial component, pg = 0.6, so we list Q2
here only the angular component, ¢. Ellipse numbers correspond to those in

Figure 16.
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A Typical Run
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What do the Results Look Like?

Fig. 11. Shaded regions denote mitial conditions that were successfully contained in the workspace while being brought to
the goal via iteration of fy,: varying imitial ¥; from negative (top) to positive (bottom) with 3; = 0 (left columm); varying
imtial y; from negative to positive with i; = 0 (nght colummn). The scale for all plots is meters.
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Results: Effect of Obstacle

Fig. 13. The safe domain for &y, with the beam inserted. Light-gray areas represent successful initial states. while darker
areas show states that eventually hit the beam. Zero initial velocity is shown (a), and the appropriate slice of Dy is added for
comparison. For ¥; = 1.5% (b). preimages of the beam are evident.
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Funnels in the “Real” World

[Grizzle et al. Automatica 50.8 (2014)]
Also see: Pratt's VMC (link on course web site)
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