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What	do	you	Need	to	Know	about	your	Robot?	
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What	does	Robot	Need	to	Know?	

•  Given	access	to	raw	data	channels	for	various	(uninterpreted)	
sensors	and	motors	

•  Devise	a	procedure	for	learning	that	will	tell	you	what	you	
need	for	various	tasks	(as	yet	unspecified)	
–  What	types	of	models?	
–  What	types	of	learning	methods?	
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What	are	you	Learning	from?	
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An	Experiment:	How	Much	can	we	Learn	from	
Uninterpreted	Data?	

•  Learn	models	of	robot	and	
environment	with	no	iniQal	
knowledge	of	what	sensors	
and	actuators	are	doing	

•  Many	learning	methods	
begin	this	way,	e.g.,	RL,	but	
the	goal	here	is	to	construct	
a	representaQon	
incrementally	and	
conQnually	as	well	
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[D. Pierce, B.J. Kuipers, Map learning with un-interpreted sensors and effectors, 
Artificial Intelligence 91:169-227, 1997.] 
 



Simple	Scenario	

•  Robot	criVer	has	a	set	of	
distance	sensors	(range)	–	
one	of	which	is	defecQve	–	
but	it	doesn’t	know	that	yet	

•  Other	sensors:	baVery	
power,	digital	compass	

•  It	has	a	track-style	motor	
apparatus	–	turn	by	
differenQally	actuaQng	its	
wheels	
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What	do	you	Learn	from?	

	Randomized	acQons	(hold	a	randomly	chosen	acQon	for	10	
Qme	steps),	repeatedly	applied	
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How does environment appear in the data? 
Can there be a simple empirical learning scheme? 



One	Step:	Go	from	Raw	Channels	to	
Structure	of	Sensor	Array	

•  Sensors	may	come	in	groupings:	ring	of	distance	sensors,	
array	of	photoreceptors,	video	camera,	etc.	

•  We	first	want	to	extract	groupings	based	on	two	criteria:	
–  Sensors	that	have	similar	values	over	Qme	
–  Sensors	that	have	a	similar	frequency	domain	behaviour	

•  Two	simple	hypothesised	distance	metrics:	
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Distribution (e.g., counts) 



Example	Trace	
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d1 d2 



Extending	the	Group	NoQon	

We	can	reason	transiQvely	about	similarity:	
	
	
So,	a	wandering	trace	might	yield	something	like	this	as	groups:	
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Upon	Taking	the	Transi've	Closure	
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Gedng	at	the	Structure	of	Array	

•  Task	is	to	find	an	assignment	of	posiQons	(in	space)	to	
elements	that	captures	the	structure	of	the	array	as	reflected	
in	distance	metric	d1.	

•  Distance	between	posiQons	in	image	≈	distance	between	
elements	according	to	d1.	

•  This	is	a	constraint	saQsfacQon	problem:	n	sensor	elements	
yield	n(n-1)/2	constraints.	

•  Could	solve	by	metric	scaling:	
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Structural	Model	of	Distance	Array	
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Various	Types	of	Models	

•  Models	of	moQon	
–  Own	dynamics	
–  Object	dynamics	
–  Other	agents	

•  Models	of	environment	
–  Space	&	how	I	move	in	space	
–  Other	navigaQon	consideraQons	

•  Models	of	self	
–  What	is	the	connecQon	between	my	sensors	and	actuators?	
–  What	do	the	sensorimotor	channels	even	mean?	
–  How	to	ground	all	of	the	above	at	this	low	level?	
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Example:	Solar-Heated	House	(Ljung)	

•  The	sun	heats	the	air	in	the	solar	panels	
•  The	air	is	pumped	into	a	heat	storage	(box	filled	with	pebbles)	
•  The	stored	energy	can	be	later	transferred	to	the	house	
•  For	control,	one	cares	about	how	solar	radiaQon,	w(t),	and	pump	velocity,	

u(t),	affect	heat	storage	temperature,	y(t).	
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System	IdenQficaQon	in	Engineering	

In	building	a	model,	the	designer	has	
control	over	three	parts	of	the	process	
1.  GeneraQng	the	data	set	

2.  SelecQng	a	(set	of)	model	structure	
(e.g.,	autoregressive	linear	model)	

3.  SelecQng	the	criteria	(e.g.,	least	
squares	over	output	error),	used	to	
specify	the	opQmal	parameter	
esQmates	

A	very	popular	approach	involves	
(recursive)	parameter	esQmaQon	 Validate 

Model 

Calculate Model 

Choose 
Criterion 
of Fit 

Choose 
Model Set 

Data 

Experiment 
Design 

Priors 

J 

L 
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On	the	Nature	of	ScienQfic	QuesQons	

Science	seeks	to	understand	
and	explain	physical	
observaQons	
•  Why	doesn’t	the	wheel	

turn?	
•  What	if	I	make	the	beam	

half	as	thick,	will	it	carry	the	
load?	

•  How	do	I	shape	the	beam	so	
it	will	carry	the	load?	
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What	Do	Laws	Tell	Us	About	Causality?	

•  Does	acceleraQon	cause	the	force?	
•  Does	the	force	cause	the	acceleraQon?	
•  Does	the	force	cause	the	mass?	
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Different	Views	on	CausaQon	

•  Hume	(1711	–	1776)	[CausaQon	as	percepQon]	
We	remember	seeing	the	flame	and	feeling	a	sensaQon	called	
heat;	without	further	ceremony,	we	call	one	cause	and	the	other	
effect	
	
•  Pearson	(1857	–	1936)	[StaQsQcal	Machine	Learning	view]	
Forget	causaQon!	CorrelaQon	is	all	you	should	ask	for.	

•  Pearl	(1936	-	)	[MathemaQcs	of	causality]	
Forget	empirical	observaQons!	Define	causality	based	on	a	
network	on	known,	physical	causal	relaQonships	
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Two	Major	QuesQons	about	Causality	

1.  Learning	of	causal	connecQons:	What	empirical	evidence	
legiQmizes	a	cause	–	effect	connecQon?	
–  How	do	people	ever	acquire	knowledge	of	causaQon		
–  e.g.,	does	a	rooster	cause	the	sun	to	rise?	
–  succession,	correlaQons	are	not	sufficient	
–  e.g.	Roosters	crow	before	dawn,	both	ice	cream	sales	and	crime	
rate	increase	at	the	same	Qme	(in	summer	months)	

2.  Use	of	causal	connecQon	
–  What	inferences	can	be	drawn	from	causal	informaQon	and	
how?	

–  e.g.	what	would	change	if	the	rooster	were	to	cause	the	sun	to	
rise,	can	we	make	the	night	shorter	by	waking	him	up	early?	
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What	is	Special	about	these	QuesQons?	

•  These	are	“What	If?”	kind	of	quesQons	

•  IntervenQonal	quesQons	such	as	“What	if	I	act?”	
•  RetrospecQve	or	explanatory	quesQons	such	as	“What	if	I	had	

acted	differently?”	

•  How	would	we	answer	such	quesQons	using	the	standard	
machine	learning	toolbox?	

	
Discuss 
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Three	Layer	Causal	Hierarchy	

•  We	can	think	in	terms	of	a	classificaQon	of	causal	informaQon	

•  Based	on	the	type	of	quesQons	that	each	class	is	capable	of	
answering	

•  3	–	level	hierarchy	in	the	sense	that	quesQons	at	a	level	i	(i	=	
1,2,3)	can	only	be	answered	if	informaQon	from	a	level	j	(j	
greater	than	or	equal	to	i)	is	available	
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3-layer	Causal	Hierarchy	
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[Pearl 2017] 



3-layer	Causal	Hierarchy	

Associa@on:	invokes	purely	staQsQcal	relaQonships,	defined	
directly	by	the	raw	data	
•  This	is	learnt	by	any	“black-box”	of	purely	model	free	and	

data	driven	algorithm	
•  Famous	examples	such	as	that	diapers	and	beer	are	owen	

bought	together	

Interven@on:	ranks	higher	because	it	asks	about	a	change	in	
observed	variables	
•  Example:	what	happens	if	we	double	the	price	–	how	will	the	

customer	respond?	
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3-level	Causal	Hierarchy	

Counterfactuals:	“What	if	I	had	acted	differently?”	
•  Subsume	intervenQonal	and	associaQonal	quesQons	

If	we	have	a	model	at	a	higher	level,	the	lower	level	can	be	
answered	easily	
e.g.,	if	we	had	counterfactual	model,	then	the	intervenQonal	
quesQon	can	be	simply	posed	as:	

What	would	happen	if	we	double	the	price?	=	What	would	
happen	had	the	price	been	double	its	current	value?	
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Another	Way	to	Conceptualize	Hierarchy	
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Extended	Version	of	Hierarchy	
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Judea	Pearl’s	Model:	Major	Ideas	

Concept	 Formaliza@on	

CausaQon	 Encoding	of	behaviour	under	intervenQon	

IntervenQon	 Surgeries	on	mechanisms		

Mechanisms	 FuncQonal	RelaQonships	by	equaQons	and	
graphs	

13/02/18	 28	



Pearl’s	Model:	Key	Steps	

•  Devise	a	computaQonal	scheme	for	causality	to	facilitate	
predicQon	of	the	effects	of	“acQons”	
–  Use	“IntervenQon”	for	“AcQon”	
–  As	acQons	are	external	enQQes	originaQng	“outside”	the	
theory	

•  Mechanism:	Autonomous	physical	laws	or	mechanisms	of	
interest	
– We	can	change	one	without	changing	the	others	
–  e.g.	logic	gates	of	a	circuit,	mechanical	linkages	
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Pearl’s	Model:	Key	Steps	

•  IntervenQon		
–  Breakdown	of	a	mechanism	=	surgery	

•  Causality	
–  Which	mechanism	is	to	be	surgically	modified	by	a	given	acQon	

13/02/18	 30	



Example	to	Ponder	-	1	

•  If	the	grass	is	wet,	then	it	rained	
•  If	we	break	this	boVle,	the	grass	gets	wet	

•  Conclusion:	If	we	break	this	boVle,	then	it	rained!	
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Example	to	Ponder	-	2	

•  A	suitcase	will	open	iff	both	locks	are	open	
•  The	right	lock	is	open	
•  What	happens	if	we	open	the	lew	lock?	

•  Not	sure	–	the	right	lock	might	get	closed!	
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Modelling	Causality	

Causal	Model	M	=	(U, V, F)	
•  U	=	Exogenous	variables	

–  Values	are	determined	by	factors	outside	the	model	

•  V	=	Endogenous	variables	
–  Values	are	described	by	structural	equaQons	

•  F	is	a	set	of	structural	equaQons																									(endogenous)	
–  FX		is	a	mapping,	tells	us	the	value	of	X	given	the	values	of	
all	the	other	variables	in	U	and	V	

–  represents	a	mechanism	or	law	in	the	world	
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{FX |X 2 V }



Example:	Modelling	Causality	

•  Forest	fire	could	be	caused	by	lightning	or	a	lit	match	by	an	
arsonist	

•  Endogenous	variables,	Boolean	
–  F	for	fire	
–  L	for	lightning	
–  ML	for	match	lit.	

•  Exogenous	variables,	U	
–  Whether	wood	is	dry	
–  Whether	there	is	enough	oxygen	in	the	air	
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FF (U,L,ML) s.t. F = 1 if L = 1 or ML = 1



Causal	Networks	
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IntervenQon/ConQngency	
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Counterfactuals	
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Actual	Causes	
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A	DefiniQon	of	Actual	Cause	
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Measure	of	Causality:	Responsibility	
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ProbabilisQc	Causal	Model	

Represented	by	a	pair	(M,	P(u))	

•  P(u)	is	a	probability	funcQon	defined	over	the	exogenous	
variables	U 

•  Each	endogenous	variable	in	V	is	a	funcQon	of	exogenous	
variables	U 
–  also	gives	a	distribuQon	on	V 

•  In	turn	gives	the	probability	of	counter-factual	statement																
	 							or	simply		
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Pr(Y
X=x

= y) Pr(YX = y)



ProbabilisQc	Model	

Necessity	
	
The	probability	that	event	y would	not	have	occurred	in	the	
absence	of	event	x,	(=	y’x’),	given	that	x	and	y	did	in	fact	occur	
	
Sufficiency	
	
The	probability	that	sedng	x	would	produce	y in	a	situaQon	
where	x & y are	in	fact	absent		
Ability	of	event	x to produce event y	
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Worked	Example	on	Structural	EquaQons:		
CondiQonal	Probability	vs.	AcQon	
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Observing versus Acting to make  X3 = ON



CondiQonal	Probability	of		
a	Counterfactual	Sentence	

If	we	want	to	compute	probability	of:	
	“	{if	it	were	A	then	B}	given	evidence	e	”	

we	might	use	the	following	three	step	procedure:	
1.  AbducQon	

–  Update	P(u)	by	evidence	to	get	P(u|e)	
2.  AcQon	

–  Modify	M	by	acQon	do(A),	where	A	is	antecedant	of	the	
counterfactual,	to	yield	MA 

3.  DeducQon	
–  Use	P(u|e)	and	MA	to	compute	probability	of	

counterfactual	consequence	B 
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Pearl’s	View	of	a	Structural	EquaQons	
based	“Inference	Engine”	
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Answer to query 

Answer +  
estimated confidence 

Fit of data to  
model assumptions 

[Pearl 2017] 



Recap:	Influence	Diagrams	[Howard	&	Matheson	‘84]	

•  Influence	Diagrams	(ID)	extend	
Bayesian	Networks	for	decision	
making.	

•  Rectangles	are	decisions;	ovals	
are	chance	variables;	diamonds	
are	uQlity	funcQons.	

•  Graph	topology	describes	
decision	problem.	

•  Each	node	specifies	a	probability	
distribuQon	(CPD)	given	each	
value	of	parents.	
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Multi-agent Influence Diagrams �
[Milch and Koller ‘01]

•  Extend Influence Diagrams 
to the multi-agent case.

•  Rectangles and diamonds 
represent decisions and 
utilities associated with 
agents; ovals represent 
chance variables. 

•  A strategy for a decision is a 
mapping from the 
informational parents of the 
decision to a value in its 
domain.

•  A strategy profile includes 
strategies for all decisions. 
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Reasoning	PaVerns	through	IDs	

•  Informally,	a	reasoning	paVern	is	a	form	of	argument	that	
leads	to	and	explains	a	decision	
–  e.g.	

•  modus	ponens	in	logic	
•  explaining	away	in	Bayes	nets	

•  What	reasoning	paMerns	can	agents	use	in	interac(ve	
decision	making	contexts?	
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[A. Pfeffer & Y. Gal, On the reasoning patterns of agents in games, In Proc. AAAI 2007] 
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CharacterizaQon	of	Reasoning	PaVerns	

•  Four	basic	reasoning	paVerns,	each	characterized	by	paths	in	
a	mulQple-agent	version	of	influence	diagrams	

•  CharacterizaQon	based	on	graphical	criteria	only	
–  could	further	refine	characterizaQon	based	on	numerical	
parameters	
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Reasoning	PaVern	#1:	Direct	Effect	

•  An	agent	takes	a	decision	because	of	its	direct	effect	on	its	
uQlity	
–  without	being	mediated	by	other	agents’	acQons	

Drill 

Profit 
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Reasoning	PaVern	#2:	ManipulaQon	

•  Child	knows	about	parent’s	acQon	
•  Parent	does	not	care	about	reading,	but	wants	child	to	brush	teeth	
•  Child	dislikes	brushing	teeth	but	likes	being	read	to	
⇒ Parent	can	manipulate	child	

Offer to Read 

Parent 

Brush Teeth 

Child 
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Reasoning	PaVern	#3:	Signaling	

•  A	communicates	something	that	she	knows	to	B,	thus	
influencing	B’s	behavior	

Recommendation 

Alice 

Choice 

Bob 

Better Restaurant 
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Reasoning	PaVern	#4:	Revealing/Denying	

•  Driller	cares	about	oil	
•  Tester	receives	fee	if	driller	drills	
•  Tester	causes	driller	to	find	out	(or	not)	about	informaQon	

tester	herself	does	not	know	

Seismic Structure 

Oil 
Test Result 

Drill 

Test 

Tester’s Profit Driller’s Profit 
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Example:	Two	Stage	Principal-Agent	Game	

Type 

Rep0 Rep1 

P1 P2 

A1 A2 

U(A1) U(A2) 
U(P2) U(P1) 
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Type: described parameters specific to an agent 
Rep: Quantification of “Reputation”  
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Direct	Effect	For	All	Four	Decisions	

Type 

Rep0 Rep1 

P1 P2 

A1 A2 

U(A1) U(A2) 
U(P2) U(P1) 
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ManipulaQon	(P1	→	A1)		

Type 

Rep0 Rep1 

P1 P2 

A1 A2 

U(A1) U(A2) 
U(P2) U(P1) 
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ManipulaQon	(P2	→	A2)		

Type 

Rep0 Rep1 

P1 P2 

A1 A2 

U(A1) U(A2) 
U(P2) U(P1) 
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Signaling	(A1	signals	Type	to	P2)		

Type 

Rep0 Rep1 

P1 P2 

A1 A2 

U(A1) U(A2) 
U(P2) U(P1) 
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Signaling	(A1	signals	Type	to	P2)		

Type 

Rep0 Rep1 

P1 P2 

A1 A2 

U(A1) U(A2) 
U(P2) U(P1) 
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Signaling	(A1	signals	Type	to	P2)		

Type 

Rep0 Rep1 

P1 P2 

A1 A2 

U(A1) U(A2) 
U(P2) U(P1) 
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Signaling	(A1	signals	Type	to	P2)		

Type 

Rep0 Rep1 

P1 P2 

A1 A2 

U(A1) U(A2) 
U(P2) U(P1) 
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Signaling	(A1	signals	Type	to	P2)		

Type 

Rep0 Rep1 

P1 P2 

A1 A2 

U(A1) U(A2) 
U(P2) U(P1) 
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Revealing/Denying	(P1	reveals	Type	to	P2)	

Type 

Rep0 Rep1 

P1 P2 

A1 A2 

U(A1) U(A2) 
U(P2) U(P1) 
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Revealing/Denying	(P1	reveals	Type	to	P2)	

Type 

Rep0 Rep1 

P1 P2 

A1 A2 

U(A1) U(A2) 
U(P2) U(P1) 

13/02/18	 65	



Acknowledgement	

The	source	of	some	of	these	slides	is	a	VLDB	2014	tutorial	enQtled	
“Causality	and	ExplanaQons	in	Databases”,	by	Meliou,	Roy,	Suciu.	

13/02/18	 66	


