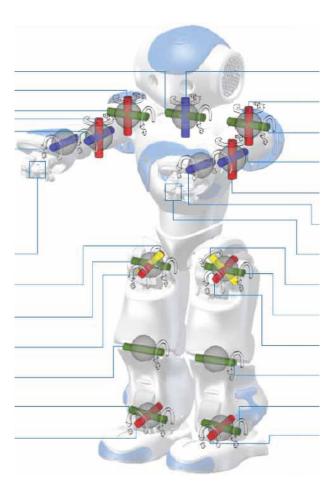
Decision Making in Robots and Autonomous Agents

Causality: How should a robot reason about cause and effect?

Subramanian Ramamoorthy School of Informatics

13 February, 2018

What do you Need to Know about your Robot?



What does Robot Need to Know?

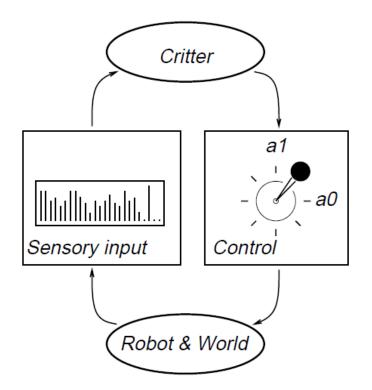
- Given access to raw data channels for various (uninterpreted) sensors and motors
- Devise a procedure for learning that will tell you what you need for various tasks (as yet unspecified)
 - What types of models?
 - What types of learning methods?

What are you Learning from?

1.896007 1.635462	4.323841 1.698352	22.664253 22.664253	4.202899 2.294771	1.213200 2.627882	22.664253	1.967881	2.245012	22.664253	2.397054
1.894624 1.635462	4.323150 1.698352	22 664253	4.202899 2.293389	2.627882 1.213891 2.627882	22.664253	1.968572	2.245012	22.664253	2.397745
1.894624	4.323150	22.664253	4.202899	1.211126	22.664253	1.968572	2.245012	22.664253	2.397745
1.635462 1.895315 1.635462	1.699043 4.323150	22.664253 22.664253	2.290625 4.202899	2.627882 1.211126 2.630646	22.664253	1.967881	2.245012	22.664253	2.397745
1.895315	1.699043 4.323150	22.664253 22.664253 22.664253 22.664253	2.289934 4.206354	1.210435	22.664253	1.968572	2.245012	22.664253	2.397745
1.636153 1.895315	1.699043 4.323150	22.664253	2.294080 4.200825	2.630646 1.211126	22,664253	1,965808	2.243630	22,664253	2.397745
1.630624 4.375673	1.699043 2.443358	22.664253 22.664253	2.318960 22.664253	2.629264 1.119210	3,963778	1.983085	2.162080	2.341766	22.664253
1.638917 22.664253	1.725996 22.664253	2.295462 1.250519	22.664253 22.664253	1.953368 22.664253	1.931944	2,409494	2.098499	22.664253	2.130981
22.664253	2.322415	22.664253	22.664253	2.000363					
22.664253 22.664253 22.664253	22.664253 2.323106	1.148236 2.730856	4.363925 2.043211	1.913975 22.664253	2.146185	2.048740	22.664253	2.050813	1.548383
2.359735	1.196613 22.664253	4.400553 2.068782	2.316196 22.664253	2.352824 22.664253	2.014876	22.664253	2.012802	1.486184	1.602980
1.259504 3.287191	22.664253 22.664253	1.965117 22.664253	2.151714 22.664253	22.664253 22.664253	22.664253	1.909829	1.419839	1.538708	22.664253
22.664253 2.467546	1.991378 22.664253	22.664253	2.374248 22.664253	22.664253 1.321011	22.664253	1.552530	1.510373	22.664253	22.664253
22.664253 2.450960	1.997598 22.664253	22.664253 2.197326 2.661054	22.664253 22.664253	2.168300 1.303734	1.945075	1.551148	1.501388	22.664253	2.250541
22.664253 2.450960	1.997598 22.664253	2.194562 2.660363	22.664253	2.168300 1.303734	1.943001	1.551148	1.501388	22.664253	2.250541
22.664253	1.996216	22.664253	22.664253	2.171064	2.026624	1.555294	1.508300	22.664253	2.252614
2.457871 1.244990	1.976174	2.656908 2.004509	22.664253 2.356970	1.306498 22.664253	22.664253	1.930562	1.439881	1.555294	22.664253
2.756426 1.193158	22.664253 22.664253	4.558124 1.908446	22.664253 2.112321	22.664253 2.002436	2.182813	2.088132	22.664253	1.617493	22.664253
3.316217 22.664253	2.086059 1.164823	4.537391 1.886331 2.090206	3.118563 1.891860	22.664253 2.328635 22.664253	2.003818	22.664253	2.003818	1.526268	22.664253
2.411567 22.664253	2.788908 1.101242	4.308637	22.664253 1.858687	2.087441	2.016258	2,238101	2.102645	1.585703	1,697661
2.382541 22.664253	2.786835	2.070855 1.065304	4.485559 1.849012	22.664253 2.227735	2.347986	2.269892	22.664253	1.788195	1.653431
2.406730 22.664253	22.664253 22.664253 4.712930	2.050813 1.023147	4.466898	22.664253 2.220824	2.101263	2.078457	2.312740	2.190415	1.671399
22.664253 22.664253	22.664253	2.786143 1.087420	2.019023 22.664253	22.664253	1.838645	2.135818	2.362499	22.664253	1.740509
22.664253	2.428845	22.664253	1.991378	4.363234					
22.664253 22.664253	2.428845 22.664253 2.428845	22,664253	0.993430 22.664253	1.832425 2.000363	1.832425	2.386688	2.105410	22.664253	2.242248
22.664253 1.815839	22.664253 22.664253	4.680449 22.664253	0.993430 22.664253	22.664253 2.001054	1.815839	3.524238	2.095043	2.344531	2.220133
22.664253 1.815839		4.681140 22.664253	0.993430 22.664253	22.664253 2.001054	1.815839	3.524238	2.095043	2.344531	2.217368
22.664253 1.815839	22.664253 22.664253	4.691506 22.664253	0.990666 22.664253	22.664253 2.001054	1.815839	3.524238	2.095734	2.345222	2.221515
22.664253 1.815839	22.664253 22.664253 22.664253 22.664253 22.664253 22.664253 22.664253	4.680449 22.664253	0.993430 22.664253	22.664253 2.001054	1.815839	3.524238	2.095734	2.344531	2.224279
22.664253 1.815839	22.664253 22.664253 22.664253 22.664253 22.664253	4.676993	0.991357 22.664253	22.664253 2.001054	1.815839	3.524238	2.095734	2.345222	2.220824
22.664253	22.664253	22.664253 4.682522	0.995503	22.664253	1.814457	2.156551	2.094352	2.339693	2.217368
1.809619 4.424050	22.664253	2. 664253 22. 664253 22. 664253 22. 664253 22. 664253	1.110226	2.001745 22.664253	3.797223	1.822059	2.347986	2.070164	22.664253
1.807546 2.054268	22.664253 4.432344 1.689368	22.664253	22.664253 22.664253 2.464782	22.664253 22.664253 22.664253	1.003797	1.808237	1.823441	2.343148	2.301682

An Experiment: How Much can we Learn from Uninterpreted Data?

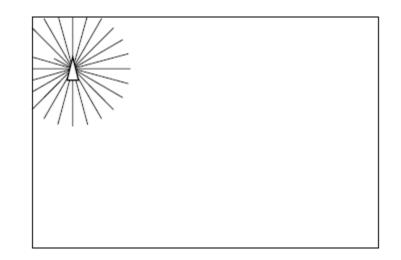
- Learn models of robot and environment with no initial knowledge of what sensors and actuators are doing
- Many learning methods begin this way, e.g., RL, but the goal here is to construct a representation incrementally and continually as well



[D. Pierce, B.J. Kuipers, Map learning with un-interpreted sensors and effectors, *Artificial Intelligence* 91:169-227, 1997.]

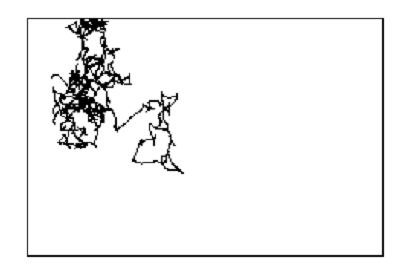
Simple Scenario

- Robot critter has a set of distance sensors (range) – one of which is defective – but it doesn't know that yet
- Other sensors: battery power, digital compass
- It has a track-style motor apparatus – turn by differentially actuating its wheels



What do you Learn from?

Randomized actions (hold a randomly chosen action for 10 time steps), repeatedly applied



How does environment appear in the data? Can there be a simple empirical learning scheme?

One Step: Go from Raw Channels to Structure of Sensor Array

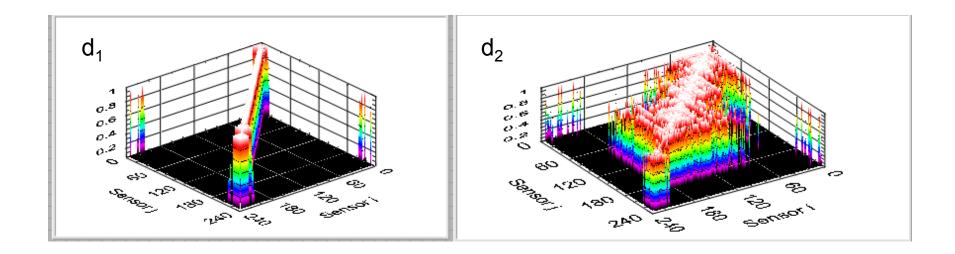
- Sensors may come in groupings: ring of distance sensors, array of photoreceptors, video camera, etc.
- We first want to extract groupings based on two criteria:
 - Sensors that have similar values over time
 - Sensors that have a similar frequency domain behaviour
- Two simple hypothesised distance metrics:

$$d_{1,ij}(t) = \frac{1}{t+1} \sum_{\tau=0}^{t} |x_i(\tau) - x_j(\tau)|.$$

$$d_{2,ij} = \frac{1}{2} \sum_{l} |(\textit{dist } x_i)_l - (\textit{dist } x_j)_l|,$$

Distribution (e.g., counts)

Example Trace



$$i \approx_k j$$
 if $d_{k,ij} < \min\{\varepsilon_{k,i}, \varepsilon_{k,j}\}.$

$$\varepsilon_{k,i}=2\min_{j}\{d_{k,ij}\}.$$

Extending the Group Notion

We can reason transitively about similarity:

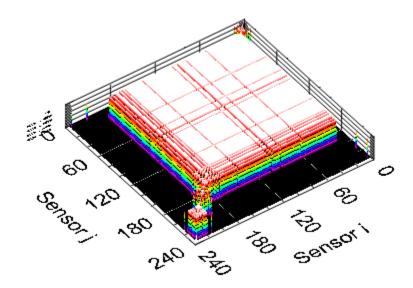
 $i \sim j$ iff $i \approx j \lor \exists k$: $(i \sim k) \land (k \sim j)$.

So, a wandering trace might yield something like this as groups:

 $(0\ 1\ 2\ 22\ 23)\ (0\ 1\ 2\ 3\ 23)\ (0\ 1\ 2\ 3\ 4)\ (1\ 2\ 3\ 4\ 5)\ (2\ 3\ 4\ 5\ 6)\ (3\ 4\ 5\ 6\ 7)\ (4\ 5\ 6\ 7)\ (5\ 6\ 7\ 8\ 9)\ (7\ 8\ 9\ 10)\ (7\ 8\ 9\ 10\ 11)\ (8\ 9\ 10\ 11\ 12)\ (9\ 10\ 11\ 12\ 13)\ (10\ 11\ 12\ 13\ 14)\ (11\ 12\ 13\ 14\ 15)\ (12\ 13\ 14\ 15\ 16)\ (13\ 14\ 15\ 16\ 17)\ (14\ 15\ 16\ 17\ 18\ 19)\ (17\ 18\ 19\ 21)\ (20)\ (19\ 21\ 22\ 23)\ (0\ 21\ 22\ 23)\ (0\ 1\ 21\ 22\ 23)\ (24)\ (25)\ (26)\ (27)\ (28).$

Upon Taking the Transitive Closure

- (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23)
- (20) defective
- (24) battery voltage
- (25) east
- (26) north
- (27) west
- (28) south



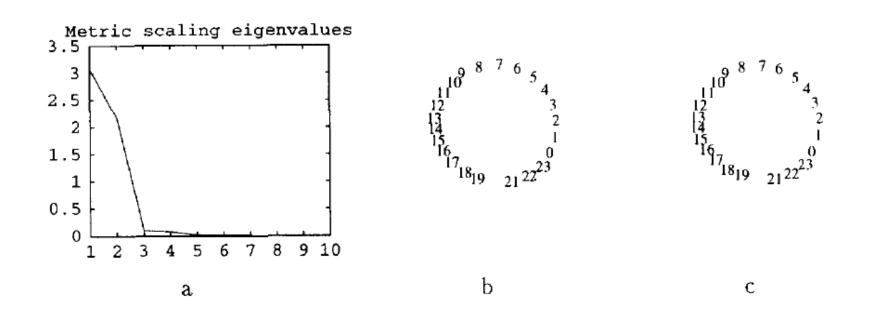
Getting at the Structure of Array

- Task is to find an assignment of positions (in space) to elements that captures the structure of the array as reflected in distance metric d₁.
- Distance between positions in image ≈ distance between elements according to d₁.

 $\|(pos y_i) - (pos y_j)\| = d_{1,ij},$

- This is a constraint satisfaction problem: n sensor elements yield n(n-1)/2 constraints.
- Could solve by metric scaling: $E = \frac{1}{2} \sum_{ij} (\|(pos y_i) (pos y_j)\| d_{ij})^2.$

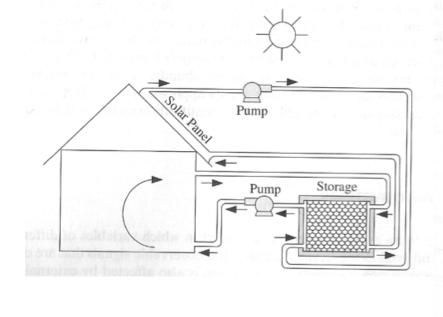
Structural Model of Distance Array

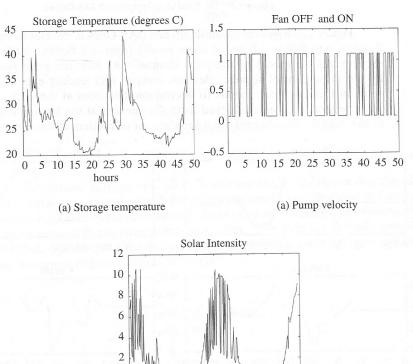


Various Types of Models

- Models of motion
 - Own dynamics
 - Object dynamics
 - Other agents
- Models of environment
 - Space & how I move in space
 - Other navigation considerations
- Models of self
 - What is the connection between my sensors and actuators?
 - What do the sensorimotor channels even mean?
 - How to ground all of the above at this low level?

Example: Solar-Heated House (Ljung)





5 10 15 20 25 30 35 40 45 50

0

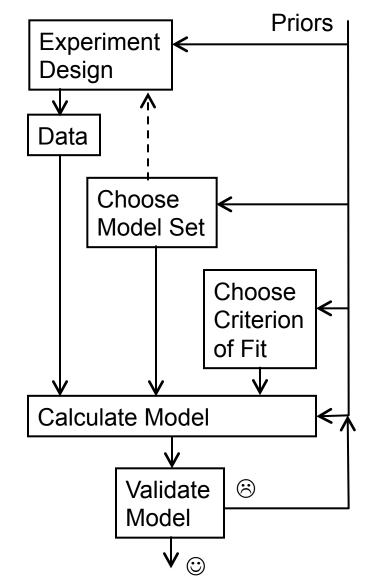
- The sun heats the air in the solar panels
- The air is pumped into a heat storage (box filled with pebbles)
- The stored energy can be later transferred to the house
- For control, one cares about how solar radiation, w(t), and pump velocity, u(t), affect heat storage temperature, y(t).

System Identification in Engineering

In building a model, the designer has control over three parts of the process

- 1. Generating the **data set**
- 2. Selecting a (set of) **model structure** (e.g., autoregressive linear model)
- Selecting the criteria (e.g., least squares over output error), used to specify the optimal parameter estimates

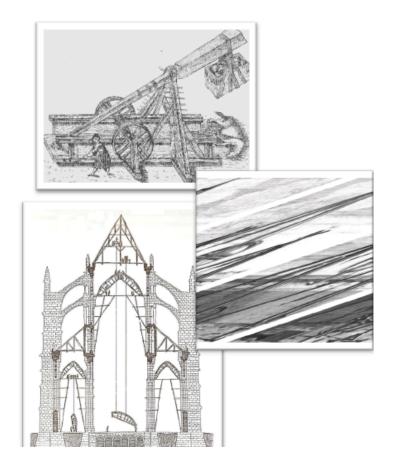
A very popular approach involves (recursive) parameter estimation



On the Nature of Scientific Questions

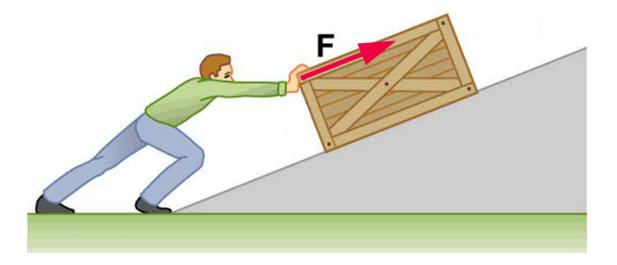
Science seeks to understand and explain physical observations

- Why doesn't the wheel turn?
- What if I make the beam half as thick, will it carry the load?
- How do I shape the beam so it will carry the load?



What Do Laws Tell Us About Causality?

- Does acceleration cause the force?
- Does the force cause the acceleration?
- Does the force cause the mass?



Different Views on Causation

• Hume (1711 – 1776) [Causation as perception]

We remember seeing the flame and feeling a sensation called heat; without further ceremony, we call one cause and the other effect

- Pearson (1857 1936) [Statistical Machine Learning view]
 Forget causation! Correlation is all you should ask for.
- Pearl (1936) [Mathematics of causality]

Forget empirical observations! Define causality based on a network on known, physical causal relationships

Two Major Questions about Causality

- 1. Learning of causal connections: What empirical evidence legitimizes a cause effect connection?
 - How do people ever acquire knowledge of causation
 - e.g., does a rooster cause the sun to rise?
 - succession, correlations are not sufficient
 - e.g. Roosters crow before dawn, both ice cream sales and crime rate increase at the same time (in summer months)
- 2. Use of causal connection
 - What inferences can be drawn from causal information and how?
 - e.g. what would change if the rooster were to cause the sun to rise, can we make the night shorter by waking him up early?

What is Special about these Questions?

- These are "What If?" kind of questions
- Interventional questions such as "What if I act?"
- Retrospective or explanatory questions such as "What if I had acted differently?"
- How would we answer such questions using the standard machine learning toolbox?

Díscuss

Three Layer Causal Hierarchy

- We can think in terms of a classification of causal information
- Based on the type of questions that each class is capable of answering
- 3 level hierarchy in the sense that questions at a level i (i = 1,2,3) can only be answered if information from a level j (j greater than or equal to i) is available

3-layer Causal Hierarchy

Level	Typical	Typical Questions	Examples	
(Symbol)	Activity			
1. Association	Seeing	What is?	What does a symptom tell me about	
P(y x)		How would seeing X	a disease?	
		change my belief inY?	What does a survey tell us about the	
			election results?	
2. Intervention	Doing	What if?	What if I take aspirin, will my	
P(y do(x), z)	Intervening	What if I do X ?	headache be cured?	
			What if we ban cigarettes?	
3. Counterfactuals	Imagining,	Why?	Was it the aspirin that stopped my	
$P(y_{\mathbf{x}} \mathbf{x}',\mathbf{y}')$	Retrospection	Was it X that caused Y?	headache?	
		What if I had acted	Would Kennedy be alive had Os-	
		differently?	wald not shot him?	
			What if I had not been smoking the	
			past 2 years?	

[Pearl 2017]

3-layer Causal Hierarchy

Association: invokes purely statistical relationships, defined directly by the raw data

- This is learnt by any "black-box" of purely model free and data driven algorithm
- Famous examples such as that diapers and beer are often bought together

Intervention: ranks higher because it asks about a change in observed variables

 Example: what happens if we double the price – how will the customer respond?

3-level Causal Hierarchy

Counterfactuals: "What if I had acted differently?"

• Subsume interventional and associational questions

If we have a model at a higher level, the lower level can be answered easily

e.g., if we had counterfactual model, then the interventional question can be simply posed as:

What would happen if we double the price? = What would happen <u>had the price been</u> double its current value?

Another Way to Conceptualize Hierarchy

Action sentences

- B (would be true) if we do A

Counterfactuals

¬B would change to B (B would be different) if it were A

- Explanation
 - B occurred because of A

Extended Version of Hierarchy

Action sentences

- B if we do A With probability p

Counterfactuals

- ¬B would change to B if it were A With probability p

• Explanation

- B occurred because of A With probability p

Judea Pearl's Model: Major Ideas

Concept	Formalization
Causation	Encoding of behaviour under intervention
Intervention	Surgeries on mechanisms
Mechanisms	Functional Relationships by equations and graphs

Pearl's Model: Key Steps

- Devise a computational scheme for causality to facilitate prediction of the effects of "actions"
 - Use "Intervention" for "Action"
 - As actions are external entities originating "outside" the theory
- Mechanism: Autonomous physical laws or mechanisms of interest
 - We can change one without changing the others
 - e.g. logic gates of a circuit, mechanical linkages

Pearl's Model: Key Steps

- Intervention
 - Breakdown of a mechanism = surgery
- Causality
 - Which mechanism is to be surgically modified by a given action

Example to Ponder - 1

- If the grass is wet, then it rained
- If we break this bottle, the grass gets wet
- Conclusion: If we break this bottle, then it rained!

Example to Ponder - 2

- A suitcase will open *iff* both locks are open
- The right lock is open
- What happens if we open the left lock?
- Not sure the right lock might get closed!

Modelling Causality

Causal Model M = (U, V, F)

• U = Exogenous variables

- Values are determined by factors outside the model

• *V* = *Endo*genous variables

- Values are described by structural equations

- F is a set of structural equations $\{F_X | X \in V\}$ (endogenous)
 - F_X is a mapping, tells us the value of X given the values of all the other variables in U and V
 - represents a mechanism or law in the world

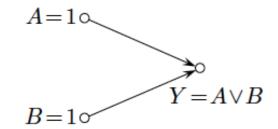
Example: Modelling Causality

- Forest fire could be caused by lightning or a lit match by an arsonist
- Endogenous variables, Boolean
 - F for fire
 - L for lightning
 - ML for match lit.
- Exogenous variables, U
 - Whether wood is dry
 - Whether there is enough oxygen in the air

$$F_F(U, L, ML)$$
 s.t. $F = 1$ if $L = 1$ or $ML = 1$

Causal Networks

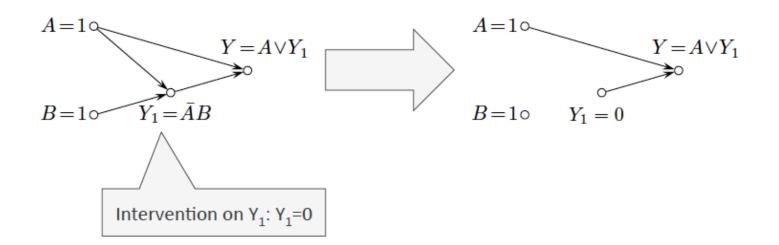
- Causal structural models:
 - Variables: A, B, Y
 - Structural equations: Y = A v B



- Modeling problems:
 - E.g., A bottle breaks if either Alice or Bob throw a rock at it.
 - Endogenous variables:
 - Alice throws a rock (A)
 - Bob throws a rock (B)
 - The bottle breaks (Y)
 - Exogenous variables:
 - Alice's aim, speed of the wind, bottle material etc.

Intervention/Contingency

• External interventions modify the structural equations or values of the variables.



Counterfactuals

If <u>not A</u> then <u>not φ</u>

- In the absence of a cause, the effect doesn't occur $C = A \wedge B, \ A = 1 \wedge B = 1 \longleftarrow$ Both counterfactual

- Problem: Disjunctive causes
 - If Alice doesn't throw a rock, the bottle still breaks (because of Bob)
 - Neither Alice nor Bob are counterfactual causes

 $C = A \lor B, \ A = 1 \land B = 1 \longleftarrow$ No counterfactual causes

Actual Causes

[simplification]

A variable X is an <u>actual cause</u> of an effect Y if there exists a contingency that makes X counterfactual for Y.

 $C = A \lor B, \ \ A = 1 \land B = 1 \longleftarrow \text{A is a cause under the contingency B=0}$

A Definition of Actual Cause

Actual causes are of the form

-
$$X_1 = x_1 \land X_2 = x_2 \land \dots \land X_k = X_k$$

- In short, X = x
- For X = x to be an actual cause of event Z The following three conditions should hold
 - Both X = x and Z are true in the actual world
 - Changing X to x' and some other variables W from w to w' changes Z from true to false
 - Setting W to w' does not have an effect on Z
- X is minimal- no subset of X satisfies the above two conditions

Example 1

$$Y = X_1 \wedge X_2$$

 $X_1 = 1$ is counterfactual for Y = 1

Example 2

- $Y = X_1 \lor X_2$
- X₁ = 1 is not counterfactual for Y=1
 - = 1 is an actual cause for V = 1 with contingence
- $X_1 = 1$ is an actual cause for Y = 1, with contingency $X_2 = 0$

Example 3

- $Y = (\neg X_1 \land X_2) \lor X_3$
- $X_1 = 1$ is not counterfactual for Y = 1

 $X_1 = 1$ is not an actual cause for Y = 1

$$X_1 = 1, X_2 = 1 \Rightarrow Y = 1$$

 $X_1 = 0, X_2 = 1 \Rightarrow Y = 0$

$$X_1 = 1, X_2 = 1 \Rightarrow Y = 1$$
$$X_1 = 1, X_2 = 0 \Rightarrow Y = 1$$
$$X_1 = 0, X_2 = 0 \Rightarrow Y = 0$$

$$X_1 = 1, X_2 = 1, X_3 = 1 \Longrightarrow Y = 1$$

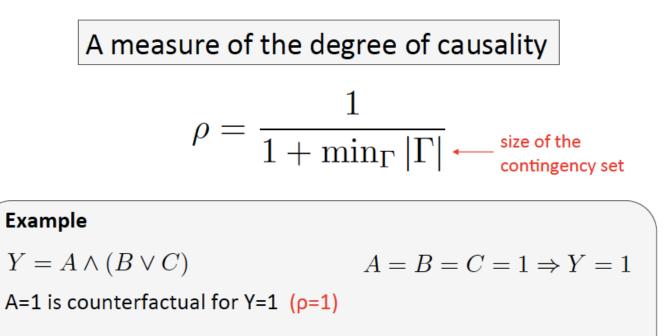
$$X_1 = 0, X_2 = 1, X_3 = 1 \Rightarrow Y = 1$$

$$X_1 = 1, X_2 = 0, X_3 = 1 \Rightarrow Y = 1$$

$$X_1 = 0, X_2 = 0, X_3 = 1 \Rightarrow Y = 1$$

Y never changes by flipping X_1 for all combinations of X_2 , X_3

Measure of Causality: Responsibility



B=1 is an actual cause for Y=1, with contingency C=0 (ρ =0.5)

Probabilistic Causal Model

Represented by a pair (M, P(u))

- *P*(*u*) is a probability function defined over the exogenous variables *U*
- Each endogenous variable in V is a function of exogenous variables U
 - also gives a distribution on V
- In turn gives the probability of counter-factual statement $Pr(Y_{X=x} = y)$ or simply $Pr(Y_X = y)$

Probabilistic Model

$$Pr(Y_{X=x'} = y' | X = x, Y = y)$$
$$= Pr(y'_{x'} | x, y)$$

Necessity

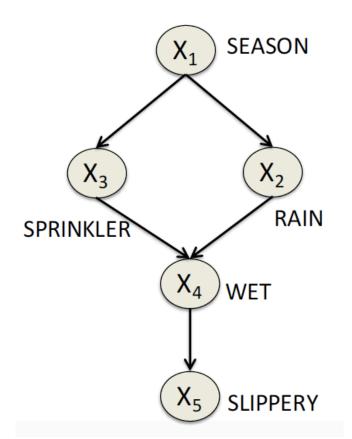
The probability that event y would not have occurred in the absence of event x, (= $y'_{x'}$), given that x and y did in fact occur

Sufficiency
$$Pr(Y_{X=x} = y | X = x', Y = y') = Pr(y_x | x', y')$$

The probability that setting x would produce y in a situation where x & y are in fact absent

Ability of event *x* to produce event *y*

Worked Example on Structural Equations: Conditional Probability vs. Action



Observing versus Acting to make $X_3 = ON$

Conditional Probability of a Counterfactual Sentence

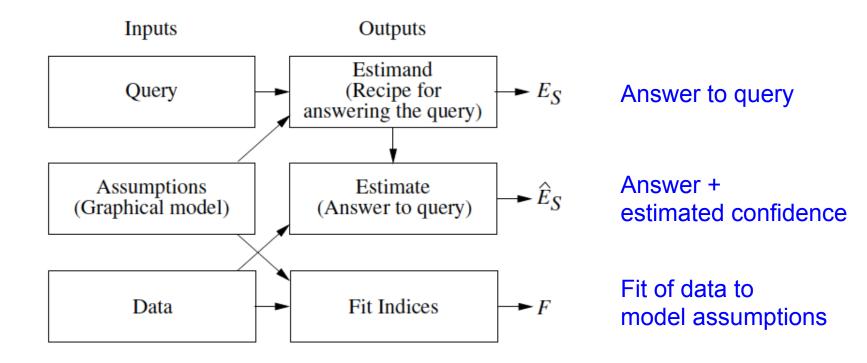
If we want to compute probability of:

" {if it were A then B} given evidence e "

we might use the following three step procedure:

- 1. Abduction
 - Update P(u) by evidence to get P(u|e)
- 2. Action
 - Modify M by action do(A), where A is antecedant of the counterfactual, to yield M_A
- 3. Deduction
 - Use P(u|e) and M_A to compute probability of counterfactual consequence B

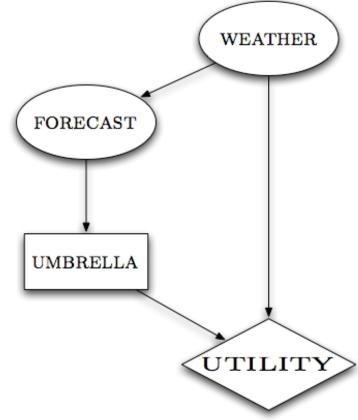
Pearl's View of a Structural Equations based "Inference Engine"



[Pearl 2017]

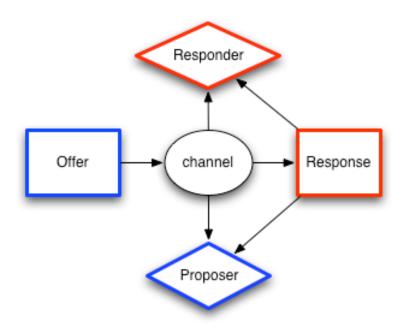
Recap: Influence Diagrams [Howard & Matheson '84]

- Influence Diagrams (ID) extend Bayesian Networks for decision making.
- Rectangles are decisions; ovals are chance variables; diamonds are utility functions.
- Graph topology describes decision problem.
- Each node specifies a probability distribution (CPD) given each value of parents.



Multi-agent Influence Diagrams [Milch and Koller '01]

- Extend Influence Diagrams to the multi-agent case.
- Rectangles and diamonds represent decisions and utilities associated with agents; ovals represent chance variables.
- A strategy for a decision is a mapping from the informational parents of the decision to a value in its domain.
- A strategy profile includes strategies for all decisions.



Reasoning Patterns through IDs

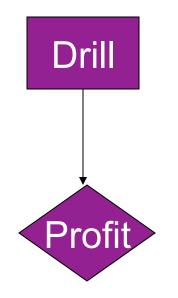
- Informally, a reasoning pattern is a form of argument that leads to and explains a decision
 - e.g.
 - modus ponens in logic
 - explaining away in Bayes nets
- What reasoning patterns can agents use in *interactive* decision making contexts?

[A. Pfeffer & Y. Gal, On the reasoning patterns of agents in games, In Proc. AAAI 2007]

Characterization of Reasoning Patterns

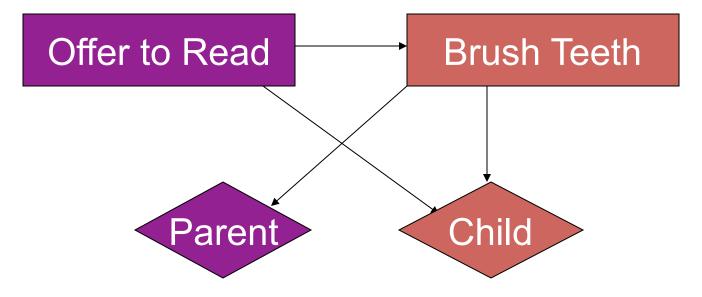
- Four basic reasoning patterns, each characterized by paths in a multiple-agent version of influence diagrams
- Characterization based on graphical criteria only
 - could further refine characterization based on numerical parameters

Reasoning Pattern #1: Direct Effect



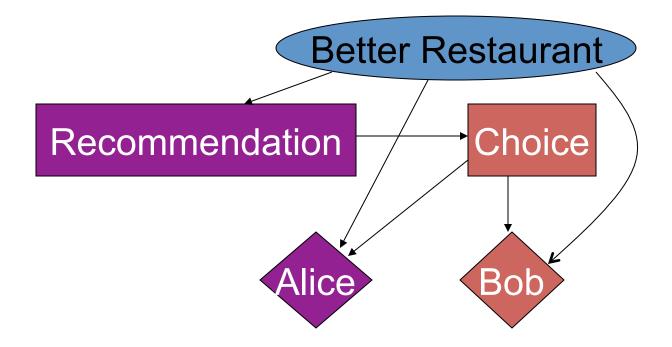
- An agent takes a decision because of its direct effect on its utility
 - without being mediated by other agents' actions

Reasoning Pattern #2: Manipulation



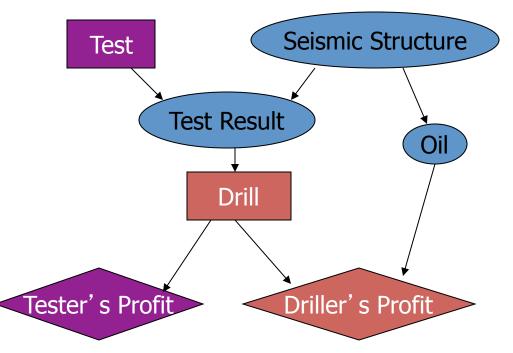
- Child knows about parent's action
- Parent does not care about reading, but wants child to brush teeth
- Child dislikes brushing teeth but likes being read to
- \Rightarrow Parent can manipulate child

Reasoning Pattern #3: Signaling



• A communicates something that she knows to B, thus influencing B's behavior

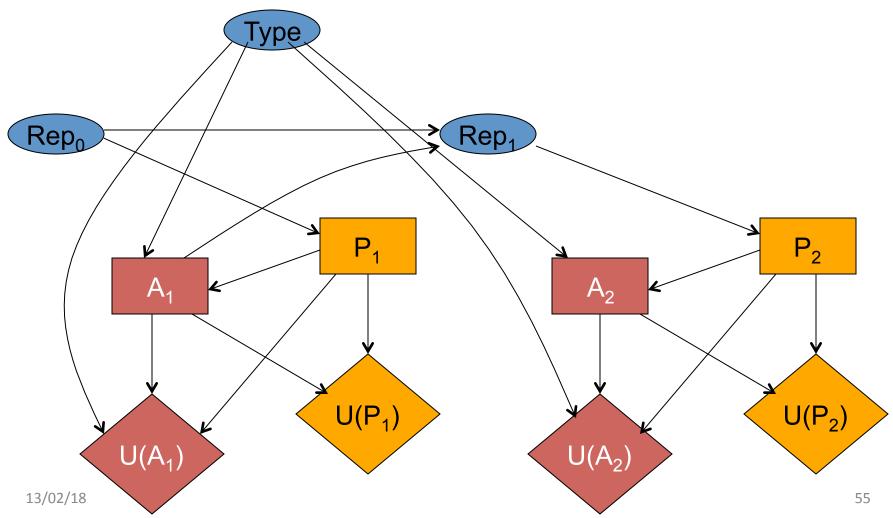
Reasoning Pattern #4: Revealing/Denying



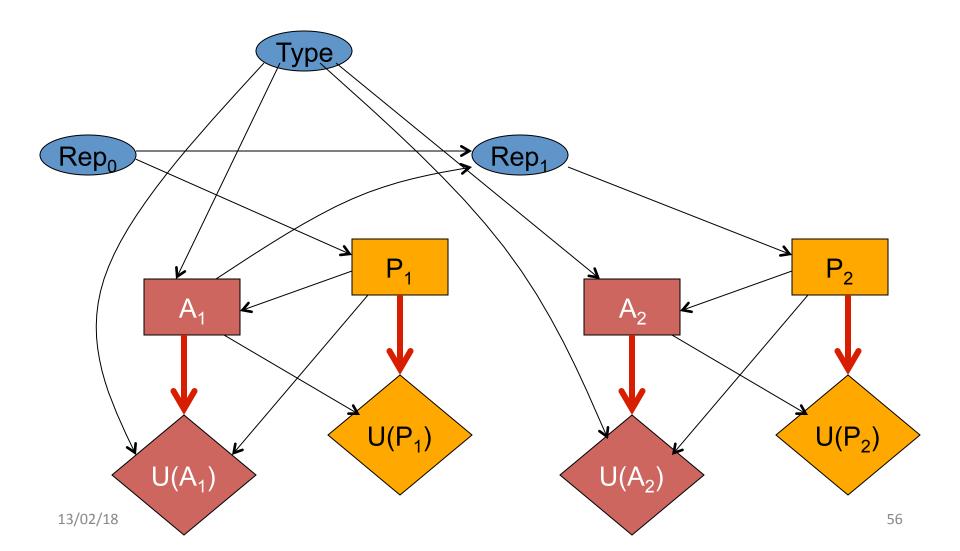
- Driller cares about oil
- Tester receives fee if driller drills
- Tester causes driller to find out (or not) about information tester herself does *not* know

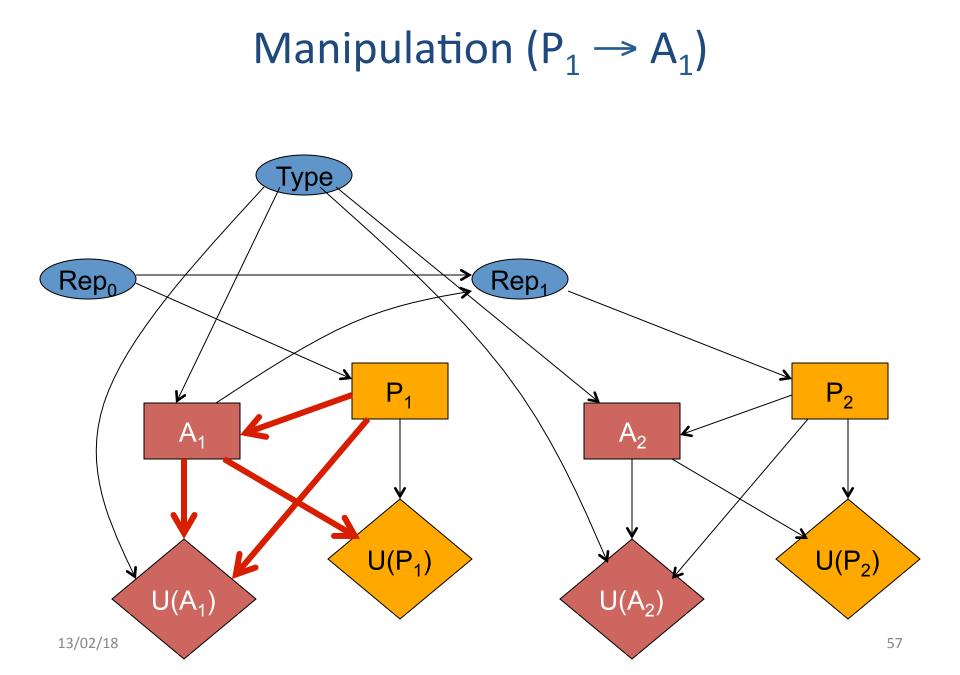
Example: Two Stage Principal-Agent Game

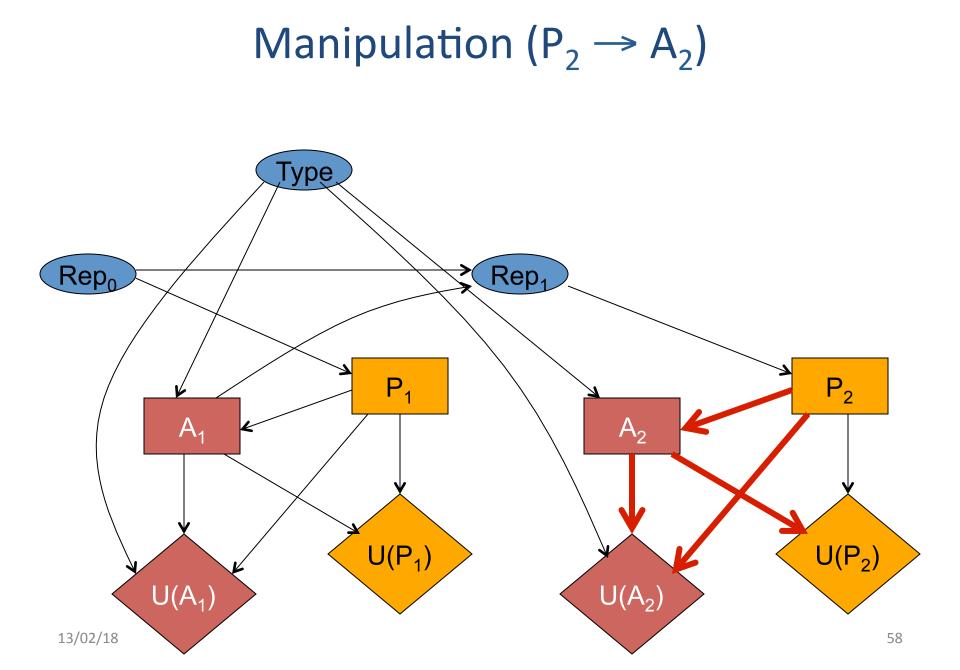
Type: described parameters specific to an agent Rep: Quantification of "Reputation"



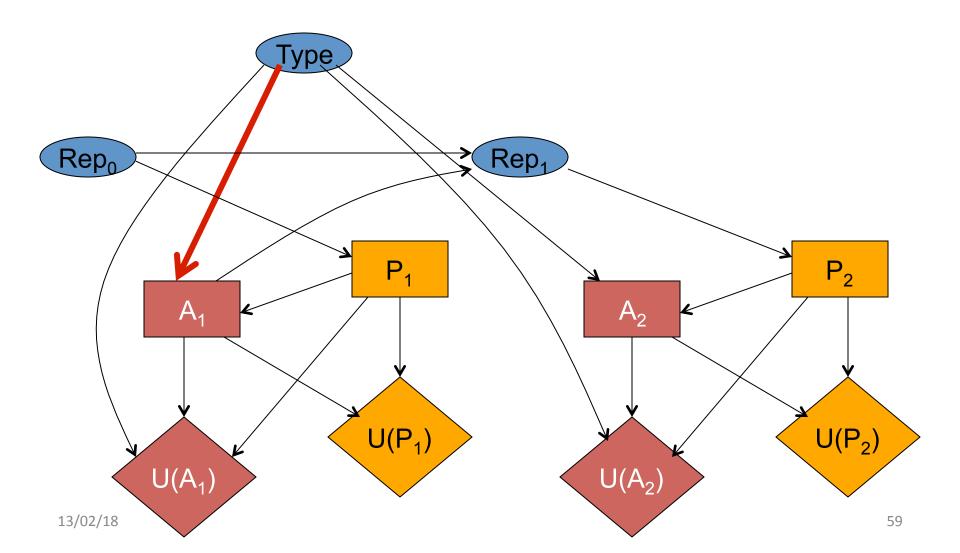
Direct Effect For All Four Decisions



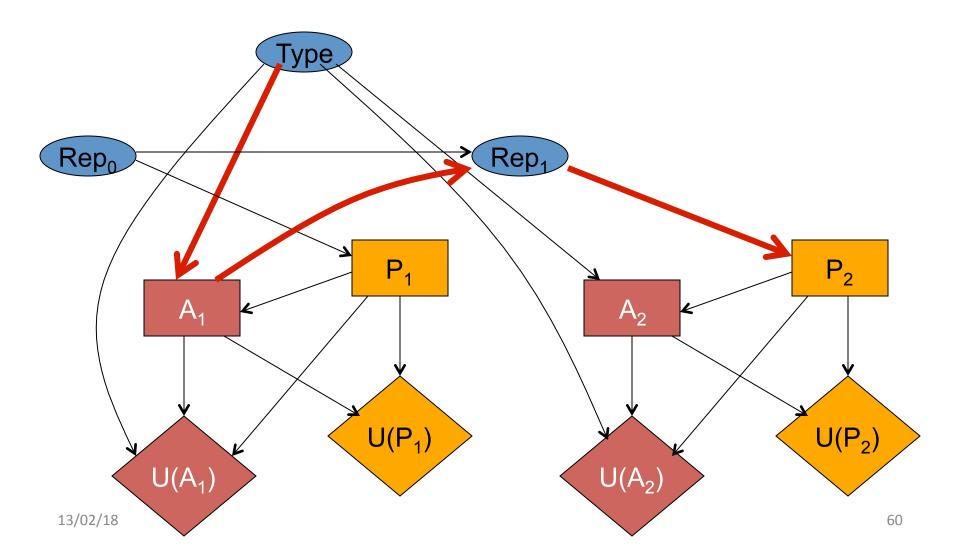




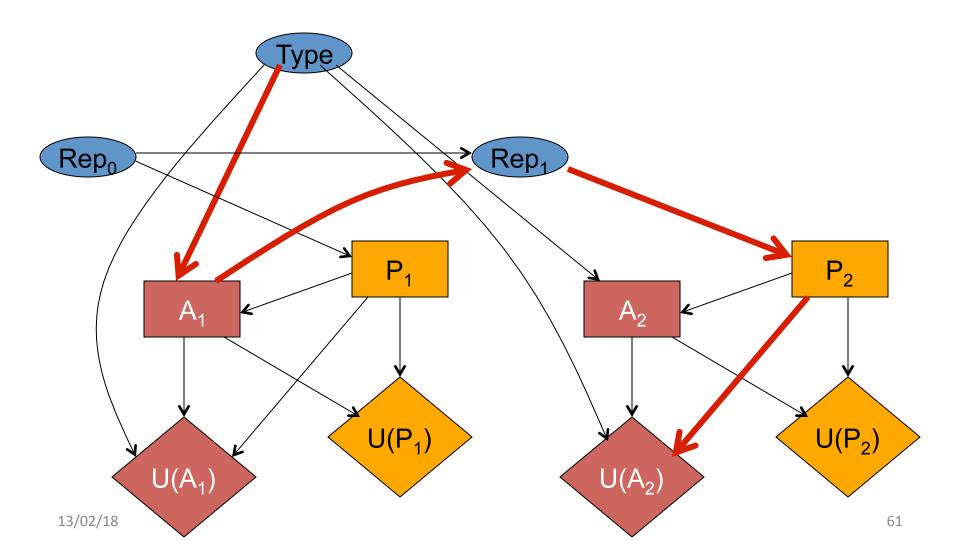
Signaling (A₁ signals Type to P₂)



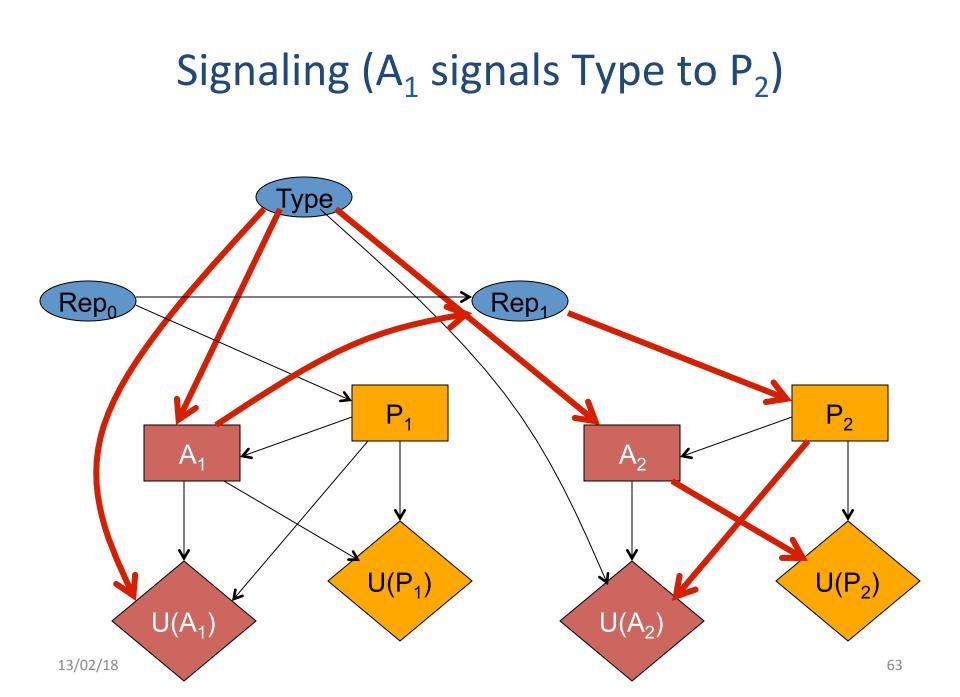
Signaling (A₁ signals Type to P₂)



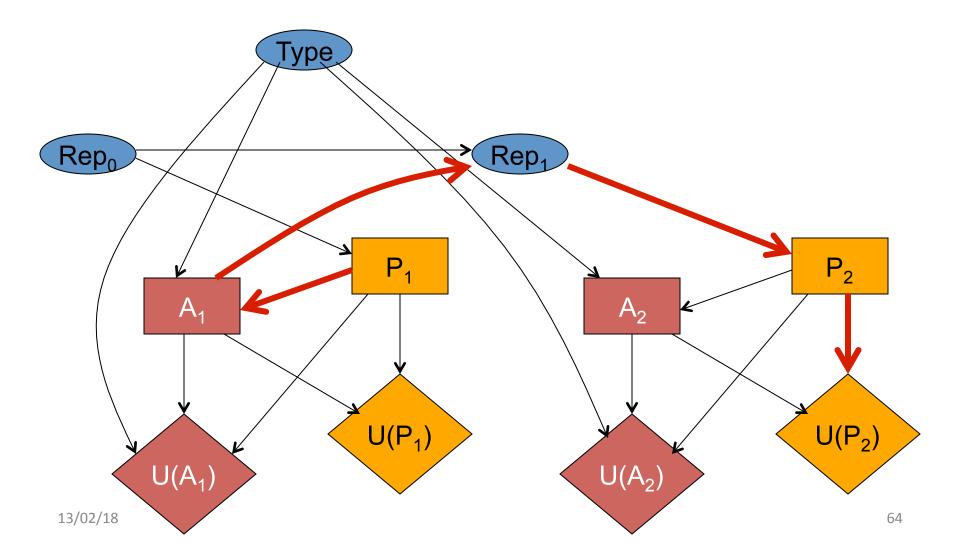
Signaling (A₁ signals Type to P₂)



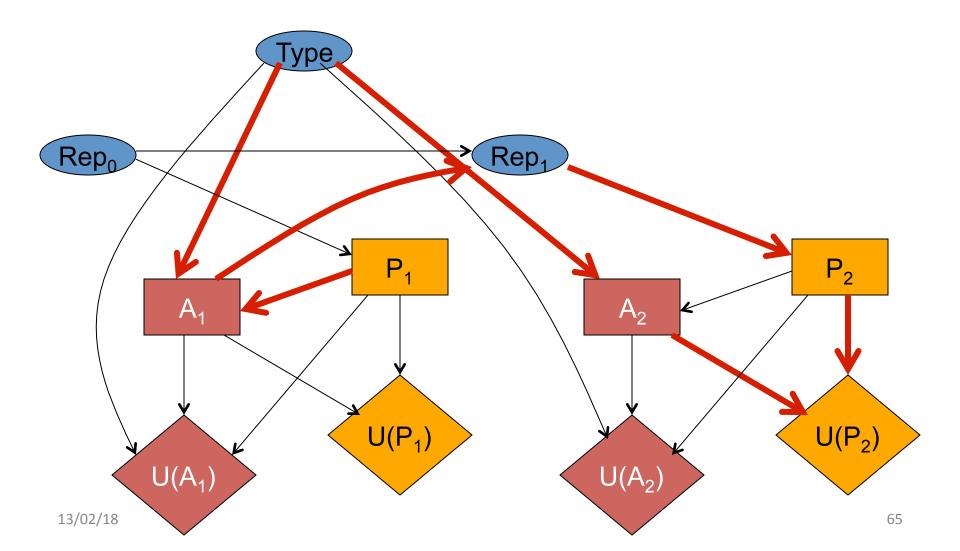
Signaling (A₁ signals Type to P₂) Туре Rep₁ Rep₀ P_1 P_2 A_1 A_2 $U(P_1)$ $U(P_2)$ $U(A_1)$ $U(A_2)$ 13/02/18 62



Revealing/Denying (P₁ reveals Type to P₂)



Revealing/Denying (P₁ reveals Type to P₂)



Acknowledgement

The source of some of these slides is a VLDB 2014 tutorial entitled "Causality and Explanations in Databases", by Meliou, Roy, Suciu.