Decision Making in Robots and Autonomous Agents

Stochastic System Models: How should a robot reason about uncertainty?

Subramanian Ramamoorthy
School of Informatics

6 February, 2018
Lecture Objectives

This lecture has three objectives:

• Introduce you to the notion of reasoning about the distribution of payoffs – using the simplest example of a decision problem, the Multi-armed bandit (MAB)

• Extend this solution concept to address the computation of an optimal policy for the MDP (generalizing what we saw two lectures ago) – key concept being the Bellman equation

• Introduce the computational procedures of Value and Policy Iteration, along with a simple example

Remark: If you are also registered in RL, this lecture will have overlap of content
Agent (e.g., reinforcement learning algorithm) is:

- Temporally situated
- Continual learning and planning
- Objective is to affect the environment – actions and states
- Environment is uncertain, stochastic
Multi-arm Bandits (MAB)

- N possible actions
- You can play for some period of time and you want to maximize reward (expected utility)

Which is the best arm/machine?

DEMO
Numerous Applications!

- Computer Go
- Brain computer interface
- Medical trials

- Packets routing
- Ads placement
- Dynamic allocation
What is the Choice?

t=1	0.3	0.2	0.8	0.4	0.0
t=2	0.7	0.1	0.9	0.5	0.1
t=3	0.5	0.3	0.7	0.3	0.3

...
The *n*-armed Bandit Problem

- Choose repeatedly from one of *n* actions; each choice is called a *play*.
- After each play *a*\(_t\)*, you get a reward *r*\(_t\)*, where

\[
E \{r_t \mid a_t\} = Q^*(a_t)
\]

These are unknown *action values*. Distribution of *r*\(_t\)* depends only on *a*\(_t\)*.

Objective is to maximize the reward in the long term, e.g., over 1000 plays.

To solve the *n*-armed bandit problem, you must **explore** a variety of actions and **exploit** the best of them.

Question: How does this relate to the f (cost to go) in earlier DP lecture?
Exploration/Exploitation Dilemma

- Suppose you form estimates
 \[Q_t(a) \approx Q^*(a) \]

- The **greedy** action at time \(t \) is \(a_t^* \)
 \[a_t^* = \arg\max_a Q_t(a) \]
 \[a_t = a_t^* \Rightarrow \text{exploitation} \]
 \[a_t \neq a_t^* \Rightarrow \text{exploration} \]

Why?
- You can’t exploit all the time; you can’t explore all the time
- You can never stop exploring; but you could reduce exploring.
Action-Value Methods

- Methods that adapt action-value estimates and nothing else, e.g.: suppose by the \(t \)-th play, action \(a \) had been chosen \(k_a \) times, producing rewards \(r_1, r_2, \ldots, r_{k_a} \), then

\[
Q_t(a) = \frac{r_1 + r_2 + \cdots + r_{k_a}}{k_a}
\]

“sample average”

\[
\lim_{k_a \to \infty} Q_t(a) = Q^*(a)
\]

What is the behaviour with finite samples?
ε-Greedy Action Selection

• Greedy action selection:

$$a_t = a_t^* = \arg \max_a Q_t(a)$$

• ε-Greedy:

$$a_t = \begin{cases}
 a_t^* \text{ with probability } 1 - \varepsilon \\
 \text{random action with probability } \varepsilon
\end{cases}$$

... the simplest way to balance exploration and exploitation
A simple bandit algorithm

Initialize, for $a = 1$ to k:

$Q(a) \leftarrow 0$
$N(a) \leftarrow 0$

Repeat forever:

$A \leftarrow \begin{cases} \arg\max_a Q(a) & \text{with probability } 1 - \varepsilon \\ \text{a random action} & \text{with probability } \varepsilon \end{cases}$ (breaking ties randomly)
$R \leftarrow \text{bandit}(A)$
$N(A) \leftarrow N(A) + 1$
$Q(A) \leftarrow Q(A) + \frac{1}{N(A)} [R - Q(A)]$
Worked Example: 10-Armed Testbed

- $n = 10$ possible actions
- Each $Q^*(a)$ is chosen randomly from a normal distrib.: $N(0,1)$
- Each r_t is also normal: $N(Q^*(a_t),1)$
- 1000 plays, repeat the whole thing 2000 times and average the results
10-Armed Testbed Rewards

Reward distribution

Run for 1000 steps
Repeat the whole thing 2000 times with different bandit tasks
ε-Greedy Methods on the 10-Armed Testbed

- Graph showing average reward over plays for different values of ε.
- Graph showing percentage of optimal action over plays for different values of ε.

06/02/18
Reasoning further: Interval Estimation

• Attribute to each arm an “optimistic initial estimate” within a certain confidence interval
• Greedily choose arm with highest optimistic mean (upper bound on confidence interval)

• Infrequently observed arm will have over-valued reward mean, leading to exploration
• Frequent usage pushes optimistic estimate to true values
Interval Estimation (IE) Procedure

• Associate to each arm 100(1-\(\alpha\))% reward mean upper band

• Assume, e.g., rewards are normally distributed

• Arm is observed \(n\) times to yield empirical mean & std. dev.

• \(\alpha\)-upper bound \((u_\alpha)\) can be written in terms of mean \(\mu\) and standard deviation \(\sigma\) as:

\[
u_\alpha = \hat{\mu} + \frac{\hat{\sigma}}{\sqrt{n}} c^{-1}(1 - \alpha)\]

\[c(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} \exp\left(-\frac{x^2}{2} \right) dx\]

\(c\) is the Cum. Distribution Function

Visualize on the board ...
How to Evaluate an Online Alg.: Regret

- After you have played for \(T \) rounds, you experience a regret:
 \[
 \rho = T \mu^* - \sum_{t=1}^{T} \hat{r}_t = T \mu^* - \sum_{t=1}^{T} E[r_i(t)]
 \]
 \[
 \mu^* = \max_k \mu_k
 \]

- If the average regret per round goes to zero with probability 1, asymptotically, we say the strategy has no-regret property.
 ~ guaranteed to converge to an optimal strategy

- \(\varepsilon \)-greedy is sub-optimal (so has some regret). Why?

- If \(\alpha \) is carefully controlled, IE could be zero-regret strategy
Moving Back to the MDP Model

• We have actions \((a_t)\) as well as states \((s_t)\)
• System dynamics are stochastic – represented by a probability distribution for transitions between states
• Problem is defined as maximization of expected rewards

\[
\text{State Transition Dynamics:} \\
P^a_{s's} = \Pr\{s_{t+1} = s'|s_t = s, a_t = a\} \\
\text{Expected Rewards:} \\
R^a_{ss'} = E\{r_{t+1}|s_t = s, a_t = a, s_{t+1} = s'\} \\
\text{Note that:} \\
R^a_s = \sum_{s'} P^a_{ss'} R^a_{ss'}
\]

– Recall that \(E(X) = \sum x_i p(x_i)\)
 for finite-state systems

06/02/18
What is the criterion for optimization (i.e., learning)?

\[R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}, \]

where \(\gamma, 0 \leq \gamma \leq 1 \), is the **discount rate**.

What would be the effect of changing \(\gamma \)?
Expectation of this Criterion: Value Functions

- Value functions are used to determine how good it is for the agent to be in a given state (sometimes also to perform an action at s)
 - Expectation of the criterion in prev. slide (similar to “cost-to-go”)
- This is defined w.r.t. a specific policy, i.e., action distribution \(\pi(s, a) \)

State value function:

\[
V^\pi(s) = \mathbb{E}_\pi \{ R_t \mid s_t = s \} = \mathbb{E}_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right\}
\]
Value Functions

Note that there are multiple sources of (probabilistic) uncertainty:

- In state s, one is allowed to select different actions a
- The system may transition to different states s' from s
- Depending on the above, return (defined in terms of reward) is a random variable – which we seek to maximize in expectation

$$V^\pi(s) = E_\pi \{ R_t | s_t = s \}$$

$$= E_\pi \{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s \}$$

$$= E_\pi \{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} | s_t = s \}$$
Recursive Form of V – Bellman Equation

$$V^\pi(s) = E_\pi \{ r_{t+1} + \gamma \sum_{k=0}^\infty \gamma^k r_{t+k+2} | s_t = s \}$$

We rewrite as follows:

- First term: $\sum_a \pi(s, a) \sum_{s'} P_{ss'}^a R_{ss'}^a$
- Second term: $\sum_a \pi(s, a) \sum_{s'} P_{ss'}^a \gamma E_\pi \{ \sum_{k=0}^\infty \gamma^k r_{t+k+2} | s_{t+1} = s' \}$

$$V^\pi(s) = \sum_a \pi(s, a) \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma E_\pi \{ \sum_{k=0}^\infty \gamma^k r_{t+k+2} | s_{t+1} = s' \}]$$

$$V^\pi(s) = \sum_a \pi(s, a) \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma V^\pi(s')]$$
Recursive Expression for an *Optimal* Value Function, V^*

A key result for Dynamic Programming with Markov Decision Process Models is the following recursive expression that holds true for each state:

$$ V^*(s) = \max_a \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma V^*(s')] $$

This is a characterization of the value function, i.e., when you find an optimal value function then each state and its neighbours will satisfy this recursive relationship.
Given a Policy, what is Value Function, V?

Solve iteratively, with a sequence of value functions, $V_0, V_1, V_2, \ldots : S \rightarrow \mathbb{R}$

$$V_{k+1}(s) = \sum_a \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_k(s') \right] \forall s \in S$$

$V_k = V^\pi$ is a fixed-point for these updates, as $k \rightarrow \infty$

Iterative policy evaluation.
Grid-World Example

Four possible actions: $A = \{\text{up, down, right, left}\}$

- the actions change state deterministically (but, not allowed to go off grid)

Encoded in transition probabilities, e.g., $P_{5,6}^{\text{right}} = 1$, $P_{5,10}^{\text{right}} = 0$, $P_{7,7}^{\text{right}} = 1$

Undiscounted, episodic task with reward -1 everywhere except goal states.
Iterative Policy Evaluation in Grid World

Note: The value function can be searched greedily to find long-term optimal actions
Now, Given a Value Function, Can We Improve a Policy?

• Yes, compute the following:

\[\pi'(s) = \arg \max_a E\{r_{t+1} + \gamma V^{\pi}(s_{t+1}|s_t = s, a_t = a) \} \]

\[\pi'(s) = \arg \max_a \sum_{s'} \mathcal{P}_{ss'}^a [\mathcal{R}_{ss'}^a + \gamma V^{\pi}(s')] \]

• ... and this can be iterated upon!

\[\pi_0 \xrightarrow{E} V^{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} V^{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} V^{\pi_2} \ldots \xrightarrow{I} \pi^* \xrightarrow{E} V^* \]
Example: Jack’s Car Rental

• £10 for each car rented (must be available when request received)
• Two locations, maximum of 20 cars at each
• Cars returned and requested randomly
 – Poisson distribution, \(n \) returns/requests with probability \(\frac{\lambda^n}{n!} e^{-\lambda} \)
 – Location 1: Average requests = 3, Average returns = 3
 – Location 2: Average requests = 4, Average Returns = 2
• Can move up to 5 cars between locations overnight (costs £2 each)

Problem setup:
• States, actions, rewards?
• Transition probabilities?
Solution: Jack’s Car Rental

Numbers indicate action: #cars to move

Value
Points to Ponder: Jack’s Car Rental

• Suppose first car moved is free but all others transfers cost £2
 – From Location 1 to Location 2 (not other direction!)
 – Because an employee would anyway go in that direction, by bus

• Suppose only 10 cars can be parked for free at each location
 – More than 10 incur fixed cost £4 for using an extra parking lot

... typical examples of ‘real-world nonlinearities’
Value Iteration

Each step in Policy Iteration needs Policy Evaluation (up to convergence) - can we avoid this computational overhead?

Just update the values for one iteration and then improve the policy.

Update rule:

\[V = \max_a \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma V(s')] \]

... use Bellman equation as update rule

So we sweep through the state space once (and don't wait for \(V \) to stop changing, as in policy evaluation), then improve the policy, then repeat.

This update combines the one-iteration update of \(V \) plus the policy improvement (greedification wrt \(V \)) in one step.
Acknowledgements

The main source for this section is Sutton+Barto, Reinforcement Learning:

• Part 1 [MAB]: Ch 2 (sections 2.1-2.2)
• Part 2 [Bellman/Value]: Ch 3,4 (sections 3.7-3.8, 4.1-4.4)

The interval estimation procedure is from L. Pack Kaelbling, *Learning in Embedded Systems*, MIT Press (Ch 4)

https://books.google.co.uk/books?id=WiN53ZYd0kgC&dq=leslie+kaelbling+interval+estimation&source=gbs_navlinks_s