Decision Making

wRMMJAMW

Stochastic System Models:
How should a robot reason about uncertainty?

Subramanian Ramamoorthy
School of Informatics

6 February, 2018

Lecture Objectives

This lecture has three objectives:

* Introduce you to the notion of reasoning about the
distribution of payoffs — using the simplest example of a
decision problem, the Multi-armed bandit (MAB)

* Extend this solution concept to address the computation of

an optimal policy for the MDP (generalizing what we saw two
lectures ago) — key concept being the Bellman equation

* Introduce the computational procedures of Value and Policy
Iteration, along with a simple example

Remark

An Agent-Environment View of Robots

Agent (e.g., reinforcement learning algorithm) is:

® Temporally situated
® Continual learning and planning

® Objective is to affect the environment — actions and states

® Environment is uncertain, stochastic

Agent
| State, Reward,
ngu!us, Gain, Payoff,
Situation Cost

Environment
(world)

06/02/18

Action,
Response,
Control

Multi-arm Bandits (MAB)

* N possible actions

* You can play for some period
of time and you want to
maximize reward (expected
utility)

Which is the best arm/
machine?

DEMO

06/02/18 4

Numerous Applications!

Computer Go Brain computer interface Medical trials

A

Packets routing Ads placement Dynamic allocation
m— ‘ »
- - N \

O < |

06/02/18

What is the Choice?

06/02/18

The n-armed Bandit Problem

* Choose repeatedly from one of n actions; each choice is
called a play

* After each play a,, you get a reward r,, where

*
E {I’t ‘ Clt} — Q (Clt) Question: How does
this relate to the f (cost to go)
These are unknown action values in earlier DP lecture?

Distribution of 7‘t depends only on at

Objective is to maximize the reward in the long term, e.qg., over 1000 plays

To solve the n-armed bandit problem,
you must explore a variety of actions
and exploit the best of them

06/02/18 7

Why?

Exploration/Exploitation Dilemma

Suppose you form estimates

Q(a)= Q*(a) action value estimates

The greedy action at time ¢ is a,”
a, =argmaxQ,(a)

a, = a, = exploitation

™% T %

a, = a, = exploration

You can’t exploit all the time; you can’t explore all the time

You can never stop exploring; but you could reduce
exploring.

06/02/18

Action-Value Methods

* Methods that adapt action-value estimates and nothing else,
e.g.: suppose by the #-th play, action a had been chosen k,
times, producing rewardsr;, 75, ..., 1;_, then

Critrte Aty

Qt(a) r “sample average”
a
1 * What is the behaviour
]}ILI}O Qt (Cl) - Q (Cl) with finite samples?

06/02/18 9

e-Greedy Action Selection

* Greedy action selection:

a, = a, =argmax Q,(a)

* ¢-Greedy:

4

4 = { a, with probability 1-¢

random action with probability &

... the simplest way to balance exploration and exploitation

06/02/18

10

A simple bandit algorithm

Initialize, for a = 1 to k:

Qa) <0
N(a) <0

Repeat forever:
A | argmax, Q(a) with probability 1 — ¢ (breaking ties randomly)
a random action with probability &
R <+ bandit(A)
N(A)« N(A) +1
Q(A) « Q(A) + i [R - Q(A)]

06/02/18 11

Worked Example: 10-Armed Testbed

n = 10 possible actions
Each Q'(a) is chosen randomly from a normal distrib.: N(0,])
Each Zisalso normal: N(Q'(a,),1)

* 1000 plays, repeat the whole thing 2000 times and average
the results

06/02/18 12

10-Armed Testbed Rewards

4
3
2
1
Reward , _t 20
distribution
-1
-2
Run for 1000 steps
3 Repeat the whole
thing 2000 times
with different bandit
tasks

06/02/18 13

e-Greedy Methods on the 10-Armed Testbed

1.5

€=0.1
€ =0.01
1 ALERLE Amﬂ'ﬁm
€ =0 (greedy)
Average
reward
0.5
0 I I I I
0 250 500 750 1000
Plays
100% =
80% — ey " - rad s
%o 0% € =001
Optimal :

action 40% 4

20% -

0%

06/02/18

1000

14

Reasoning further: Interval Estimation

 Attribute to each arm an “optimistic initial estimate” within a
certain confidence interval

* Greedily choose arm with highest optimistic mean (upper
bound on confidence interval)

* Infrequently observed arm will have over-valued reward
mean, leading to exploration

* Frequent usage pushes optimistic estimate to true values

06/02/18 15

Interval Estimation (IE) Procedure

e Associate to each arm 100(1-a)% reward mean upper band

 Assume, e.g., rewards are normally distributed
 Arm is observed n times to yield empirical mean & std. dev.

* o-upper bound (u,) can be written in terms of mean u and
standard deviation o as:

N

~ O
lxla=ﬂ+TC (1—0{)
n
c(t) ! fexp x dx is the Cum. Distribution Functi
= — - IS The Cum. DIstripution Frunction
N2 J 2 -

Visualize on the board ...
06/02/18 16

How to Evaluate an Online Alg.: Regret

e After you have played for T rounds, you experience a regret:
= [Reward sum of optimal strategy] — [Sum of actual collected rewards]

t=1 t=1 \ Randomness in

. draw of rewards &
U =max, u, Player’s strategy

* If the average regret per round goes to zero with probability
1, asymptotically, we say the strategy has no-regret property

~ guaranteed to converge to an optimal strategy
* ¢-greedy is sub-optimal (so has some regret). Why?
* If ais carefully controlled, IE could be zero-regret strategy

06/02/18 17

Moving Back to the MDP Model

* We have actions (a,) as well as

State Transition Dynamics:
states (s,)

* System dynamics are P, = Pr{sis1 = s'|s; = s,a; = a}
stochastic — represented by a
probability distribution for Expected Rewards:

transitions between states o |

S

* Problem is defined as
maximization of expected Note that:
rewards R =>",PL/RY,

— Recall that E(X) = 2 xip(x))
for finite-state systems

06/02/18 18

Decision Criterion

What is the criterion for optimization (i.e., learning)?

R t+1 y t+2 t+3 Ey t+k+1°

where y,0 <y <1, is the discount rate.

What would be the effect of changing y?

06/02/18

19

Expectation of this Criterion:
Value Functions

* Value functions are used to determine how good it is for the agent
to be in a given state (sometimes also to perform an action at s)

— Expectation of the criterion in prev. slide (similar to “cost-to-go”)

* This is defined w.r.t. a specific policy, i.e., action distribution 7t(s,a)

State value function:

V7(s) = Ex{Rils: = s} = Ex{> 7 "resnralse = s}
k=0

06/02/18 20

Value Functions

Note that there are multiple sources of (probabilistic) uncertainty:
* |nstates, one is allowed to select different actions a
* The system may transition to different states s’ from s

 Depending on the above, return (defined in terms of reward) is a
random variable — which we seek to maximize in expectation

s =s

o~
e

VT(s) = Ez{R
E

o0
T Z A’t-{—k—j—l"st = s}

k=0

~o
= 'r|7t+1+ Z 7t+l\+)|9t—5}

06/02/18 21

Recursive Form of J— Bellman Equation

V7(s) = Ex{Tt+1 +7 Ezio ’Yk"’t+k+2|3t = s}

We rewrite as follows:
. | Expand 1-step forward
e Firstterm:) m(s,a)) o PesRey & rewrite expectation

e Second term: Y. 7(s,a) Y, PLAERY ooV Tisrsolsis1 = 8}

V() = T w(5,0) Do PLIRE, + 1B {50V Trsrsolsier = o'}

VT(s) = 2am(5,0) 2o Py [Rey + V()]

06/02/18 22

Recursive Expression for an
Optimal Value Function, J*

* Akey result for Dynamic Programming with Markov Decision
Process Models is the following recursive expression that
holds true for each state:

V*(s) = max) Pi[Re, +V*(s)]

* This is a characterization of the value function, i.e., when you
find an optimal value function then each state and its
neighbours will satisfy this recursive relationship

06/02/18 23

Given a Policy, what is Value Function, 7

Solve iteratively, with a sequence of value functions, V;, V1, 15,...: S — R

Vit1(s) =Y, m(s,a) >0 P2 [Re, +4Vi(s)| Vs € S

Vi = V'™ is a fixed-point for these updates, as k — oo
- [terative policy evaluation.

06/02/18 24

Grid-World Example

7 r=—1
on all transitions

ion
actions 12 [13 |14

Four possible actions: A = { up, down, right, left}

- the actions change state deterministically (but, not allowed to go off grid)

: i I Hright Hright Hright
Encoded in transition probabilities,e.g.. Ps ¢ =1.P; 5 =0.P,. 5 =1

2

Undiscounted, episodic task with reward —1 everywhere except goal states.

06/02/18

25

Iterative Policy Evaluation in Grid World

Vj, for the Greedy Policy
Random Policy w.rt Vi
0.0{ 0.0 0.0 0.0 NN 0.0[-2.4[-2.9]-3.0 — |q
. t
k=0 0.0} 0.0 0.0{ 0.0 1 random k=3 -2.4)-2.9]-3.0]-2.9 : “L‘ﬁ !
- 0.0l 0.0l 0.0] 0.0 o [[[policy -2.9(-3.0|-2.9|-2.4 Ind I
0.0{ 0.0} 0.0 0.0 ol -3.0[-2.9]-2.4] 0.0 L - -
0.0[-1.0[-1.0]-1.0 bl 0.0[-6.1|-8.4]-9.0 - |9
-1.0|-1.0]-1.0|-1.0 [5 o -6.1]-7.7|-8.4|-8.4 Vi e [y optimal
-1.0[-1.0]-1.0[-1.0 -+l -8.4|-8.4|-7.7|-6.1 ~l
-1.0]-1.0l-1.0] 0.0 — -9.0(-8.4|-6.1] 0.0 L - -
0.0[-1.7[-2.0]-2.0 — | 0.0[-14.{-20.|-22. - — |9
T |d -14.]-18.|-20.]-20.

k=2 -1.7]-2.0]-2.0]-2.0 -+, k= oo 7 : L’q :
2.0[-2.0]-2.0]-1.7 Vbl ol -20.|-20.|-18.|-14. |
-2.0[-2.0[-1.7] 0.0 o s -22.-20]-14. 0.0 Ll o -

Note: The value fflmcu’on can be searched
ﬂreezﬁ@ to fino[ong-term qm’ma[actions

06/02/18 26

Now, Given a Value Function,
Can We Improve a Policy?

* Yes, compute the following:

m'(s) = arg max E{rit1 + V7™ (st41]5: = s,a; = a}

m'(s) = argmax Y Pl[Riy + V7 (s)]

e ...and this can be iterated upon!

E rmn I E I E , I E
7{'0—:>V“0—::.7['1—:-V7”—::-7]'2—1>V7r‘...—?~7T*—1"V*

06/02/18 27

Example: Jack’s Car Rental

e £10 for each car rented (must be available when request received)
 Two locations, maximum of 20 cars at each

* Cars returned and requested randomly
— Poisson distribution, n returns/requests with probability %e"\
— Location 1: Average requests = 3, Average returns =3
— Location 2: Average requests = 4, Average Returns = 2

e Can move up to 5 cars between locations overnight (costs £2 each)
Problem setup:

e States, actions, rewards?
* Transition probabilities?

06/02/18 28

Solution: Jack’s Car Rental

)
“Numbers indicate
_|--action: #cars to move
0
g T /R em— Value
=
2
8
B
=
g
&)
*® [

° #Cars at second location 2

06/02/18 29

Points to Ponder: Jack’s Car Rental

* Suppose first car moved is free but all others transfers cost £2
— From Location 1 to Location 2 (not other direction!)
— Because an employee would anyway go in that direction, by bus

* Suppose only 10 cars can be parked for free at each location

— More than 10 incur fixed cost £4 for using an extra parking lot

... typical examples of ‘real-world nonlinearities’

06/02/18 30

Value Iteration

Fach step in Policy Tteration needs Policy Evaluation (upto convergence)
- can we avoid this computational overhead?

Just update the values for one iteration and then improve the policy.
Update rule:

Ve P (R T ... ‘use Bellman equation
= maX, Zs’ ss’['ss’ + / ('5)] as u}od'aw T'H[Q

So we sweep through the state space once (and don't wait for V' to stop changing,
as in policy evaluation), then improve the policy, then repeat.

This update combines the one-iteration update of V' plus the policy improvement
(greedification wrt V') in one step.

06/02/18 31

Acknowledgements

The main source for this section is Sutton+Barto, Reinforcement
Learning:

 Part1 [MAB]: Ch 2 (sections 2.1-2.2)
* Part 2 [Bellman/Value]: Ch 3,4 (sections 3.7-3.8, 4.1-4.4)

The interval estimation procedure is from L. Pack Kaelbling, Learning in
Embedded Systems, MIT Press (Ch 4)

https://books.google.co.uk/books?id=WiN53ZYd0kgC&dqg=leslie
+kaelbling+interval+estimation&source=gbs navlinks s

06/02/18 32

