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Lecture	Objec+ves	

This	lecture	has	three	objec+ves:	
•  Introduce	you	to	the	no+on	of	reasoning	about	the	

distribu+on	of	payoffs	–	using	the	simplest	example	of	a	
decision	problem,	the	Mul+-armed	bandit	(MAB)	

•  Extend	this	solu+on	concept	to	address	the	computa+on	of	
an	op+mal	policy	for	the	MDP	(generalizing	what	we	saw	two	
lectures	ago)	–	key	concept	being	the	Bellman	equa+on	

•  Introduce	the	computa+onal	procedures	of	Value	and	Policy	
Itera+on,	along	with	a	simple	example	

Remark:	If	you	are	also	registered	in	RL,	this	lecture	will	have	overlap	of	content	
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An	Agent-Environment	View	of	Robots	

Agent	(e.g.,	reinforcement	learning	algorithm)	is:	
•  Temporally	situated	
•  Con+nual	learning	and	planning	
•  Objec+ve	is	to	affect	the	environment	–	ac+ons	and	states	
•  Environment	is	uncertain,	stochas+c	

Environment

Agent
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Mul+-arm	Bandits	(MAB)	

•  N	possible	ac+ons	
•  You	can	play	for	some	period	

of	+me	and	you	want	to	
maximize	reward	(expected	
u+lity)	

 
Which is the best arm/ 

machine? 
 

DEMO	
 
	 4	06/02/18	



Numerous	Applica+ons!	
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What	is	the	Choice?	
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The	n-armed	Bandit	Problem	

•  Choose	repeatedly	from	one	of	n	ac+ons;	each	choice	is	
called	a	play	

•  Aaer	each	play	at ,	you	get	a	reward	rt	,	where	

These are unknown action values
Distribution of      depends only on 		rt at

Objective is to maximize the reward in the long term, e.g., over 1000 plays

To solve the n-armed bandit problem,
    you must explore a variety of actions
    and exploit the best of them
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Question: How does 
this relate to the f (cost to go)  
in earlier DP lecture? 



Explora+on/Exploita+on	Dilemma	

•  Suppose	you	form	es+mates	

•  The	greedy	ac+on	at	+me	t		is	at
*	

•  You	can’t	exploit	all	the	+me;	you	can’t	explore	all	the	+me	
•  You	can	never	stop	exploring;	but	you	could	reduce	

exploring.		

Qt(a) ≈Q
*(a) action value estimates	

at
* = argmax

a
Qt (a)

at = at
* ⇒ exploitation

at ≠ at
* ⇒ exploration
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Why?	



Ac+on-Value	Methods	

•  Methods	that	adapt	ac+on-value	es+mates	and	nothing	else,	
e.g.:		suppose	by	the	t-th	play,	ac+on	a	had	been	chosen	ka	
+mes,	producing	rewards	r1 , r2 , …, rka

 , then		

“sample average” 

lim
ka→∞

Qt (a) =Q
*(a)
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What	is	the	behaviour		
with	finite	samples?	



ε-Greedy	Ac+on	Selec+on	

•  Greedy	ac+on	selec+on:	

•  ε-Greedy:	

at = at
* = argmax

a
Qt (a)

at
*   with probability 1−ε

random action with probability ε{at =

. . . the simplest way to balance exploration and exploitation
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Worked	Example:	10-Armed	Testbed	

•  n = 10 possible actions

•  Each          is chosen randomly from a normal distrib.:

•  Each      is also normal: 

•  1000 plays, repeat the whole thing 2000 times and average 
the results

rt

Q*(a) )1,0(N

N(Q*(at ),1)
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10-Armed	Testbed	Rewards	

1 2 63 54 7 8 9 10
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ε-Greedy	Methods	on	the	10-Armed	Testbed	
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Reasoning	further:	Interval	Es+ma+on	

•  Airibute	to	each	arm	an	“op+mis+c	ini+al	es+mate”	within	a	
certain	confidence	interval	

•  Greedily	choose	arm	with	highest	op+mis+c	mean	(upper	
bound	on	confidence	interval)	

•  Infrequently	observed	arm	will	have	over-valued	reward	
mean,	leading	to	explora+on	

•  Frequent	usage	pushes	op+mis+c	es+mate	to	true	values	
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Interval	Es+ma+on	(IE)	Procedure	

•  Associate	to	each	arm	100(1-α)%	reward	mean	upper	band	

•  Assume,	e.g.,	rewards	are	normally	distributed	
•  Arm	is	observed	n	+mes	to	yield	empirical	mean	&	std.	dev.	
•  α-upper	bound	(uα)	can	be	wriien	in	terms	of	mean	µ	and	

standard	devia+on	σ as:	
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Visualize	on	the	board	…	



How	to	Evaluate	an	Online	Alg.:	Regret	

•  Aaer	you	have	played	for	T	rounds,	you	experience	a	regret:	
=	[Reward	sum	of	op+mal	strategy]	–	[Sum	of	actual	collected	rewards]	

	
•  If	the	average	regret	per	round	goes	to	zero	with	probability	

1,	asympto+cally,	we	say	the	strategy	has	no-regret	property	
	 	~	guaranteed	to	converge	to	an	op+mal	strategy		

•  ε-greedy	is	sub-op+mal	(so	has	some	regret).	Why?	
•  If	α	is	carefully	controlled,	IE	could	be	zero-regret	strategy	
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Moving	Back	to	the	MDP	Model	

•  We	have	ac+ons	(at)	as	well	as	
states	(st)	

•  System	dynamics	are	
stochas+c	–	represented	by	a	
probability	distribu+on	for	
transi+ons	between	states	

•  Problem	is	defined	as	
maximiza+on	of	expected	
rewards			

–  Recall	that		E(X)	=	Σ	xi p(xi) 
 for	finite-state	systems	
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Decision	Criterion	

				What	is	the	criterion	for	op+miza+on	(i.e.,	learning)?	
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            Rt = rt+1 +γ rt+2 +γ
2rt+3 +!= γ krt+k+1,

k=0

∞

∑

where γ, 0 ≤ γ ≤1,  is the discount rate.

What would be the effect of changing γ?



Expecta+on	of	this	Criterion:	
Value	Func+ons	

•  Value	func+ons	are	used	to	determine	how	good	it	is	for	the	agent	
to	be	in	a	given	state	(some+mes	also	to	perform	an	ac+on	at	s)	
–  Expecta+on	of	the	criterion	in	prev.	slide	(similar	to	“cost-to-go”)	

•  This	is	defined	w.r.t.	a	specific	policy,	i.e.,	ac+on	distribu+on	π(s,a)	

State	value	func+on:	
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V ⇡(s) = E⇡{Rt|st = s} = E⇡{
1X

k=0

�krt+k+1|st = s}



Value	Func+ons	

Note	that	there	are	mul+ple	sources	of	(probabilis+c)	uncertainty:	
•  In	state	s,	one	is	allowed	to	select	different	ac+ons	a 
•  The	system	may	transi+on	to	different	states	s’	from	s	
•  Depending	on	the	above,	return	(defined	in	terms	of	reward)	is	a	

random	variable	–	which	we	seek	to	maximize	in	expecta+on	
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Recursive	Form	of	V	–	Bellman	Equa0on	
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Expand 1-step forward 
& rewrite expectation 



Recursive	Expression	for	an		
Op(mal	Value	Func+on,	V* 

•  A	key	result	for	Dynamic	Programming	with	Markov	Decision	
Process	Models	is	the	following	recursive	expression	that	
holds	true	for	each	state:	

•  This	is	a	characteriza+on	of	the	value	func+on,	i.e.,	when	you	
find	an	op+mal	value	func+on	then	each	state	and	its	
neighbours	will	sa+sfy	this	recursive	rela+onship	
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Given	a	Policy,	what	is	Value	Func+on,	V? 

Solve	itera+vely,	with	a	sequence	of	value	func+ons,		
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Grid-World	Example	
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Itera+ve	Policy	Evalua+on	in	Grid	World	
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Note: The value function can be searched
greedily to find long-term optimal actions



Now,	Given	a	Value	Func+on,		
Can	We	Improve	a	Policy?	

•  Yes,	compute	the	following:	

•  …	and	this	can	be	iterated	upon!	
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⇡0
(s) = argmax

a
E{rt+1 + �V ⇡

(st+1|st = s, at = a}

⇡0
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Example:	Jack’s	Car	Rental	

•  £10	for	each	car	rented	(must	be	available	when	request	received)	
•  Two	loca+ons,	maximum	of	20	cars	at	each	
•  Cars	returned	and	requested	randomly	

–  Poisson	distribu+on,	n	returns/requests	with	probability		
–  Loca+on	1:	Average	requests	=	3,	Average	returns	=	3	
–  Loca+on	2:	Average	requests	=	4,	Average	Returns	=	2	

•  Can	move	up	to	5	cars	between	loca+ons	overnight	(costs	£2	each)	

Problem	setup:	
•  States,	ac+ons,	rewards?	
•  Transi+on	probabili+es?	
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Solu+on:	Jack’s	Car	Rental	
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Numbers indicate
action: #cars to move

Value



Points	to	Ponder:	Jack’s	Car	Rental	

•  Suppose	first	car	moved	is	free	but	all	others	transfers	cost	£2	
–  From	Loca+on	1	to	Loca+on	2	(not	other	direc+on!)	
–  Because	an	employee	would	anyway	go	in	that	direc+on,	by	bus	

•  Suppose	only	10	cars	can	be	parked	for	free	at	each	loca+on	
–  More	than	10	incur	fixed	cost	£4	for	using	an	extra	parking	lot	

	 	…	typical	examples	of	‘real-world	nonlineari6es’	
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Value	Itera+on	
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Each step in Policy Iteration needs Policy Evaluation (upto convergence)
- can we avoid this computational overhead?

… use Bellman equation
as update rule
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