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Objectives of this Lecture

* Introduce the dynamic programming principle, a way to solve
sequential decision problems (such as path planning)

* [ntroduce the Markov Decision Process model, and discuss
the nature of the policy arising in a similar sequential decision
problem with probabilistic transitions

— Includes recap of the notion of Markov Chains



Problem of Determining Paths
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Getting from “A to B”: Bird’s Eye View
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Getting from “A to B”: Local View

Simulated drive through a rocky valley on Mars

Rover target point

Red area W-

Rover start point

How could we calculate the best path?
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Dynamic Programming (DP) Principle

Mathematical technique often useful for making a sequence
of inter-related decisions

Systematic procedure for determining the combination of
decisions that maximize overall effectiveness

There may not be a “standard form” of DP problems, instead
it is an approach to problem solving and algorithm design

We will try to understand this through a few example models,
solving for the “optimal policy” (the notion of which will
become clearer as we go along)



Stagecoach Problem

Simple thought experiment due to H.M. Wagner at Stanford

Consider a mythical American salesman from over a hundred
years ago. He needs to travel west from the east coast,
through unfriendly country with bandits.

He has a well defined start point and destination, but the
states he visits en route are up to his own choice

Let us visualize this, using numbered blocks for states



Stagecoach Problem: Possible Routes

Each box is a state (generically indexed by an integer, i)
Transitions, i.e., edges, can be annotated with a “cost”
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Stagecoach Problem: Setup

* The salesman needs to go through four stages to travel from
his point of departure in state 1 to destination in state 10

* This salesman is concerned about his safety — does not want
to be attacked by bandits

* One approach he could take (as envisioned by Wagner):
— Life insurance policies are offered to travellers

— Cost of each policy is based on evaluation of safety of path
— Safest path = cheapest life insurance policy
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Stagecoach Problem: Costs

The cost of the standard policy on the stagecoach run from state
i to state j denoted by ¢;; 1s
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Myopic Approach

Making the decision which is best for each successive stage
need not yield the overall optimal decision

WHY?

Selecting the cheapest run offered by each successive stage
would give the route 1 ->2->6->9->10.

What is the total cost?

Observation: Sacrificing a little on one stage may permit
greater savings thereafter.

— e.g., a cheaper alternativeto1->2->6is1->4->6



Is Trial and Error Useful?

What does it mean to solve the problem (finding the cheapest
cost path) by trial and error?

— What are the trials over? What is the error?

How many possible routes do we have in this problem?
Ans: 18

|s exhaustive enumeration always an option? How does the
number of routes scale?



Dynamic Programming Principle

e Start with a small portion of the problem and find optimal
solution for this smaller problem

e Gradually enlarge the problem — finding the current optimal
solution from the previous one

... until original problem is solved in its entirety

* This general philosophy is the essence of the DP principle

— The details are implemented in many different ways in
different specialised scenarios
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Solving the Stagecoach Problem

* At stage n, consider the decision variable x, (n = 1,2,3,4).
* Theselectedrouteis: 1 > 21 — 9 — 3 — T4
Which state is implied by x,?

* Total cost of the overall best policy for the remaining stages,

given that the salesman is in state s and selects x,, as the
immediate destination: f, (s, z,)

xr, = argmin f, (s, xy)
(s) = minimum value of f,(s,xy)
,:(S) — fn(Sax;:)
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Solving the Stagecoach Problem

* The objective is to determine f7 (1)

and the corresponding optimal policy achieving this

* DP achieves this by successively finding f;(s), f3(s), f5(s)
which will lead us to the desired f1 (1)

* When the salesman has only one more stage to go, his route
is entirely determined by his final destination. Therefore,

s || fi(s) | a3
8 3| 10
9 4 | 10
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Solving the Stagecoach Problem

 What about when the salesman has two more stages to go?

 Assume salesman is at stage 5 — he must next go either to
stage 8 or 9 at cost of 1 or 4 respectively

— If he chooses stage 8, minimum additional cost after reaching
there is 3 (table in earlier slide)

— So, cost for that decisionis1+3 =4
— Total cost if he chooses stage 9is4+4 =8

 Therefore, he should choose state 8

26/01/18

16



The Two-stage Problem

f3(87333) — Cszx4 + fI(IB)

)
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Likewise, Three-stage Problem

fa(s,2) = cou, + f3(22)

A
s \
s\wa || 5 ] 6 | T | f3(s) | a3
2 11t [12] 11 [5or6
3 7191w 7 5
4 88 ]11] 8 [5o0r6
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Finally, the Four-stage Problem

fl(saajl) — Csx4 + f2*($1)
A A\

s\e1 || 2 | 3 | 4 | f{(s) ]
1 13 ] 11 | 11 11 | 3or4

Optimal Solution:

Salesman should first go to either 3 or 4

Say, he chooses 3, the three-stage problem result is 5
Which leads to the two-stage problem result of 8

And, of course, finally 10
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Characteristics of DP Problems

The stagecoach problem might have sounded strange, but it is
the literal instantiation of key DP terms

DP problems all share certain features:

1. The problem can be divided into stages, with a policy
decision required at each stage

2. Each stage has several states associated with it

The effect of the policy decision at each stage is to transform
the current state into a state associated with the next stage

(could be according to a probability distribution, as we’ll see
next).
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Characteristics of DP Problems, contd.

5. Given the current state, an optimal policy for the remaining
stages is independent of the policy adopted in previous
stages

6. The solution procedure begins by finding the optimal policy
for each state of the last stage.

7. Recursive relationship identifies optimal policy for each state
at stage n, given optimal policy for each state at stage n+1:

fn(s) = ngin{cszvn + f;+1(xn)}

mn

8. Using this recursive relationship, the solution procedure
moves backward stage by stage — until finding optimal policy
from initial stage

26/01/18 21



Let us now consider a problem where the
transitions may not be deterministic:

(A little bit about) Markov Chains and Decisions
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Stochastic Processes

A stochastic process is an indexed collection of random
variables {X;}

— e.g., collection of weekly demands for a product
One type: At a particular time ¢, labelled by integers, system is

found in exactly one of a finite number of mutually exclusive
and exhaustive categories or states, labelled by integers too

Process could be embedded in that time points correspond to
occurrence of specific events (or time may be equi-spaced)

Random variables may depend on others, e.g.,

max{(3 — Di+1),0},ifX; <0

.‘X'_ — J i 4 7 . > .
17 U max{(Xy — Diga),0},if X, > 0



Markov Chains

* The stochastic process is said to have a Markovian property if

P{Xi11 = jlXo = ko, X1 = k1, ... Ximo1 = ki1, Xy = i} = P{Xy1 = j| Xy =1}

for ¢ = 0.1,... and every sequence ¢i,j,ko,....ki—1.

* Markovian property means that the conditional probability of
a future event given any past events and current state, is
independent of past states and depends only on present

* The conditional probabilities are transition probabilities,
P{Xi11 = j| Xy =i}
* These are stationary if time invariant, called Pij
P{Xis1 =j|X; =i} = P{X1 =j|Xo=1i},Vt =0,1,...
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Markov Chains

Looking forward in time, n-step transition probabilities, pij(”)

(n) 7
Ponr

P{Xin =jl X, =i} = P{X, = j|Xo =i},Vt =0,1, ...
* One can write a transition matrix, - (™
00
P(n) = .
_(n)
L Py

_(n
0o -+ Py A

* A stochastic process is a finite-state Markov chain if it has,

— Finite number of states

— Markovian property

— Stationary transition probabilities

— A set of initial probabilities P{X, = i} for all i
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Markov Chains

* n-step transition probabilities can be obtained from 1-step
transition probabilities recursively (Chapman-Kolmogorov)

M
(n) _ (V), (R=V) s s i) e
pij o Zpik PA.j s V2, ], O0<v<n
k=0

* We can get this via the matrix too
pP" =pp.. .P=pP'=pPprlt=prlp

* First Passage Time: number of transitions to go from i to j for
the first time

— Ifi =, this is the recurrence time
— In general, this itself is a random variable
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Markov Chains

e n-step recursive relationship for first passage time

(1) (1) ,
(2) _ (2) (1),
fij" =i — Iij Piis

(n) _ () _ £(1), (n=1) _ £(2), (n—2) (n—1),
Ly~ =pii’ = Fypy;  — i Py =t P

* For fixed i and j, these ;™ are nonnegative numbers so that

Z ) <1 What does <1 signify?
n=1

« If, Y fiY =1, stateis recurrent; If n=1 then it is absorbing

n=1
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Markov Chains: Long-Run Properties

* Consider this transition matrix of an inventory process:

- 0.08 0.184 0.368 0.368 |
0.632 0.368 0 0
0.264 0.368 0.368 0
0.08 0.184 0.368 0.368

PY =p=

* This captures the evolution of inventory levels in a store
— What do the 0 values mean?
— Other properties of this matrix?
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Markov Chains: Long-Run Properties

The corresponding 8-step transition matrix becomes:

[ 0.286 0.285 0.264 0.166
0.286 0.285 0.264 0.166
0.286 0.285 0.264 0.166

| 0.286 0.285 0.264 0.166 |

p® = p® =

Interesting property: probability of being in state j after 8
weeks appears independent of initial level of inventory.

* For anirreducible ergodic Markov chain, one has limiting
probability

lim p

n— o0 gy \

Reciprocal gives you

M o recurrence time
T = Z TiPij, V] = O M
i=0
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Markov Decision Model

Consider the following application: machine maintenance

A factory has a machine that deteriorates rapidly in quality
and output and is inspected periodically, e.g., daily

Inspection declares the machine to be in four possible states:
— 0: Good as new

— 1: Operable, minor deterioration
— 2: Operable, major deterioration
— 3:Inoperable

Let X, denote this observed state

— evolves according to some “law of motion”, it is a stochastic process
— Furthermore, assume it is a finite state Markov chain



* Transition matrix is based on the following:

Markov Decision Model

States | O 1 2 3
0 O 7/8 1 1/16 | 1/16
1 O34 1/8 1/8
2 O O 1/2 1/2
3 O O 0 1

* Once the machine goes inoperable, it stays there until repairs

— If no repairs, eventually, it reaches this state which is absorbing!

* Repair is an action — a very simple maintenance policy.

— e.g., machine from from state 3 to state O

26/01/18

31



Markov Decision Model

* There are costs as system evolves:
— State 0: cost O
— State 1: cost 1000
— State 2: cost 3000

 Replacement cost, taking state 3 to 0, is 4000 (and lost
production of 2000), so cost = 6000

 The modified transition probabilities are:

26/01/18

States | 0 1 2 3
0 O 7/8 1 1/16 | 1/16
1 O34 1/8 1/8
2 0l O 1/2 1/2
3 11 0 0 0
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Markov Decision Model

* Simple question (a behavioural property):
What is the average cost of this maintenance policy?

 Compute the steady state probabilities:

2 T 2 2 How?

* (Long run) expected average cost per day,

25000

07y 4+ 10007, + 30007y + 600073 = — 1923.08

26/01/18
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Markov Decision Model

* Consider a slightly more elaborate policy:
— When itis inoperable or needing major repairs, replace
* Transition matrix now changes a little bit
* Permit one more possible action: overhaul
— Go back to minor repairs state (1) for the next time step
— Not possible if truly inoperable, but can go from major to minor
* Key point about the system behaviour. It evolves according to
— “Laws of motion”

— Sequence of decisions made (actions from {1: none,2:overhaul,3: replace})

* Stochastic process is now defined in terms of {X } and {A,}
— Policy, R, is a rule for making decisions
* Could use all history, although popular choice is (current) state-based
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* There is a space of potential policies, e.g.,

Policies | dp(R) | di(R) | do(R) | d3(R)
R, 1 3
Ry 2 3
R. 3 3

d 3 3

States | 0 | 1 2 3
0 O(7/8 | 1/16 | 1/16
1 O34 1/8 1/8
2 0 1 0 0
3 1] O 0 0

Markov Decision Model

* Each policy defines a transition matrix, e.g., for R,

Which policy is best?
Need costs....
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Markov Decision Model

* (), =expected cost incurred during next transition if system is
in state 7 and decision k is made

State

0
1
2
3

0
1
3

>~ b~ b

(o o)

8

6
6
6
6

* The long run average expected cost for each policy may be

computed using

26/01/18

M
E(C)=) Cym
1=0

R, is best
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So, What is a Policy?

e A“program”
 Map from states (or situations in the decision problem) to
actions that could be taken

— e.g., if in ‘level 2’ state, call contractor for overhaul
— If less than 3 DVDs of a film, place an order for 2 more

* A probability distribution 7t(s,a)
— A joint probability distribution over states and actions

— If in a state s,, then with probability defined by =, take
action a,
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