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Objec&ves	of	this	Lecture	

•  Introduce	the	dynamic	programming	principle,	a	way	to	solve	
sequen&al	decision	problems	(such	as	path	planning)	

•  Introduce	the	Markov	Decision	Process	model,	and	discuss	
the	nature	of	the	policy	arising	in	a	similar	sequen&al	decision	
problem	with	probabilis&c	transi&ons	
–  Includes	recap	of	the	no&on	of	Markov	Chains	
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Problem	of	Determining	Paths	
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GeMng	from	“A	to	B”:	Bird’s	Eye	View	
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GeMng	from	“A	to	B”:	Local	View	
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How could we calculate the best path?



Dynamic	Programming	(DP)	Principle	

•  Mathema&cal	technique	oXen	useful	for	making	a	sequence	
of	inter-related	decisions	

•  Systema&c	procedure	for	determining	the	combina&on	of	
decisions	that	maximize	overall	effec&veness	

•  There	may	not	be	a	“standard	form”	of	DP	problems,	instead	
it	is	an	approach	to	problem	solving	and	algorithm	design	

•  We	will	try	to	understand	this	through	a	few	example	models,	
solving	for	the	“op&mal	policy”	(the	no&on	of	which	will	
become	clearer	as	we	go	along)	
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Stagecoach	Problem	

•  Simple	thought	experiment	due	to	H.M.	Wagner	at	Stanford	
•  Consider	a	mythical	American	salesman	from	over	a	hundred	

years	ago.	He	needs	to	travel	west	from	the	east	coast,	
through	unfriendly	country	with	bandits.		

•  He	has	a	well	defined	start	point	and	des&na&on,	but	the	
states	he	visits	en	route	are	up	to	his	own	choice	

•  Let	us	visualize	this,	using	numbered	blocks	for	states		
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Stagecoach	Problem:	Possible	Routes	
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Each box is a state (generically indexed by an integer, i) 
Transitions, i.e., edges, can be annotated with a “cost” 



Stagecoach	Problem:	Setup	

•  The	salesman	needs	to	go	through	four	stages	to	travel	from	
his	point	of	departure	in	state	1	to	des&na&on	in	state	10	

•  This	salesman	is	concerned	about	his	safety	–	does	not	want	
to	be	agacked	by	bandits	

•  One	approach	he	could	take	(as	envisioned	by	Wagner):	
–  Life	insurance	policies	are	offered	to	travellers	
–  Cost	of	each	policy	is	based	on	evalua&on	of	safety	of	path	
–  Safest	path	=	cheapest	life	insurance	policy	
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Stagecoach	Problem:	Costs	

The	cost	of	the	standard	policy	on	the	stagecoach	run	from	state	
i	to	state	j denoted	by	cij is 
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Which route minimizes the total cost of the policy? 



Myopic	Approach	

•  Making	the	decision	which	is	best	for	each	successive	stage	
need	not	yield	the	overall	op&mal	decision	

•  WHY?	

•  Selec&ng	the	cheapest	run	offered	by	each	successive	stage	
would	give	the	route	1	->	2	->	6	->	9	->	10.	

•  What	is	the	total	cost?	

•  ObservaDon:	Sacrificing	a	ligle	on	one	stage	may	permit	
greater	savings	thereaXer.	
–  e.g.,	a	cheaper	alterna&ve	to	1	->	2	->	6	is	1	->	4	->	6	
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Is	Trial	and	Error	Useful?	

•  What	does	it	mean	to	solve	the	problem	(finding	the	cheapest	
cost	path)	by	trial	and	error?		
– What	are	the	trials	over?	What	is	the	error?	

•  How	many	possible	routes	do	we	have	in	this	problem?	
	Ans:	18	

•  Is	exhaus&ve	enumera&on	always	an	op&on?	How	does	the	
number	of	routes	scale?	
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Dynamic	Programming	Principle	

•  Start	with	a	small	por&on	of	the	problem	and	find	op&mal	
solu&on	for	this	smaller	problem	

•  Gradually	enlarge	the	problem	–	finding	the	current	op&mal	
solu&on	from	the	previous	one	

	…	un&l	original	problem	is	solved	in	its	en&rety	

•  This	general	philosophy	is	the	essence	of	the	DP	principle	
–  The	details	are	implemented	in	many	different	ways	in	
different	specialised	scenarios	
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Solving	the	Stagecoach	Problem	

•  At	stage	n,	consider	the	decision	variable	xn	(n = 1,2,3,4).	
•  The	selected	route	is:	

	 	Which	state	is	implied	by	x4?	

•  Total	cost	of	the	overall	best	policy	for	the	remaining	stages,	
given	that	the	salesman	is	in	state	s	and	selects	xn	as	the	
immediate	des&na&on:	
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1 ! x1 ! x2 ! x3 ! x4

fn(s, xn)

x

⇤
n = argmin fn(s, xn)

f

⇤
n(s) = minimum value of fn(s, xn)

f

⇤
n(s) = fn(s, x

⇤
n)



Solving	the	Stagecoach	Problem	

•  The	objec&ve	is	to	determine	
	and	the	corresponding	op&mal	policy	achieving	this	

•  DP	achieves	this	by	successively	finding	
	which	will	lead	us	to	the	desired		

•  When	the	salesman	has	only	one	more	stage	to	go,	his	route	
is	en&rely	determined	by	his	final	des&na&on.	Therefore,	
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f⇤
1 (1)

f⇤
4 (s), f

⇤
3 (s), f

⇤
2 (s)

f⇤
1 (1)



Solving	the	Stagecoach	Problem	

•  What	about	when	the	salesman	has	two	more	stages	to	go?	

•  Assume	salesman	is	at	stage	5	–	he	must	next	go	either	to	
stage	8	or	9	at	cost	of	1	or	4	respec&vely	
–  If	he	chooses	stage	8,	minimum	addi&onal	cost	aXer	reaching	
there	is	3	(table	in	earlier	slide)	

–  So,	cost	for	that	decision	is	1	+	3	=	4	
–  Total	cost	if	he	chooses	stage	9	is	4	+	4	=	8	

•  Therefore,	he	should	choose	state	8	
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The	Two-stage	Problem	
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f3(s, x3) = c

sx3 + f

⇤
4 (x3)



Likewise,	Three-stage	Problem	
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f2(s, x2) = c

sx2 + f

⇤
3 (x2)



Finally,	the	Four-stage	Problem	
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f1(s, x1) = c

sx1 + f

⇤
2 (x1)

Optimal Solution: 
Salesman should first go to either 3 or 4 
Say, he chooses 3, the three-stage problem result is 5 
Which leads to the two-stage problem result of 8 
And, of course, finally 10 



Characteris&cs	of	DP	Problems	

The	stagecoach	problem	might	have	sounded	strange,	but	it	is	
the	literal	instan&a&on	of	key	DP	terms	
	
DP	problems	all	share	certain	features:	
1.  The	problem	can	be	divided	into	stages,	with	a	policy	

decision	required	at	each	stage	
2.  Each	stage	has	several	states	associated	with	it	
3.  The	effect	of	the	policy	decision	at	each	stage	is	to	transform	

the	current	state	into	a	state	associated	with	the	next	stage	
(could	be	according	to	a	probability	distribu&on,	as	we’ll	see	
next).	
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Characteris&cs	of	DP	Problems,	contd.	

5.  Given	the	current	state,	an	op&mal	policy	for	the	remaining	
stages	is	independent	of	the	policy	adopted	in	previous	
stages	

6.  The	solu&on	procedure	begins	by	finding	the	op&mal	policy	
for	each	state	of	the	last	stage.	

7.  Recursive	rela&onship	iden&fies	op&mal	policy	for	each	state	
at	stage	n,	given	op&mal	policy	for	each	state	at	stage	n+1:		

8.  Using	this	recursive	rela&onship,	the	solu&on	procedure	
moves	backward	stage	by	stage	–	un&l	finding	op&mal	policy	
from	ini&al	stage	
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f

⇤
n

(s) = min
xn

{c
sxn + f

⇤
n+1(xn

)}



Let	us	now	consider	a	problem	where	the	
transi&ons	may	not	be	determinis&c:	

	
	

(A	ligle	bit	about)	Markov	Chains	and	Decisions	
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Stochas&c	Processes	

•  A	stochas0c	process	is	an	indexed	collec&on	of	random	
variables					.	
–  e.g.,	collec&on	of	weekly	demands	for	a	product	

•  One	type:	At	a	par&cular	&me	t,	labelled	by	integers,	system	is	
found	in	exactly	one	of	a	finite	number	of	mutually	exclusive	
and	exhaus&ve	categories	or	states,	labelled	by	integers	too	

•  Process	could	be	embedded	in	that	&me	points	correspond	to	
occurrence	of	specific	events	(or	&me	may	be	equi-spaced)	

•  Random	variables	may	depend	on	others,	e.g.,	
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Markov	Chains	

•  The	stochas&c	process	is	said	to	have	a	Markovian	property	if	

•  Markovian	property	means	that	the	condi&onal	probability	of	
a	future	event	given	any	past	events	and	current	state,	is	
independent	of	past	states	and	depends	only	on	present	

•  The	condi&onal	probabili&es	are	transiDon	probabiliDes,	

•  These	are	sta&onary	if	&me	invariant,	called	pij,	
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Markov	Chains	

•  Looking	forward	in	&me,	n-step	transiDon	probabiliDes,	pij
(n)

•  One	can	write	a	transi&on	matrix,	

•  A	stochas&c	process	is	a	finite-state	Markov	chain	if	it	has,	
–  Finite	number	of	states	
–  Markovian	property	
–  Sta&onary	transi&on	probabili&es	
–  A	set	of	ini&al	probabili&es P{X0 = i} for	all	i
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Markov	Chains	

•  n-step	transi&on	probabili&es	can	be	obtained	from	1-step	
transi&on	probabili&es	recursively	(Chapman-Kolmogorov)	

	
•  We	can	get	this	via	the	matrix	too	
	
•  First	Passage	Time:	number	of	transi&ons	to	go	from	i to	j	for	

the	first	&me	
–  If	i =	j, this	is	the	recurrence	Dme	
–  In	general,	this	itself	is	a	random	variable	
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Markov	Chains	

•  n-step	recursive	rela&onship	for	first	passage	&me	

•  For	fixed	i	and	j,	these	fij
(n)	are	nonnega&ve	numbers	so	that	

•  If,																							,	state	is	recurrent;	If	n=1	then	it	is	absorbing	
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What does <1 signify? 



Markov	Chains:	Long-Run	Proper&es	
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•  Consider	this	transi&on	matrix	of	an	inventory	process:	

•  This	captures	the	evolu&on	of	inventory	levels	in	a	store	
– What	do	the	0	values	mean?	
–  Other	proper&es	of	this	matrix?	



Markov	Chains:	Long-Run	Proper&es	

		The	corresponding	8-step	transi&on	matrix	becomes:	
	
	
	
	Interes&ng	property:	probability	of	being	in	state	j	aXer	8	
weeks	appears	independent	of	ini0al	level	of	inventory.	

•  For	an	irreducible	ergodic	Markov	chain,	one	has	limi&ng	
probability	

Reciprocal gives you 
recurrence time
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Markov	Decision	Model	

•  Consider	the	following	applica&on:	machine	maintenance	
•  A	factory	has	a	machine	that	deteriorates	rapidly	in	quality	

and	output	and	is	inspected	periodically,	e.g.,	daily	
•  Inspec&on	declares	the	machine	to	be	in	four	possible	states:	

–  0:	Good	as	new	
–  1:	Operable,	minor	deteriora&on	
–  2:	Operable,	major	deteriora&on	
–  3:	Inoperable	

•  Let	Xt	denote	this	observed	state	
–  evolves	according	to	some	“law	of	mo&on”,	it	is	a	stochas&c	process	
–  Furthermore,	assume	it	is	a	finite	state	Markov	chain	
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Markov	Decision	Model	

•  Transi&on	matrix	is	based	on	the	following:	

•  Once	the	machine	goes	inoperable,	it	stays	there	un&l	repairs	
–  If	no	repairs,	eventually,	it	reaches	this	state	which	is	absorbing!	

•  Repair	is	an	acDon	–	a	very	simple	maintenance	policy.	
–  e.g.,	machine	from	from	state	3	to	state	0	
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Markov	Decision	Model	

•  There	are	costs	as	system	evolves:	
–  State	0:	cost	0	
–  State	1:	cost	1000	
–  State	2:	cost	3000	

•  Replacement	cost,	taking	state	3	to	0,	is	4000	(and	lost	
produc&on	of	2000),	so	cost	=	6000	

•  The	modified	transi&on	probabili&es	are:	
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Markov	Decision	Model	

•  Simple	ques&on	(a	behavioural	property):		
	What	is	the	average	cost	of	this	maintenance	policy?	

•  Compute	the	steady	state	probabili&es:	

	

•  (Long	run)	expected	average	cost	per	day,	
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How? 



Markov	Decision	Model	

•  Consider	a	slightly	more	elaborate	policy:	
–  When	it	is	inoperable	or	needing	major	repairs,	replace	

•  Transi&on	matrix	now	changes	a	ligle	bit	
•  Permit	one	more	possible	ac&on:	overhaul	

–  Go	back	to	minor	repairs	state	(1)	for	the	next	&me	step	
–  Not	possible	if	truly	inoperable,	but	can	go	from	major	to	minor	

•  Key	point	about	the	system	behaviour.	It	evolves	according	to	
–  “Laws	of	mo&on”	
–  Sequence	of	decisions	made	(ac&ons	from	{1:	none,2:overhaul,3:	replace})	

•  Stochas&c	process	is	now	defined	in	terms	of	{Xt}	and	{Δt}
–  Policy,	R,	is	a	rule	for	making	decisions	

•  Could	use	all	history,	although	popular	choice	is	(current)	state-based	
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Markov	Decision	Model	

•  There	is	a	space	of	poten&al	policies,	e.g.,	

•  Each	policy	defines	a	transi&on	matrix,	e.g.,	for	Rb

Which policy is best? 
Need costs…. 
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Markov	Decision	Model	

•  Cik	=	expected	cost	incurred	during	next	transi&on	if	system	is	
in	state	i	and	decision	k	is	made	

•  The	long	run	average	expected	cost	for	each	policy	may	be	
computed	using	

State	 Dec.	 1	 2	 3	

0	 0	 4	 6	

1	 1	 4	 6	

2	 3	 4	 6	

3	 ∞	 ∞	 6	

Rb is best 
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So,	What	is	a	Policy?	

•  A	“program”	
•  Map	from	states	(or	situa&ons	in	the	decision	problem)	to	

ac&ons	that	could	be	taken	
–  e.g.,	if	in	‘level	2’	state,	call	contractor	for	overhaul	
–  If	less	than	3	DVDs	of	a	film,	place	an	order	for	2	more	

•  A	probability	distribu&on	π(s,a)	
–  A	joint	probability	distribu&on	over	states	and	ac&ons	
–  If	in	a	state	s1,	then	with	probability	defined	by	π,	take	
ac&on	a1 
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