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Objectives of this Lecture

Give a selective recap of key ideas from control theory, as a
very first approach to the “synthesis of robot motion”
— If you have studied control before, you should recognize the
concepts although the narrative may still be new

— If you have not studied control before, this should give you

useful background that will help contextualize other concepts to
come later

* After a first half surveying a few key concepts, we will spend
the second half of the lecture thinking concretely about the

design of a controller for one particular model system:
inverted pendulum
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Not Only of Historical Interest...

.. . with AUTO PILOT
for CHRYSLER and IMPERIAL

Just set the convenient instrument panel dial to your desired
speed., Then drive in your usual manner. When you reach
the pre-set speed you feel a gentle nudge of the accelerator
on your foot telling you you've reached your desired speed.

For completely automatic control, pull the control knob when
you feel the nudge of the pedal and remove your foot from

the accelerator, Then, drive relaxed with your eyes on
the road.

A touch of your brake pedal instantly returns the control to
manual. To return to automatic control, just accelerate

until you feel the nudge and remove your foot from the
accelerator.
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How does a Governor Work?
Proportional Control

* A feedback system that controls the speed of an engine by
regulating the amount of fuel (or working fluid) admitted

* Goalis to maintain a near-constant speed, irrespective of the
load or fuel-supply conditions.

A sequence of operations:

1) Power is supplied to the governor from the engine's output
shaft. The governor is connected to a throttle valve that

regulates the flow of working fluid (steam) supplying the prime
mover.
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How does a Governor Work?
Proportional Control

2) As the speed of the prime mover increases, the central
spindle of the governor rotates at a faster rate and the kinetic
energy of the balls increases.

3) This allows the two masses on lever arms to move outwards
and upwards against gravity.

4) If the motion goes far enough, this motion causes the lever
arms to pull down on a thrust bearing, which moves a beam
linkage, which reduces the aperture of a throttle valve.

5) The rate of working-fluid entering the cylinder is thus reduced
and the speed of the prime mover is controlled, preventing over-
speeding.
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Proportional Control

We want to hold system “in place” —in this case, at a certain
rate of flow

When flow exceeds desired value, the mechanism applies a
correction which is proportional to the excess

This idea of regulation is quite valuable in all engineered
systems

However, the quantity being regulated is not always flow
How to write down the principle mathematically?

— We also need to say how to describe the system



Setpoint (SP)
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PID Controllers

PID CONTROLLER

Measured
Process Variable

Disturbances(s)

SENSOR

rocess Variable (PV)

sp

(subtract PV
from SP)

PV

Calculate control actions
and multiply each by Error

add up all 3

Controller
Qutput



Proportional-Integral-Derivative Control

* The control signal, u(z), is given in terms of the error e(?) as,
t
u(t) = Kpe(t) + K; | e(r)dr + Kqé(t)
to

e This simple algorithm is most useful when processes are
known to be stable and not very oscillatory

— Parameters may not be well known, however

* Why is each term needed?
 How could we set the scale factors (the Ks)?
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Typical Step Response of 2" Order System
with Proportional Control
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Step Response with Different Levels of
Integral Gain (Setpoint = 10)

0 10 20 ¢ 30 40 50
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Effects of Different Components

Control Action Rise Time Overshoot Settling Time Steady State Er-
ror

Increasing K, reduces Increases small change reduces

Increasing K; reduces Increases Increases eliminates

Increasing Ky small change reduces reduces small change
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Many Design Heuristics,
e.g., Ziegler-Nichols Rules (1942)

e Trial and error procedure, entirely empirical

Gradually reduce proportional gain alone until the system
begins to oscillate (with loop gain, K, and period, T))

 Then, set the gains to be: 1
5 Ky = 5 K,

2
Ki — T—qu

T,
Kd — ng

How to think about design and dynamics, more generally?
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Linear Time Invariant (LTI) Systems

* Consider the simple spring-mass-damper system:
* The force applied by the spring is Fs = —k=(t)
* Correspondingly, for the damper: F£a=72(1)
* The combined equation of motion of the mass becomes:
z3(t) = —v5(t) — k2(t)
* One could also express this in state space form:
z(t) = [z1(t), 22(t)] = [2(2), 2(t)]

0= (30) = (et i)

) 0 1
Linear ODE <— (t) = ( _ ) x(t) = Ax(t)

m m
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Solution of a Linear ODE

x=kx,zeR
For initial condition ¢(0) = zo, the solution is ¢(t) = ez

i.e., time evolution of state is given by operator ¢ = e*t, with velocity v = kt

This type of “exponential term™ is a feature of all linear dynamical systems

The multivariate case z(t) = eAlt-to)

00 i i
_ Z A'(t —to)" This is state transition matrix ¢(t) :
' 2! In linear algebra, there are

1=0

numerous ways to compute this...

A2(t — tg)?
(t —to) N

= I?I,X‘n + A(t i t()) -I‘ 2‘
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Example

Determine the matrix exponential, and hence the state transition matrix, and
the homogeneous response to the initial conditions z1(0) = 2, 25(0) = 3 of the

system with state equations:

jfl = —-52371 +u

:I.JQ = T1 — I9.

The system matrix is

—2
A=

19/01/2018
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Example, contd.
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Example, contd.
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Basic Notion: Stability

* Simple question:
Given the system_ i(t) = Az(t)
where in phase space, (z.i) , will it come to rest?

Any guem

Think about solution in previous slide... Do you know what this

is? (Whiteboard)

* This point is called the equilibrium point
— If initialized there, dynamics will not take it away
— If perturbed, system will eventually return and stay there
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Stability

An equilibrium position z = 0 is stable (in Lyapunov’s sense) if given € > 0,
46 > 0 (not dependent on t), s.t. Yz, |zg| < & the solution satisfies |o(t)| < e,

vt >0

Asymptotic stability: Lyapunov stabile and limy— 4~ ¢(t) = 0

x(0)

/’

19/01/2018
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Stability for an LTI System, i(t) = Az(t)

n
Ajt
Unforced (homogeneous) response:  i(t) =Y mi;e"
J=1
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If you differentiate the homogeneous response,

Stability for an LTI System
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The system being considered is i(t) = Az(t)
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LTI Stability, in algebraic equations

* The above equation leads to an eigenvalue problem:
Am; = Am; 1=1,2,...,n.

ANI—Alm; =0

 For this to have nontrivial solutions:

Characteristic eqn.
A(N;) = det [\ — A] = 0. —

N4 a, AN ra, AP+ +aNt+ag=0

A=A)A=Xa)...(A=\,) =0.
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Stability: LTI System, i(t) = Ax(t)

Theorem. Ler \;, i € {1,2,...,n} denote the eigenvalues of A. Let re(\;) denote
the real part of A\i. Then the following holds:

. ze = 0is stable if and only if re(A;) < 0, Vi
2. ze = 0is asymptotically stable if and only if re(\;) < 0, Vi

3. xe = 0is unstable if and only if re(\;) > 0, for some i

For the spring-mass-damper example, the eigenvalues are:

vE\/ 72 —4km

2m TS With positive damping, we
get asymptotic stability
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Exercise (ponder at home)

Can you visualize (i.e., draw the curve vs. time) state variables
for the case of asymptotic stability, instability and the
borderline in between?
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Other Related Notions:
Orbital Stability

» Stability doesn’t only refer to being at rest at a point
— could be defined in terms of staying in a subset, e.g., path

Definition. An orbit y(x) is orbitally stable if for any € > 0, there is a neighbour-
hood V' of x so that for all & in V', yx and y& are e-close.
Loosely speaking, |y(z) — v(Z)| < € at all times.

Y(X)
/M

X //\/\/—71\
X v(X)
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Is Stability Really an Issue?

Some Aircrafts are Designed to be
Statically Unstable! Why?

Jump to
2:07 for

exciting
bit!
\ |

[https://www.youtube.com/watch?v=2CUyo0i634wc]



A Simple Complete Example:
Inverted Pendulum

B.J. Kuipers, S. Ramamoorthy, Qualitative modeling and heterogeneous control of global system behavior. In C.
J. Tomlin & M. R. Greenstreet (Eds.), Hybrid Systems: Computation and Control, LNCS 2289: 294-307, 2002.
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Pendulum Phase Space

Physical Space Phase Space
1.25- 28+
25~
l-
20=
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* Phase space is organized into families (open sets) of trajectories
* Trajectories may be parameterized by a single variable: energy
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Design Strategy: Use Natural Dynamics

 Passively “ride” orbits <> Energy Efficiency
 Parameterized families of trajectories < Flexibility
* Topology, structural stability <~ Robustness

Increasing4
Energy

1.5
1T -
sl Q

9’ - b Libration Orbits

Separatrix
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Using Natural Dynamics for Motion Planning

Generate trajectories, on-line,
—  From the whole phase space 0 .

— Toinverted position

Solution:

— Change E to move towards separatrix

— Two trajectory classes:

6.00]
4.00

pump (libration)/ spin (rotation)
— Ride the separatrix, once there o

Let us now walk through this construction in some detail!
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Remarks: Use of Qualitative Models

* A qualitative differential equation (QDE) expresses partial
knowledge of a dynamical system.

— One QDE describes a set of ODEs,

— non-linear as well as linear systems.

A QDE can express partial knowledge of a plant or a
controller design.

* QSIM can predict all possible behaviors of all ODEs
described by the given QDE.
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Qualitative Design of a
Heterogeneous Controller

* Design local models with the desired behavior.

* |dentify qualitative constraints to guarantee the right
transitions.

* Provide weak conditions sufficient to guarantee desired
behavior.

— Remaining degrees of freedom are available for
optimization by any other criterion.

 Demonstrate with a global pendulum controller.
— Local models: Pump, Balance, Spin.

19/01/2018 33



Some Remarks about QSIM notation

Each variable is a reasonable function.
— Continuously differentiable, etc.
— Range described by landmark values and intervals.

Constraints link variables.
— ADD, MULT, MINUS, D/DT
— Monotonic functions: y=f(x) for fin M,*

— [xlp=sign(x)
Semi-quantitative bounds and envelopes.
QSIM predicts all possible behaviors.

Temporal logic model-checking can prove
theorems about ODEs from QSIM prediction.



The Monotonic Damped Spring

* The spring is defined by Hooke’ s Law:
F=ma=mx=-kx
* Include damping friction
mx =—k,.x —k,x
 Rearrange and redefine constants
X+bx+cx=0
* Generalize to QDE with monotonic functions

X+ f(x)+g(x)=0

19/01/2018 35



Lemma 1:
The Monotonic Damped Spring

Let a system be described by
X+ f(x)+g(x)=0

f € M; and [g(x)], =[],

where

Then it is asymptotically stable at (0,0), with
a Lyapunov function:

V(ix,x)= 1x +fg(x)dx

* Proofin the paper.
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Lemma 2:
The Spring with Anti-Damping

Suppose a system is described by
X—f(x)+g(x)=0

where
f €M, and [g(x)], =[x],

Then the system has an unstable fixed-point
at (0,0), and no limit cycle (i.e., stable
periodic orbit).

37
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Pendulum Models:
Equations of Motion

* Near the top.  Near the bottom.

0

¢+ f($)—ksing =0 G+ £(6)+ksin® =0

19/01/2018
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Balance the Pendulum

* Design the control input u to make the pendulum
into a damped spring.

¢+ f(9)—ksing +u(p,¢)=0

e Define the Balance controller:

u(p,9) = g(P)

such that
[g(@)—ksm@], =[¢],

 Lemma 1 shows that it converges to (0,0).

O+ f()+g(9)—ksing=0



The Balance Region

* If the control action has upper bound u,_, then
gravity defines the limiting angle:

U =KkSINQ,

m

* Energy defines maximum velocity at top:
¥ ¢max .
Lr = [ 8(¢)—ksingd

* Define the Balance region:

¢2+.¢2 <1

2 2
¢max ¢max




Pump the Hanging Pendulum

e Define the control action u to make the pendulum
into a spring with negative damping.

* Define the Pump controller
u(6,0) = -h(0)
such that
h-fEM:

gives .
O-(h-f)O0)+ksmnO=0

* Lemma 2 proves it pumps without a limit cycle.



Slow the Spinning Pendulum

If the pendulum is spinning rapidly, define the
Spin control law to augment natural friction:

u(0,0) = £,(0)

suchthat /, € Mg

19/01/2018
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The Pump-Spin Boundary

Prevent a limit-cycle behavior that cycles between
Pump and Spin regions, overshooting Balance.

Define the Pump-Spin boundary to be the separatrix
of the undamped pendulum.

Pump and Spin create what is known as a sliding
mode controller
— Special type of switching based control strategy

The separatrix leads straight to the heart of Balance.



The Separatrix as Boundary

* A separatrix is a trajectory that begins and ends at
the unstable saddle point of the undamped,
uncontrolled pendulum:

6+ksinf =0

* Points on the separatrix have the same energy as
the balanced pendulum:

‘5 2 )
KE+PE =160 +f0 ksmn6do =2k
e Simplify to define the separatrix:
5(0,0) = 10> —k(1+cos6) =0



The Sliding Mode Controller

* Differentiate to see hoyv S ghanges wijch time:
s=-01(0)-0u(0,0)
In the Pump region:
s<0 and $=6(h-1)O)=0
In the Spin region:

s>0 and §$=-0(f+£)0)=<0

* Therefore, both regions approach s =0
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The Global Pendulum Controller

sliding
mode
Pump Spin

o

Balance
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The Global Controller

The control law: Constraints:
if Balance
u(¢,P) = g(¢) [g(@)-ksing], =[],
else if Pump
u(6,0) = —h(0) h-fEM;
else Spin

u(0,0) = £,(0) L EM;
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Pendulum Controller Example

System:

6 +cO +ksin +u(6,0) =0 ¢=00Lk=10u,, =4
Balance: ¢, =04,c,=023
u=(c, +k)O-m)+c,0 B = 04,6, =03
Spin:

u=c,0 ¢, =05

Pump:

u=—(c+c;)0 ¢,=0.5

19/01/2018 48



Pendulum Example, cont.

The switching strategy:
If a=<1 then Balance
else if s<0then Pump
else Spin
¢ ¢ l
Q= ¢§m +¢5iax s=502—k(l+cost9)

19/01/2018
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The Controlled Pendulum
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The Controlled Pendulum
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Now quite the full system, yet:
The Cart-Pole System

m,l

M X : Control Action

o @ p=0+m

Cart Pole System:

¢+ f(P)—ksing —xXcosgp =0
O+ f(0)+ksinO + ¥cosO =0
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Example:
Heterogeneous Cart-Pole Controller

The Cart-Pole System
0+ f(0)+ksin@+icosf =0

Compare to Pivot-Torque Pendulum System:

0+ f(0)+ksin@+u(d,0)=0

Heterogeneous Cart-Pole Controller:

) {_ L) &) u(e,m}

X = sat
cos® cos@ cosO

19/01/2018
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Heterogeneous Cart-Pole Controller

* Pivot torque controller stabilizes the pole
(heterogeneous, 3 regions)

* Negative feedback stabilizes the cart, Lemma 1

 Combination of the two should preserve sliding mode
for the heterogeneous pole controller

e We can derive the desired constraints:

[(h= £)O)+ f,(%) + g ()], =[6],
[(f + £,)(0) = £.(x) - g, ()], =[6],
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The Controlled Cart-Pole System
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The Controlled Cart-Pole System

56



Take Home Messages from Example

Real control problems in robotics require more complex
specifications than is common in traditional control theory

So-called hybrid systems (switching between different
dynamical system models/regimes) is common

Reasoning qualitatively with dynamical systems models
provides a useful approach to specifying the controller for a
large class of non-linear systems.

— identifies weak sufficient conditions required for controller operation.

— any instance of QDE will achieve the behavior. So the designer can
optimize the control for any desired criteria.

Organizes continuous phase portrait within a transition graph
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