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Objec&ves	of	this	Lecture	

•  Give	a	selec&ve	recap	of	key	ideas	from	control	theory,	as	a	
very	first	approach	to	the	“synthesis	of	robot	mo&on”	
–  If	you	have	studied	control	before,	you	should	recognize	the	
concepts	although	the	narra&ve	may	s&ll	be	new	

–  	If	you	have	not	studied	control	before,	this	should	give	you	
useful	background	that	will	help	contextualize	other	concepts	to	
come	later	

•  AEer	a	first	half	surveying	a	few	key	concepts,	we	will	spend	
the	second	half	of	the	lecture	thinking	concretely	about	the	
design	of	a	controller	for	one	par&cular	model	system:	
inverted	pendulum	

19/01/2018	 2	



Centrifugal	Governor	(James	WaQ,	1788)	
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Not	Only	of	Historical	Interest…	
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How	does	a	Governor	Work?		
Propor&onal	Control	

•  A	feedback	system	that	controls	the	speed	of	an	engine	by	
regula&ng	the	amount	of	fuel	(or	working	fluid)	admiQed	

•  Goal	is	to	maintain	a	near-constant	speed,	irrespec&ve	of	the	
load	or	fuel-supply	condi&ons.		

A	sequence	of	opera&ons:	
1)	Power	is	supplied	to	the	governor	from	the	engine's	output	
shaE.	The	governor	is	connected	to	a	throQle	valve	that	
regulates	the	flow	of	working	fluid	(steam)	supplying	the	prime	
mover.		
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How	does	a	Governor	Work?		
Propor&onal	Control	

2)	As	the	speed	of	the	prime	mover	increases,	the	central	
spindle	of	the	governor	rotates	at	a	faster	rate	and	the	kine&c	
energy	of	the	balls	increases.	
3)	This	allows	the	two	masses	on	lever	arms	to	move	outwards	
and	upwards	against	gravity.		
4)	If	the	mo&on	goes	far	enough,	this	mo&on	causes	the	lever	
arms	to	pull	down	on	a	thrust	bearing,	which	moves	a	beam	
linkage,	which	reduces	the	aperture	of	a	throQle	valve.		
5)	The	rate	of	working-fluid	entering	the	cylinder	is	thus	reduced	
and	the	speed	of	the	prime	mover	is	controlled,	preven&ng	over-
speeding.	
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Propor&onal	Control	

•  We	want	to	hold	system	“in	place”	–	in	this	case,	at	a	certain	
rate	of	flow	

•  When	flow	exceeds	desired	value,	the	mechanism	applies	a	
correc&on	which	is	propor&onal	to	the	excess	

•  This	idea	of	regula&on	is	quite	valuable	in	all	engineered	
systems	

•  However,	the	quan&ty	being	regulated	is	not	always	flow	
•  How	to	write	down	the	principle	mathema&cally?	

– We	also	need	to	say	how	to	describe	the	system	
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PID	Controllers	
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Propor&onal-Integral-Deriva&ve	Control	

•  The	control	signal,	u(t),	is	given	in	terms	of	the	error	e(t)	as,	

•  This	simple	algorithm	is	most	useful	when	processes	are	
known	to	be	stable	and	not	very	oscillatory	
–  Parameters	may	not	be	well	known,	however	

•  Why	is	each	term	needed?	
•  How	could	we	set	the	scale	factors	(the	Ks)?	
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Typical	Step	Response	of	2nd	Order	System	
with	Propor&onal	Control	
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Step	Response	with	Different	Levels	of	
Integral	Gain	(Setpoint	=	10)	
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Effects	of	Different	Components	
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Many	Design	Heuris&cs,	
e.g.,	Ziegler-Nichols	Rules	(1942)	

•  Trial	and	error	procedure,	en&rely	empirical	
•  Gradually	reduce	propor&onal	gain	alone	un&l	the	system	

begins	to	oscillate	(with	loop	gain,	Ku,	and	period,	Tu)	
•  Then,	set	the	gains	to	be:	

•  How	to	think	about	design	and	dynamics,	more	generally?	
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Linear	Time	Invariant	(LTI)	Systems	

•  Consider	the	simple	spring-mass-damper	system:	
•  The	force	applied	by	the	spring	is		
•  Correspondingly,	for	the	damper:	
•  The	combined	equa&on	of	mo&on	of	the	mass	becomes:	

•  One	could	also	express	this	in	state	space	form:	
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Solu&on	of	a	Linear	ODE	
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The multivariate case: 

This is state transition matrix φ(t) : 
In linear algebra, there are  
numerous ways to compute this… 



Example	
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Example,	contd.	
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Example,	contd.	
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Basic	No&on:	Stability	

•  Simple	ques&on:	
	Given	the	system,		
	where	in	phase	space,											,	will	it	come	to	rest?	

	
	

•  This	point	is	called	the	equilibrium	point	
–  If	ini&alized	there,	dynamics	will	not	take	it	away	
–  If	perturbed,	system	will	eventually	return	and	stay	there	
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Any guesses?  
Think about solution in previous slide… Do	you	know	what	this	

is?	(Whiteboard)	



Stability	
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Stability	for	an	LTI	System,																.	

	Unforced	(homogeneous)	response:		
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Stability	for	an	LTI	System	

If	you	differen&ate	the	homogeneous	response,	
	
	
	
	
The	system	being	considered	is																							,	so:		
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LTI	Stability,	in	algebraic	equa&ons	

•  The	above	equa&on	leads	to	an	eigenvalue	problem:	

•  For	this	to	have	nontrivial	solu&ons:	
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Characteristic eqn. 



Stability:	LTI	System,														.		

	For	the	spring-mass-damper	example,	the	eigenvalues	are:	
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With positive damping, we 
get asymptotic stability 



Exercise	(ponder	at	home)	

		
		
		
	Can	you	visualize	(i.e.,	draw	the	curve	vs.	&me)	state	variables	
for	the	case	of	asympto&c	stability,	instability	and	the	
borderline	in	between?	
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Other	Related	No&ons:	
Orbital	Stability	

•  Stability	doesn’t	only	refer	to	being	at	rest	at	a	point	
–  could	be	defined	in	terms	of	staying	in	a	subset,	e.g.,	path	
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Is	Stability	Really	an	Issue?	
Some	AircraEs	are	Designed	to	be		

Sta&cally	Unstable!	Why?	
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Jump	to	
2:07	for	
exci&ng	
bit!	

[https://www.youtube.com/watch?v=2CUyoi634wc] 



A	Simple	Complete	Example:	
Inverted	Pendulum	

19/01/2018	 28	

B.J. Kuipers, S. Ramamoorthy, Qualitative modeling and heterogeneous control of global system behavior. In C. 
J. Tomlin & M. R. Greenstreet (Eds.), Hybrid Systems: Computation and Control, LNCS 2289: 294-307, 2002. 
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Pendulum	Phase	Space	

•  Phase	space	is	organized	into	families	(open	sets)	of	trajectories	
•  Trajectories	may	be	parameterized	by	a	single	variable:	energy	
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Design	Strategy:	Use	Natural	Dynamics	

•  Passively	“ride”	orbits	ó	Energy	Efficiency	
•  Parameterized	families	of	trajectories	ó	Flexibility	
•  Topology,	structural	stability	ó	Robustness	

Increasing 
Energy 
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Using	Natural	Dynamics	for	Mo&on	Planning	

Generate	trajectories,	on-line,	
–  From	the	whole	phase	space	
–  To	inverted	posi&on		

	

Solu&on:	
–  Change	E	to	move	towards	separatrix	
–  Two	trajectory	classes:	

	pump	(libra&on)/	spin	(rota&on)	
–  Ride	the	separatrix,	once	there	

	
	
Let	us	now	walk	through	this	construc&on	in	some	detail!	
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Remarks:	Use	of	Qualita2ve	Models	

•  A	qualita&ve	differen&al	equa&on	(QDE)	expresses	par&al	
knowledge	of	a	dynamical	system.	
–  One	QDE	describes	a	set	of	ODEs,	
–  non-linear	as	well	as	linear	systems.	

•  A	QDE	can	express	par&al	knowledge	of	a	plant	or	a	
controller	design.	

•  QSIM	can	predict	all	possible	behaviors	of	all	ODEs	
described	by	the	given	QDE.	
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Qualita&ve	Design	of	a		
Heterogeneous	Controller	

•  Design	local	models	with	the	desired	behavior.	
•  Iden&fy	qualita&ve	constraints	to	guarantee	the	right	

transi&ons.	
•  Provide	weak	condi&ons	sufficient	to	guarantee	desired	

behavior.	
–  Remaining	degrees	of	freedom	are	available	for	
op&miza&on	by	any	other	criterion.	

•  Demonstrate	with	a	global	pendulum	controller.	
–  Local	models:		Pump,	Balance,	Spin.	
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Some	Remarks	about	QSIM	nota&on	

•  Each	variable	is	a	reasonable	func&on.	
–  Con&nuously	differen&able,	etc.	
–  Range	described	by	landmark	values	and	intervals.	

•  Constraints	link	variables.	
–  ADD,	MULT,	MINUS,	D/DT	
– Monotonic	func&ons:		y=f(x)	for	f	in	M0

+	
–  [x]0=sign(x)	

•  Semi-quan&ta&ve	bounds	and	envelopes.	
•  QSIM	predicts	all	possible	behaviors.	
•  Temporal	logic	model-checking	can	prove	
theorems	about	ODEs	from	QSIM	predic&on.	
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The	Monotonic	Damped	Spring	

•  The	spring	is	defined	by	Hooke’s	Law:	

•  Include	damping	fric&on	

•  Rearrange	and	redefine	constants	

•  Generalize	to	QDE	with	monotonic	func&ons	

F =ma =m!!x = −k1x

m!!x = −k1x − k2 !x

!!x + b!x + cx = 0

!!x + f ( !x)+ g(x) = 0

19/01/2018	 35	



Lemma	1:	
The	Monotonic	Damped	Spring	

Let	a	system	be	described	by	

			where	

			Then	it	is	asympto&cally	stable	at	(0,0),	with	
a	Lyapunov	func&on:	

•  Proof	in	the	paper.	

!!x + f ( !x)+ g(x) = 0

f ∈M0
+ and [g(x)]0 = [x]0

V (x, !x) = 1
2 !x

2 + g(x)dx
0

x

∫
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Lemma	2:	
The	Spring	with	An&-Damping	

Suppose	a	system	is	described	by	

				where			

			Then	the	system	has	an	unstable	fixed-point	
at	(0,0),	and	no	limit	cycle	(i.e.,	stable	
periodic	orbit).	

•  Proof	in	the	paper.	

!!x − f ( !x)+ g(x) = 0

f ∈M0
+ and [g(x)]0 = [x]0
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Pendulum	Models:	
Equa&ons	of	Mo&on	

•  Near	the	top.	 •  Near	the	boQom.	

€ 

θ

€ 

ϕ

!!φ + f ( !φ)− k sinφ = 0 !!θ + f ( !θ )+ k sinθ = 0
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Balance	the	Pendulum	

•  Design	the	control	input	u	to	make	the	pendulum	
into	a	damped	spring.	

•  Define	the	Balance	controller:	

				such	that	

•  Lemma	1	shows	that	it	converges	to	(0,0).	

!!φ + f ( !φ)− k sinφ +u(φ, !φ) = 0

u(φ, !φ) = g(φ)

[g(ϕ )− k sinϕ ]0 = [ϕ ]0

!!φ + f ( !φ)+ g(φ)− k sinφ = 0
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The	Balance	Region	

•  If	the	control	ac&on	has	upper	bound	umax	then	
gravity	defines	the	limi&ng	angle:	

•  Energy	defines	maximum	velocity	at	top:	

•  Define	the	Balance	region:	

umax = k sinϕmax

1
2
!φmax
2 = g(φ)− k sinφ dφ

0

φmax∫

φ 2

φmax
2 +

!φ 2

!φmax
2 ≤1
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Pump	the	Hanging	Pendulum	

•  Define	the	control	ac&on	u	to	make	the	pendulum	
into	a	spring	with	nega&ve	damping.	

•  Define	the	Pump	controller	

				such	that	

				gives	

•  Lemma	2	proves	it	pumps	without	a	limit	cycle.	

!!θ − (h− f )( !θ )+ k sinθ = 0

u(θ, !θ ) = −h( !θ )

h− f ∈M0
+
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Slow	the	Spinning	Pendulum	

If	the	pendulum	is	spinning	rapidly,	define	the	
Spin	control	law	to	augment	natural	fric&on:	

					
	 	such	that	

u(θ, !θ ) = f2 ( !θ )

f2 ∈M0
+
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The	Pump-Spin	Boundary	

•  Prevent	a	limit-cycle	behavior	that	cycles	between	
Pump	and	Spin	regions,	overshoo&ng	Balance.	

•  Define	the	Pump-Spin	boundary	to	be	the	separatrix	
of	the	undamped	pendulum.	

•  Pump	and	Spin	create	what	is	known	as	a	sliding	
mode	controller	
–  Special	type	of	switching	based	control	strategy	

•  The	separatrix	leads	straight	to	the	heart	of	Balance.	
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The	Separatrix	as	Boundary	

•  A	separatrix	is	a	trajectory	that	begins	and	ends	at	
the	unstable	saddle	point	of	the	undamped,	
uncontrolled	pendulum:	

•  Points	on	the	separatrix	have	the	same	energy	as	
the	balanced	pendulum:	

•  Simplify	to	define	the	separatrix:	

!!θ + k sinθ = 0

KE +PE = 1
2
!θ 2 + k sinθ dθ

0

θ

∫ = 2k

s(θ, !θ ) = 1
2
!θ 2 − k(1+ cosθ ) = 0
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The	Sliding	Mode	Controller	

•  Differen&ate	to	see	how	s	changes	with	&me:	

•  In	the	Pump	region:	

•  In	the	Spin	region:	

•  Therefore,	both	regions	approach		

!s = − !θ f ( !θ )− !θ u(θ, !θ )

s < 0  and !s = !θ (h− f )( !θ ) ≥ 0

s > 0  and !s = − !θ ( f + f2 )( !θ ) ≤ 0

s = 0
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The	Global	Pendulum	Controller	

Pump Spin 

Balance 

sliding 
mode 

!s ≤ 0!s ≥ 0
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The	Global	Controller	

The	control	law:	
				if	Balance	

				else	if	Pump	

				else	Spin	

Constraints:	

u(φ, !φ) = g(φ) [g(ϕ )− k sinϕ ]0 = [ϕ ]0

u(θ, !θ ) = −h( !θ ) h− f ∈M0
+

u(θ, !θ ) = f2 ( !θ ) f2 ∈M0
+
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Pendulum	Controller	Example	

System:
!!θ + c !θ + k sinθ +u(θ, !θ ) = 0 c = 0.01,k =10,umax = 4

Pump:
u = −(c+ c3) !θ

Balance:
u = (c11 + k)(θ −π )+ c12 !θ

c3 = 0.5

Spin:
u = c2 !θ

c11 = 0.4,c12 = 0.3

c2 = 0.5

φmax = 0.4, !φmax = 0.3
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Pendulum	Example,	cont.	

The	switching	strategy:	
				If		 	then	Balance	
				else	if	 							then	Pump	
				else	Spin	

α ≤1

s < 0

α =
φ 2

φmax
2 +

!φ 2

!φmax
2 s = 1

2
!θ 2 − k(1+ cosθ )
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The	Controlled	Pendulum	
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The	Controlled	Pendulum	
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Now	quite	the	full	system,	yet:	
The	Cart-Pole	System	

Cart Pole System:
!!φ + f ( !φ)− k sinφ − !!xcosφ = 0
!!θ + f ( !θ )+ k sinθ + !!xcosθ = 0

!!x : Control Action
φ =θ +π
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Example:	
Heterogeneous	Cart-Pole	Controller	

!!x = sat −
f1( !x)
cosθ

−
g1(x)
cosθ

+
u(θ, !θ )
cosθ

⎧
⎨
⎩

⎫
⎬
⎭

0cossin)( =+++ θθθθ xkf !!!!!
The Cart-Pole System

Compare to Pivot-Torque Pendulum System:

Heterogeneous Cart-Pole Controller:

0),(sin)( =+++ θθθθθ !!!! ukf
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Heterogeneous	Cart-Pole	Controller	

•  Pivot	torque	controller	stabilizes	the	pole	
(heterogeneous,	3	regions)	

•  Nega&ve	feedback	stabilizes	the	cart,	Lemma	1	
•  Combina&on	of	the	two	should	preserve	sliding	mode	

for	the	heterogeneous	pole	controller	
•  We	can	derive	the	desired	constraints:	

[(h− f )( !θ )+ f1( !x)+ g1(x)]0 = [ !θ ]0
[( f + fd )( !θ )− f1( !x)− g1(x)]0 = [ !θ ]0
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The	Controlled	Cart-Pole	System	
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The	Controlled	Cart-Pole	System	
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Take	Home	Messages	from	Example	

•  Real	control	problems	in	robo&cs	require	more	complex	
specifica&ons	than	is	common	in	tradi&onal	control	theory	

•  So-called	hybrid	systems	(switching	between	different	
dynamical	system	models/regimes)	is	common	

•  Reasoning	qualita&vely	with	dynamical	systems	models	
provides	a	useful	approach	to	specifying	the	controller	for	a	
large	class	of	non-linear	systems.	
–  iden&fies	weak	sufficient	condi&ons	required	for	controller	opera&on.	
–  any	instance	of	QDE	will	achieve	the	behavior.	So	the	designer	can	

op&mize	the	control	for	any	desired	criteria.	

•  Organizes	con&nuous	phase	portrait	within	a	transi&on	graph	
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