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Learning in Repeated Interactions

I How can agent learn to interact with other agents?

I What kind of behaviour do we want to learn?

I Learn individually or together?

I Many different methods...

I In this lecture: reinforcement learning



Recap

Markov Decision Process:

I states S , actions A

I stochastic transition P(s ′|s, a)

I utility/reward u(s, a) (can be random variable)

Reinforcement Learning:

I “reinforce” good actions

I learn optimal action policy π∗

I e.g. value iteration, policy iteration, ...

→ require knowledge of model, e.g. P/u



Q-Learning

What if transition and reward function unknown?

I take action at in current state st

I only see immediate reward r t+1 and next state st+1

→ need model-free reinforcement learning

Q-Learning (Watkins & Dayan, 1992)

I store table Q(s, a) for s ∈ S , a ∈ A

I simple update rule:

Q(st , at)← (1− α)Q(st , at) + α

[
r t+1 + γmax

a′∈A
Q(st+1, a′)

]

I learns optimal Q-values under certain conditions



Q-Learning in Stochastic Games

Can we use Q-learning for interactive setting?

I general and simple nature appealing

I just learn to interact “on the fly”

I but: application not straight-forward, many problems...

→ will discuss some problems later

We consider two examples:

I Joint Action Q-Learning (Claus & Boutillier, 1998)

I Nash Q-Learning (Hu & Wellman, 2003)

(Other examples exist)



Joint Action Q-Learning (JAL) (Claus & Boutillier, 1998)

I Assume two players, i and j

I We observe state st , actions ati , a
t
j , and results st+1, r t+1

i

I Store table Q(s, ai , aj) where s ∈ S , ai ∈ Ai , aj ∈ Aj

I Update rule:

Q(st , ati , a
t
j )← (1−α)Q(st , ati , a

t
j ) + α

[
r t+1
i + γmax

a′i∈A
EV (st+1, a′i )

]

EV (s, ai ) =
∑

aj∈Aj

Pj(s, aj)Q(s, ai , aj)

I Pj(s, aj) is empirical frequency distribution of j ’s past actions
in state s (fictitious play, Brown 1951)



JAL and Nash Equilibrium

I Assume both players controlled by JAL agent

I Assume common payoffs (e.g. players receive same rewards)

I Many other assumptions...
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Figure 3: ’s strategy in climbing game
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Figure 4: ’s strategy in climbing game

Initially, the two learners are almost certainly going to begin
to play the nonequilibrium strategy profile . This is
seen clearly in Figures 3, 4 and 5. However, once they “set-
tle” at this point, as long as exploration continues, agent
will soon find to be more attractive—so long as contin-
ues to primarily choose . Once the nonequilibrium point

is attained, agent tracks ’s move and begins to
perform action . Once this equilibrium is reached, the
agents remain there.
This phenomenon will obtain in general, allowing one to

conclude that the multiagent Q-learning schemes we have
proposed will converge to equilibria almost surely. The con-
ditions that are required in both cases are:

The learning rate decreases over time such that
and .

Each agent samples each of its actions infinitely often.

Parameter settings for these figures: initial temperature 10000
is decayed at rate .
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Figure 5: Joint actions in climbing game

The probability of agent choosing action is
nonzero.

Each agent’s exploration strategy is exploitive. That is,
, where is a random variable de-

noting the event that some nonoptimal action was taken
based on ’s estimated values at time .

The first two conditions are required of Q-learning, and the
third, if implemented appropriately (e.g., with appropriately
decayed temperature), will ensure the second. Furthermore,
it ensures that agents cannot adopt deterministic exploration
strategies and become strictly correlated. Finally, the last
condition ensures that agents exploit their knowledge. In the
context of ficticious play and its variants, this exploration
strategy would be asymptotically myopic [5]. This is nec-
essary to ensure that an equilibrium will be reached. Under
these conditions we have:
Theorem 1 Let be a random variable denoting the prob-
ability of a (deterministic) equilibrium strategy profile being
played at time . Then for both ILs and JALs, for any ,
there is an such that

for all .
Intuitively (and somewhat informally), the dynamics of

the learning process behaves as follows. If the agents are in
equilibrium, there is a nonzero probability of moving out of
equilibrium; but this generally requires a (rather dense) se-
ries of exploratorymoves by one or more agents. The proba-
bility of this occurring decreases over time, making the like-
lihood of leaving an equilibrium just obtained vanish over
time (both for JALs and ILs). If at some point the agents’
estimated Q-values are such that a nonequilibrium is most
likely, the likelihood of this state of affairs remaining also
vanishes over time. As an example, consider the climbing
game above. Once agents begin to play regularly,
agent is still required to explore. After a sufficient sam-
pling of action —without agent simultaneously explor-
ing and moving away from — will look more attractive
than and this best replywill be adopted. Decreasing explo-
ration ensures that the odds of simultaneous exploration de-

(Claus & Boutillier, 1998)



Nash Q-Learning (NashQ) (Hu & Wellman, 2003)

I Assume two players, i and j

I We observe state st , actions ati , a
t
j , and results st+1, r t+1

i , r t+1
j

I Store table Q(s, ai , aj) where s ∈ S , ai ∈ Ai , aj ∈ Aj

I Update rule:

Q(st , ati , a
t
j )← (1− α)Q(st , ati , a

t
j ) + α

[
r t+1
i + γNashQ(st+1)

]

NashQ(s) =
∑

ai∈Ai

∑

aj∈Aj

πi (s, ai )πj(s, aj)Q(s, ai , aj)

I (πi , πj) is (possibly mixed) Nash equilibrium profile for
matrix game defined by Q(s, ·, ·)



NashQ and Nash Equilibrium

I Assume both players controlled by NashQ agent

I Assume several other restrictions ... including:
HU AND WELLMAN

Assumption 3 One of the following conditions holds during learning.3
Condition A. Every stage game (Q1t (s), . . . ,Qn

t (s)), for all t and s, has a global optimal point,
and agents’ payoffs in this equilibrium are used to update their Q-functions.
Condition B. Every stage game (Q1t (s), . . . ,Qn

t (s)), for all t and s, has a saddle point, and
agents’ payoffs in this equilibrium are used to update their Q-functions.

We further define the distance between two Q-functions.

Definition 15 For Q, Q̂ 2Q, define

k Q� Q̂ k ⌘ max
j
max
s
k Qj(s)� Q̂ j(s) k( j,s)

⌘ max
j
max
s
max
a1,...,an

|Qj(s,a1, . . . ,an)� Q̂ j(s,a1, . . . ,an)|.

Given Assumption 3, we can establish that Pt is a contraction mapping operator.

Lemma 16 k PtQ�PtQ̂ k β k Q� Q̂ k for all Q, Q̂ 2Q.

Proof.

k PtQ�PtQ̂ k = max
j
k PtQj�PtQ̂ j k( j)

= max
j
max
s

| βπ1(s) · · ·πn(s)Qj(s)�βπ̂1(s) · · · π̂n(s)Q̂ j(s) |

= max
j
β | π1(s) · · ·πn(s)Qj(s)� π̂1(s) · · · π̂n(s)Q̂ j(s) |

We proceed to prove that

|π1(s) · · ·πn(s)Qj(s)� π̂1(s) · · · π̂n(s)Q̂ j(s)| k Qj(s)� Q̂ j(s) k .

To simplify notation, we use σ j to represent π j(s), and σ̂ j to represent π̂ j(s). The proposition we
want to prove is

|σ jσ� jQ j(s)� σ̂ jσ̂� jQ̂ j(s)| k Qj(s)� Q̂ j(s) k .

Case 1: Suppose both (σ1, . . . ,σn) and (σ̂1, . . . , σ̂n) satisfy Condition A in Assumption 3, which
means they are global optimal points.

If σ jσ� jQ j(s)� σ̂ jσ̂� jQ̂ j(s), we have

σ jσ� jQ j(s)� σ̂ jσ̂� jQ̂ j(s)
 σ jσ� jQ j(s)�σ jσ� jQ̂ j(s)
= ∑

a1,...,an
σ1(a1) · · ·σn(an)

�
Qj(s,a1, . . . ,an)� Q̂ j(s,a1, . . . ,an)

�

 ∑
a1,...,an

σ1(a1) · · ·σn(an) k Qj(s)� Q̂ j(s) k (15)

= k Qj(s)� Q̂ j(s) k,
3. In our statement of this assumption in previous writings (Hu and Wellman, 1998, Hu, 1999), we neglected to include
the qualification that the same condition be satisfied by all stage games. We have made the qualification more explicit
subsequently (Hu and Wellman, 2000). As Bowling (2000) has observed, the distinction is essential.

1050

(Hu & Wellman, 2003)

I Then the learning converges to a Nash equilibrium



Assumptions in Learning Methods

Different methods may make different assumptions, e.g.

Things that can be “seen”:

I JAL: st ati atj st+1 r t+1
i

I NashQ: st ati atj st+1 r t+1
i r t+1

j

Implicit behavioural assumptions:

I JAL: j plays fixed distribution in each state

I NashQ: j plays Nash equilibrium strategy in each state

Many other types of assumptions about structure of game,
behaviour of players, ability to observe, etc.



Assumptions in Learning Methods

Often, method can still be used even if assumptions violated:

I Q-learning assumes stationary transition probabilities

→ Is this true in interactive setting?

I what happens if assumptions violated?

I know and understand assumptions!

Bonus question:

What happens if different methods play against each other?

I e.g. JAL vs NashQ

I (Albrecht & Ramamoorthy, 2012)



Excursion:

Ad Hoc Coordination in Multiagent Systems



Ad Hoc Coordination

1. You control single agent in system with other agents

2. You and other agents have goals (common or conflicting)

3. You want to be flexible: other agents may have large variety
of behaviours

4. You want to be efficient: not much time for learning, trial
and error, etc.

5. You don’t a priori know how other agents behave



Ad Hoc Coordination

Applications:

I Human-robot interaction

I Robot search and rescue

I Adaptive user interfaces

I Financial markets

I ...

c©Biomimetic Control Research Center RIKEN

c©Team Hector Darmstadt, Technische Universität Darmstadt



Ad Hoc Coordination

Human-robot interaction:

I Humans can exhibit large variety of behaviours for given task

→ need flexibility!

I Humans expect machines to learn and react quickly

→ need efficiency!

I Machine does not know ahead of time how human behaves

→ no prior coordination of behaviours!



Ad Hoc Coordination

Hard problem:

I Agents may have large variety of behaviours

I Behaviours initially unknown

General learning algorithms not suitable:

I Require long learning periods (e.g. RL)

I Often designed for homogeneous setting

I Many restrictive assumptions (discussed earlier)



Idea

Reduce complexity of problem by assuming that:

1. Agents draw their latent policy from some set

2. Policy assignment governed by unknown distribution

If policy set known:

I Learn distribution, play best-response

If policy set unknown:

I “Guess” policy set, find closest policy, play best-response



Idea

Hypothesise (“guess”) Policy Types



Stochastic Bayesian Game

I state space S , initial state s0 ∈ S , terminal states S̄ ⊂ S

I players N = {1, ..., n} and for each i ∈ N:

I set of actions Ai (where A = ×i Ai )

I type space Θi (where Θ = ×i Θi )

I payoff function ui : S × A×Θi → R
I strategy πi : H× Ai ×Θi → [0, 1]

H is set of histories H t = 〈s0, a0, ..., st〉 s.t. sτ ∈ S , aτ ∈ A

I state transition function T : S × A× S → [0, 1]

I type distribution ∆ : Θ→ [0, 1]

(Albrecht & Ramamoorthy, 2014)



Harsanyi-Bellman Ad Hoc Coordination (HBA)

Canonical formulation HBA:

ati ∼ arg max
ai∈Ai

E ai
st (Ht)

where

E ai
s (Ĥ) =

∑

θ∗−i∈Θ∗−i

Pr(θ∗−i |Ht)
∑

a−i∈A−i

Q
ai,−i
s (Ĥ)

∏

j 6=i

πj(Ĥ, aj , θ
∗
j )

Qa
s (Ĥ) =

∑

s′∈S
T (s, a, s ′)

[
ui (s, a, α) + γmax

ai
E ai
s′

(
〈Ĥ, a, s ′〉

)]

(Albrecht & Ramamoorthy, 2014)
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