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Learning in Repeated Interactions

v

How can agent learn to interact with other agents?

v

What kind of behaviour do we want to learn?

v

Learn individually or together?

v

Many different methods...

v

In this lecture: reinforcement learning



Recap

Markov Decision Process:

> states S, actions A
» stochastic transition P(s'|s, a)

» utility/reward u(s, a) (can be random variable)

Reinforcement Learning:

» ‘“reinforce” good actions
> learn optimal action policy 7*
> e.g. value iteration, policy iteration, ...

— require knowledge of model, e.g. P/u



Q-Learning

What if transition and reward function unknown?

» take action at in current state s*
» only see immediate reward r'*! and next state st*!

— need model-free reinforcement learning

Q-Learning (Watkins & Dayan, 1992)
» store table Q(s,a) fors€ S,ac A

> simple update rule:

Q(st, at) « (1 —a)Q(st,a)) + o [ritl + 4 max Q(stt1, )
a'e

» learns optimal Q-values under certain conditions



Q-Learning in Stochastic Games

Can we use Q-learning for interactive setting?

» general and simple nature appealing

> just learn to interact “on the fly”

» but: application not straight-forward, many problems...

— will discuss some problems later

We consider two examples:
» Joint Action Q-Learning (Claus & Boutillier, 1998)

» Nash Q-Learning (Hu & Wellman, 2003)

(Other examples exist)



Joint Action Q-Learning (JAL) (Claus & Boutillier, 1998)

» Assume two players, i and j

17 r_t+1

» We observe state s*, actions af, af, and results s'™*, r;

J

» Store table Q(s, a;, aj) where s € S,a; € A;,aj € A;

» Update rule:

Q(s', af, af) « (1-a)Q(s*, af, af) + « {rf“ +ymax EV(stT1, )
aleA

EV(s,a;) = Z Pi(s, aj)Q(s, ai, aj)
ajeAj

> Pj(s, a;) is empirical frequency distribution of j's past actions
in state s (fictitious play, Brown 1951)



JAL and Nash Equilibrium

» Assume both players controlled by JAL agent
» Assume common payoffs (e.g. players receive same rewards)
» Many other assumptions...

Theorem 1 Let E; be a random variable denoting the prob-
ability of a (deterministic) equilibrium strategy profile being
played at time t. Then for both ILs and JALs, for anyd, e > 0,
there is an T'(6, €) such that

Pr(|E —1|<e)>1-6
forallt > T(d,¢).
(Claus & Boutillier, 1998)



Nash Q-Learning (NashQ) (Hu & Wellman, 2003)

» Assume two players, i and j

> We observe state s', actions af, af, and results s"**, it rf“

» Store table Q(s,a;, aj) where s € S,a; € A;,aj € A;

> Update rule:

Q(s',af,af) « (1 —a)Q(s", af,af) + a [r,-t+1 + 7NashQ(st+1)]

NashQ(s) = > > mi(s,ai)m(s, ) Q(s, ai, aj)

a;i€A; ajEA;

> (mj,m;) is (possibly mixed) Nash equilibrium profile for
matrix game defined by Q(s, -, ")



NashQ and Nash Equilibrium

» Assume both players controlled by NashQ agent

» Assume several other restrictions ... including:

Assumption 3 One of the following conditions holds during learning?

Condition A. Every stage game (Q}(s),...,0/(s)), for all t and s, has a global optimal point,
and agents’ payoffs in this equilibrium are used to update their Q-functions.

Condition B. Every stage game (Q}(s),...,00(s)), for all t and s, has a saddle point, and
agents’ payolffs in this equilibrium are used to update their Q-functions.

(Hu & Wellman, 2003)

> Then the learning converges to a Nash equilibrium



Assumptions in Learning Methods

Different methods may make different assumptions, e.g.

Things that can be “seen”:
» JAL: st at gt stt1 ,iFl
' i 9 i

> NashQ: s* af af s rfH1 11
Implicit behavioural assumptions:
» JAL: j plays fixed distribution in each state
» NashQ: j plays Nash equilibrium strategy in each state

Many other types of assumptions about structure of game,
behaviour of players, ability to observe, etc.



Assumptions in Learning Methods

Often, method can still be used even if assumptions violated:

» Q-learning assumes stationary transition probabilities
— Is this true in interactive setting?
» what happens if assumptions violated?

» know and understand assumptions!

Bonus question:

What happens if different methods play against each other?
» e.g. JAL vs NashQ
> (Albrecht & Ramamoorthy, 2012)



Excursion:

Ad Hoc Coordination in Multiagent Systems



Ad Hoc Coordination

1. You control single agent in system with other agents
2. You and other agents have goals (common or conflicting)

3. You want to be flexible: other agents may have large variety
of behaviours

4. You want to be efficient: not much time for learning, trial
and error, etc.

5. You don't a priori know how other agents behave



Ad Hoc Coordination

Applications:
» Human-robot interaction

Robot search and rescue

v

v

Adaptive user interfaces

Financial markets

v

(©Team Hector Darmstadt, Technische Universitat Darmstadt



Ad Hoc Coordination

Human-robot interaction:

» Humans can exhibit large variety of behaviours for given task

— need flexibility!

» Humans expect machines to learn and react quickly

— need efficiency!

» Machine does not know ahead of time how human behaves

— no prior coordination of behaviours!



Ad Hoc Coordination

Hard problem:
» Agents may have large variety of behaviours

» Behaviours initially unknown

General learning algorithms not suitable:
» Require long learning periods (e.g. RL)
» Often designed for homogeneous setting

» Many restrictive assumptions (discussed earlier)



Idea

Reduce complexity of problem by assuming that:
1. Agents draw their latent policy from some set

2. Policy assignment governed by unknown distribution
If policy set known:
» Learn distribution, play best-response

If policy set unknown:

> “Guess” policy set, find closest policy, play best-response



Idea

Hypothesise (“guess”) Policy Types




Stochastic Bayesian Game

state space S, initial state s° € S, terminal states S C S

v

v

players N = {1,...,n} and for each j € N:
» set of actions A; (where A = Xx; A;)
> type space ©; (where © = x;©;)
» payoff function u; : S Xx Ax ©; - R

» strategy m; : H x A; X ©; — [0,1]
H is set of histories H® = (s°,a%,...,s) s.t. s € S,a" € A

v

state transition function T :S x Ax S — [0,1]

v

type distribution A : © — [0, 1]

(Albrecht & Ramamoorthy, 2014)



Harsanyi-Bellman Ad Hoc Coordination (HBA)

Canonical formulation HBA:

af ~ arg max EZ/(H")

a;€EA;
where
EZ(H) =" Pr(07|H") > Q&7(H) [[=i(H, 2. 6;
0* ,€0*,; a_j€A_; JFEI

Qi(H) = Z T(s,a,s) [u;(s, a, ) —I—Wma;?x EZ ((I:I, a, s’))}

s'eS

(Albrecht & Ramamoorthy, 2014)
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