# Decision Making in Robots and Autonomous Agents

Learning about Preferences (based on material by C. Boutilier, D. Braziunas)

Subramanian Ramamoorthy
School of Informatics

24 March, 2015

#### Preference Elicitation in Al

#### Shopping for a Car:



Luggage Capacity? Two Door? Cost? Engine Size? Color? Options?



#### The Preference Bottleneck

• Preference elicitation:

the process of determining a user's preferences/ utilities to the extent necessary to make a decision on her behalf

- Why a bottleneck?
  - preferences vary widely
  - large (multiattribute) outcome spaces
  - quantitative utilities (the "numbers") difficult to assess

#### **Automated Preference Elicitation**

#### • Questions:

- decomposition of preferences
- what preference information is *relevant* to the task at hand?
- when is the elicitation effort worth the improvement it offers in terms of decision quality?
- what decision criterion to use given partial utility information?

#### **Constraint-based Decision Problems**

- Constraint-based optimization (CBO):
  - outcomes over variables  $\mathbf{X} = \{X_1 \dots X_n\}$
  - constraints C over X spell out feasible decisions
  - generally compact structure, e.g.,  $X_1 \& X_2 \supset \neg X_3$
  - add a *utility function*  $u: Dom(X) \rightarrow \mathbb{R}$
  - preferences over configurations

#### **Constraint-based Decision Problems**

- Must express u compactly like C
  - generalized additive independence (GAI)
    - model proposed by Fishburn (1967)
    - nice generalization of additive linear models
  - expressible by graphical model capturing independence

## Additive Linear Models of Utility

$$u(\mathbf{x}) = \sum_{i=1}^{n} u_i(x_i) = \sum_{i=1}^{n} \lambda_i v_i(x_i).$$



u(red, 2dr, 280hp) = 0.85

### **Additive Utility**

- An additive representation of u exists iff decision maker is indifferent between any two lotteries where the marginals over each attribute are identical
  - $I_1(\mathbf{X}) \sim I_2(\mathbf{X})$  whenever  $I_1(X_i) = I_2(X_i)$  for all  $X_i$

$$u(\mathbf{x}) = \sum_{i=1}^{n} u_i(x_i) = \sum_{i=1}^{n} \lambda_i v_i(x_i).$$

#### Factored Utilities: GAI Models

- Set of K factors  $f_k$  over subset of variables X[k]
  - "local" utility for each local configuration

$$-u(\mathbf{x}) = \sum_{k \le K} f_k(\mathbf{x}[k])$$

$$\frac{f_1(A)}{a: 3}$$

$$\overline{a}: 1$$

$$u(abc) = f_1(a) + f_2(b) + f_3(bc)$$

$$\frac{f_2(B)}{b: 3}$$

$$b: 1$$

$$\frac{f_3(BC)}{bc: 12}$$

$$bc: 12$$

$$b\overline{c}: 2$$

- [Fishburn67] u in this form exists iff
  - lotteries p and q are equally preferred whenever p and q have the same marginals over each X[k]

## Optimization with GAI Models

$$u(\mathbf{x}) = \sum_{k \le K} f^k(\mathbf{x}[k])$$



- Optimize using Integer Programming (or, e.g., Variable Elimination)
  - number of variables *linear* in size of GAI model

$$\max_{\{I_{\mathbf{x}[k]}, X_i\}} \sum_{k} \sum_{\mathbf{x}[k] \in Dom(\mathbf{X}[k])} u_{\mathbf{x}[k]} I_{\mathbf{x}[k]} \quad \text{subj. to } A, C$$

#### Difficulties in CBO

- Utility elicitation: how do we assess individual user preferences?
  - need to elicit GAI model structure (independence)
  - need to elicit (constraints on) GAI parameters
  - need to make decisions with imprecise parameters

## Strict Utility Function Uncertainty

- User's actual utility u unknown
- Assume feasible set  $F \subseteq U = [0,1]^n$ 
  - allows for unquantified or "strict" uncertainty
  - e.g., F a set of linear constraints on GAI terms

```
u(red,2door,280hp) > 0.4
u(red,2door,280hp) > u(blue,2door,280hp)
```

How should one make a decision? elicit info?

#### Strict Uncertainty Representation



**Utility Function** 

### Bayesian Utility Function Uncertainty

- User's actual utility u unknown
- Assume density P over  $U = [0,1]^n$
- Given *belief state P*, EU of decision *x* is:

$$EU(x,P) = \int_{\mathcal{U}} \vec{p}_x \, \vec{u} \, P(\vec{u})$$

- Decision making is easy, but elicitation harder?
  - query must assess expected value of information

### **Bayesian Representation**



**Utility Function** 

## **Query Types**

- Comparison queries (is x preferred to x'?)
  - impose linear constraints on parameters
    - $\Sigma_k f_k(\mathbf{x}[k]) > \Sigma_k f_k(\mathbf{x'}[k])$
  - Interpretation is straightforward



## **Query Types**

- Bound queries (is  $f_k(\mathbf{x}[k]) > v$ ?)
  - response tightens bound on specific utility parameter
  - can be phrased as a local standard gamble query



#### Difficulties with Bound Queries

- Bound queries focus on *local* factors
  - but values cannot be fixed without reference to others!
  - seemingly "different" local prefs correspond to same u

```
u(Color, Doors, Power) = u_1(Color, Doors) + u_2(Doors, Power)
```

```
10 6 1 4 9 u(red,2door,280hp) = u_1(red,2door) + u_2(2door,280hp)
6 3 3 3 u(red,4door,280hp) = u_1(red,4door) + u_2(4door,280hp)
```

18

#### Local Queries [BB05]

- We wish to avoid queries on whole outcomes
  - can't ask purely local outcomes
  - but can condition on a subset of default values

- Conditioning set C(f) for factor f<sub>i</sub>(X<sub>i</sub>):
  - variables that share factors with  $X_i$
  - setting default outcomes on C(f) renders  $X_i$  independent of remaining variables
  - enables local calibration of factor values

#### **Local Standard Gamble Queries**

- Local std. gamble queries
  - use "best" and "worst" (anchor) local outcomesconditioned on default values of conditioning set
  - bound queries on other parameters relative to these
  - gives local value function v(x[i]) (e.g., v(ABC))
- Hence we can legitimately ask local queries:

$$(\mathbf{x}_i, \mathbf{x}_{C_i}^0) \sim \langle p, (\mathbf{x}_i^\top, \mathbf{x}_{C_i}^0); 1 - p, (\mathbf{x}_i^\perp, \mathbf{x}_{C_i}^0) \rangle$$

- But local Value Functions not enough:
  - must calibrate: requires global scaling

## **Global Scaling**

- Elicit utilities of anchor outcomes with respect to global best and worst outcomes
  - the 2\*m "best" and "worst" outcomes for each factor
  - these require global standard gamble queries (note: same is true for pure additive models)

## **Bound Query Strategies**

- Identify conditioning sets  $C_i$  for each factor  $f_i$
- Decide on "default" outcome
- For each  $f_i$  identify top and bottom *anchors* 
  - e.g., the most and least preferred values of factor i
  - given default values of  $C_i$
- Queries available:
  - local std gambles: use anchors for each factor, C-sets
  - global std gambles: gives bounds on anchor utilities

## Partial preference information Bayesian uncertainty

- Probability distribution p over utility functions
- Maximize expected (expected) utility
   MEU decision x\* = arg max<sub>x</sub> E<sub>p</sub> [u(x)]
- Consider:
  - elicitation costs
  - values of possible decisions
  - optimal tradeoffs between elicitation effort and improvement in decision quality

### Query selection

- At each step of elicitation process, we can
  - obtain more preference information
  - make or recommend a terminal decision

## Bayesian approach Myopic EVOI



### **Expected Value of Information**



- MEU(p) =  $E_p$  [u(x\*)]
- Expected posterior utility: EPU(q,p) = E<sub>rla,p</sub> [MEU(p<sup>r</sup>)]
- Expected value of information of query q:

$$EVOI(q) = EPU(q,p) - MEU(p)$$

# Bayesian approach Myopic EVOI

- Ask query with highest EVOI cost
- [Chajewska et al '00]
  - Global standard gamble queries (SGQ)
     "Is u(o<sub>i</sub>) > !?"
  - Multivariate Gaussian distributions over utilities

- [Braziunas and Boutilier '05]
  - Local Std. Gamble Query over utility factors
  - Mixture of uniforms distributions over utilities

#### Local elicitation in GAI models

[Braziunas and Boutilier '05]

$$u(\mathbf{x}) = u_1(\mathbf{x}_{I_1}) + \ldots + u_m(\mathbf{x}_{I_m})$$

- Local elicitation procedure
  - Bayesian uncertainty over local factors
  - Myopic EVOI query selection  $\langle \mathbf{x}_i, l \rangle$
- Local comparison query

"Is local value of factor setting  $x_i$  greater than I"?

- Binary comparison query
- Requires yes/no response
- query point I can be optimized analytically

#### Preference Elicitation as POMDP

- States?
  - Utility function, U
- Belief states?
  - Probability distributions over U (which is n-dim continuous space)
- Actions?
  - Queries Q and decisions D
  - Queries induce no change in the underlying system state u , but do provide information
  - Each decision d is a terminal action
- There is a cost for asking questions, c(q)

## Preference Elicitation as POMDP, contd.

- Reward(d, u) = EU(d, u)
- Sensor Model?
  - Response Model  $P(r_q|q, u)$
- Value expressions:

$$V^*(P) = \max_{a \in A} Q_a^*(P)$$

$$Q_i^*(l, P) = c(q_i(l)) + \gamma \sum_{r \in R} \Pr(r|q_i(l), P)V^*(P_r)$$