Decision Making in Robots and Autonomous Agents

Repeated, Stochastic and Bayesian Games

Subramanian Ramamoorthy School of Informatics

26 February, 2013

Repeated Game

- You can't learn if you only play a game once.
- Repeatedly playing a game raises new questions.
 - How many times? Is this common knowledge?

Finite Horizon Infinite Horizon

- Trading off present and future reward?

 $\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} r_t \qquad \qquad \sum_{t=1}^{\infty} \gamma^t r_t$ Average Reward Discounted Reward

Repeated Game - Strategies

- What can players do?
 - Strategies can depend on the history of play.

$$\sigma_i: \mathcal{H} \to PD(\mathcal{A}_i) \quad \text{where} \quad \mathcal{H} = \bigcup_{n=0}^{\infty} \mathcal{A}^n$$

- Markov strategies a.k.a. stationary strategies

$$\forall a^{1\dots n} \in \mathcal{A} \qquad \sigma_i(a^1,\dots,a^n) = \sigma(a^n)$$

- k-Markov strategies

$$\forall a_{1\dots n} \in \mathcal{A} \qquad \sigma_i(a_1, \dots, a_n) = \sigma(a_{n-k}, \dots, a_n)$$

Repeated Game - Examples

Iterated Prisoner's Dilemma

$$R_{1} = \begin{array}{c} \mathsf{C} \quad \mathsf{D} \\ \mathsf{D} \quad \begin{pmatrix} 3 & 0 \\ 4 & 1 \end{pmatrix} \\ R_{2} = \begin{array}{c} \mathsf{C} \quad \begin{pmatrix} 3 & 4 \\ 0 & 1 \end{pmatrix} \\ \mathsf{D} \quad \begin{pmatrix} 3 & 4 \\ 0 & 1 \end{pmatrix} \\ \end{array}$$

- The single most examined repeated game!
- Repeated play can justify behavior that is not rational in the one-shot game.
- Tit-for-Tat (TFT)
 - Play opponent's last action (C on round 1).
 - * A 1-Markov strategy.

Well Known IPD Strategies

- AllC/D: always cooperate/defect
- Grim: cooperate until the other agent defects, then defect forever
- Tit-for-Tat (TFT): on 1st move, cooperate. On nth move, repeat
- the other agent's (n-1)th move
- Tit-for-Two-Tats (TFTT): like TFT, but only only retaliates if the other agent defects twice
- Tester: defect on round 1. If the other agent retaliates, play TFT. Otherwise, alternately C/D
- Pavlov: on 1st round, cooperate.
 Thereafter, win => use same action next; lose => switch

AllC, Crim	AllC, Crim	TFT	Tester		Pavlo	, עווג	
Grim, TFT, or	Grim, TFT, or	С	D	ĺ	C		
Pavlov	Pavlov	D	C			D	
C C	C C	C C	C C		C	D	
C C	C	C	C		D	D	
C C	C C	C	C C		С	D	
С	С	С	С		D	D	
÷	÷	÷	÷		C ·	D ·	
				- 1	:	:	

- Obviously, Markov strategy equilibria exist.
- Consider iterated prisoner's dilemma and TFT.

$$R_{1} = \begin{array}{c} \mathsf{C} \quad \mathsf{D} \\ \mathsf{D} \quad \begin{pmatrix} 3 & 0 \\ 4 & 1 \end{pmatrix} \\ R_{2} = \begin{array}{c} \mathsf{C} \quad \begin{pmatrix} 3 & 4 \\ 0 & 1 \end{pmatrix} \\ \mathsf{D} \quad \begin{pmatrix} 3 & 4 \\ 0 & 1 \end{pmatrix} \\ \end{array}$$

- With average reward, what's a best response?

- * Always D has a value of 1.
- * D then C has a value of 2.5
- * Always C and TFT have a value of 3.
- Hence, both players following TFT is Nash.

- The TFT equilibria is strictly preferred to all Markov strategy equilibria.
- The TFT strategy plays a dominated action.
- TFT uses a threat to enforce compliance.
- TFT is not a special case.

Folk Theorem. For any repeated game with average reward, every *feasible* and *enforceable* vector of payoffs for the players can be achieved by some Nash equilibrium strategy. (Osborne & Rubinstein, 1994)

- A payoff vector is *feasible* if it is a linear combination of individual action payoffs.
- A payoff vector is *enforceable* if all players get at least their minimax value.

Folk Theorem. For any repeated game with average reward, every *feasible* and *enforceable* vector of payoffs for the players can be achieved by some Nash equilibrium strategy. (Osborne & Rubinstein, 1994)

- Players' follow a deterministic sequence of play that achieves the payoff vector.
- Any deviation is punished.
- The threat keeps players from deviating as in TFT.

Equilibria by 'Learning' – Universally Consistent

- A.k.a. Hannan consistent, regret minimizing.
- For a history $h = a^1, a^2, \dots, a^n \in A$, define regret for player i,

$$\mathsf{Regret}_i(h) = \left(\max_{a_i \in \mathcal{A}_i} \sum_{t=1}^n R(\langle a_i, a_{-i}^t \rangle)\right) - \sum_{t=1}^n R_i(a^t)$$

i.e., the difference between the reward that could have been received by a stationary strategy and the actual reward received.

Minimax by Regret Minimization

• A strategy σ_i is universally consistent if for any $\epsilon > 0$ there exists a T such that for all σ_{-i} and t > T,

$$\Pr\left[\frac{\operatorname{\mathsf{Regret}}_{i}\left(a^{1},\ldots,a^{t}\right)}{t} > \epsilon \quad \left| \begin{array}{c} \langle \sigma_{i},\sigma_{-i} \rangle \\ \end{array} \right| < \epsilon$$

i.e., with high probability the average regret is low for all strategies of the other players.

 If regret is zero, then must be getting at least the minimax value.

Stochastic Games

MDPs

- Single Agent
- Multiple State

Repeated Games - Multiple Agent - Single State

Stochastic Games

- Multiple Agent
- Multiple State

Stochastic Game - Setup

A stochastic game is a tuple $(n, S, A_{1...n}, T, R_{1...n})$,

- n is the number of agents,
- S is the set of states,
- \mathcal{A}_i is the set of actions available to agent i,
 - \mathcal{A} is the joint action space $\mathcal{A}_1 \times \ldots \times \mathcal{A}_n$,
- T is the transition function $\mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0, 1]$,
- R_i is the reward function for the *i*th agent $S \times A \rightarrow \Re$.

Stochastic Game - Policies

- What can players do?
 - Policies depend on history and the current state.

 $\pi_i: \mathcal{H} \times \mathcal{S} \to PD(\mathcal{A}_i) \quad \text{where} \quad \mathcal{H} = \bigcup_{n=0}^{\infty} (\mathcal{S} \times \mathcal{A})^n$

- Markov polices a.k.a. stationary policies

$$\forall h, h' \in \mathcal{H} \, \forall s \in \mathcal{S} \qquad \pi_i(h, s) = \pi(h', s)$$

- Focus on learning Markov policies, but the learning itself is a non-Markovian policy.

Stochastic Game - Example

(Littman, 1994)

- Players: Two.
- States: Player positions and ball possession (780).
- Actions: N, S, E, W, Hold (5).
- Transitions:
 - Simultaneous action selection, random execution.
 - Collision could change ball possession.
- Rewards: Ball enters a goal.

Stochastic Game - Remarks

- If n = 1, it is an MDP.
- If |S| = 1, it is a repeated game.
- If the other players play a stationary policy, it is an MDP to the remaining player.

$$\hat{T}(s, a_i, s') = \sum_{a_{-i} \in \mathcal{A}_{-i}} \pi_{-i}(s, a) T(s, \langle a_i, a_{-i} \rangle, s')$$

- The interesting case, then, is when the other agents are not stationary, i.e., are learning.

Nash Equilibria – Stochastic Game

- Consider Markov policies.
- A best response set is the set of all Markov policies that are optimal given the other players' policies.

$$BR_{i}(\pi_{-i}) = \left\{ \begin{array}{cc} \pi_{i} \mid & \forall \pi'_{i} \forall s \in \mathcal{S} \\ & & V_{i}^{\langle \pi_{i}, \pi_{-i} \rangle}(s) \geq V_{i}^{\langle \pi'_{i}, \pi_{-i} \rangle}(s) \end{array} \right\}$$

• A Nash equilibrium is a joint policy, where all players are playing best responses to each other.

$$\forall i \in \{1 \dots n\} \qquad \pi_i \in \mathrm{BR}_i(\pi_{-i})$$

Nash Equilibria – Stochastic Game

 All discounted reward and zero-sum average reward stochastic games have at least one Nash equilibrium. (Shapley, 1953; Fink, 1964)

Incomplete Information

- So far, we assumed that everything relevant about the game being played is common knowledge to all the players:
 - the number of players
 - the actions available to each
 - the payoff vector associated with each action vector
- True even for imperfect-information games
 - The actual moves aren't common knowledge, but the game is
- We'll now consider games of incomplete (not imperfect) information
 - Players are uncertain about the game being played

Incomplete Information

- Consider the payoff matrix shown here
 - ε is a small positive constant; Agent 1 knows its value
- Agent 1 doesn't know the values of a, b, c, d
 - Thus the matrix represents a *set of games*
 - Agent 1 doesn't know which of these games is the one being played
- Agent 1 seeks strategy that works despite lack of knowledge
- If Agent 1 thinks Agent 2 is malicious, then Agent 1 might want to play a maxmin, or "safety level," strategy
 - minimum payoff of T is 1–ε
 - minimum payoff of B is 1
- So agent 1's maxmin strategy is B

R

L

Regret

- Suppose Agent 1 doesn't think Agent 2 is malicious
- Agent 1 might reason as follows:
 - If Agent 2 plays *R*, then 1's strategy changes 1's payoff by only a small amount
 - Payoff is 1 or 1–ε;
 - Agent 1's difference is only ε
 - If Agent 2 plays L, then 1's strategy changes 1's payoff by a much bigger amount
 - Either 100 or 2, difference is 98
 - If Agent 1 chooses *T*, this will minimize *1's* worst-case **regret**
 - Maximum difference between the payoff of the chosen action and the payoff of the other action

100, a 1 – ϵ , b

R

1, d

L

2, c

T

B

Minimax Regret

- Suppose *i* plays action a_i and the other agents play action profile a_{-i}
- *i*'s regret: amount *i* lost by playing a_i instead of *i*'s best response to a_{-i}

$$\operatorname{regret}(a_i, \mathbf{a}_{-i}) = \left[\max_{a_i' \in A_i} u_i(a_i', \mathbf{a}_{-i})\right] - u_i(a_i, \mathbf{a}_{-i})$$

i doesn't know what a_{-i} will be, but can consider worst case:
 maximum regret for a_i, maximized over every possible a_{-i}

$$\max_{\mathbf{a}_{-i} \in \mathbf{A}_{-i}} \operatorname{regret}(a_i, \mathbf{a}_{-i}) = \max_{\mathbf{a}_{-i} \in \mathbf{A}_{-i}} \left(\left[\max_{a_i' \in A_i} u_i(a_i', \mathbf{a}_{-i}) \right] - u_i(a_i, \mathbf{a}_{-i}) \right)$$

Minimax Regret

Minimax regret action: an action with the smallest maximum regret

 $\underset{a_{i} \in A_{i}}{\operatorname{argmin}} \max_{\mathbf{a}_{-i} \in \mathbf{A}_{-i}} \operatorname{regret}(a_{i}) = \underset{a_{i} \in A_{i}}{\operatorname{argmin}} \max_{\mathbf{a}_{-i} \in \mathbf{A}_{-i}} \left(\left[\max_{a_{i}' \in A_{i}} u_{i} \left(a_{i}', \mathbf{a}_{-i} \right) \right] - u_{i} \left(a_{i}, \mathbf{a}_{-i} \right) \right)$

- Can extend to a solution concept
 - All agents play minimax regret actions
 - This is one way to deal with the incompleteness, but often we can do more with the representation

Bayesian Games

- In the previous example, we knew the set G of all possible games, but didn't know anything about which game in G
 - Enough information to put a probability distribution over games
- A Bayesian Game is a class of games G that satisfies two fundamental conditions
- Condition 1:
 - The games in G have the same number of agents, and the same strategy space (set of possible strategies) for each agent. The only difference is in the payoffs of the strategies.
- This condition isn't very restrictive
 - Other types of uncertainty can be reduced to the above, by reformulating the problem

An Example

• Suppose we don't know whether player 2 only has strategies L and R, or also an additional strategy C:

- If player 2 doesn't have strategy C, this is equivalent to having a strategy C that's strictly dominated by other strategies:
 - Nash equilibria for G_1' are the same as for G_1

Game
$$G_1' \cup \begin{bmatrix} L & C & R \\ 1, 1 & 0, -100 & 1, 3 \\ D & 0, 5 & 2, -100 & 1, 13 \end{bmatrix}$$

– Problem is reduced to whether C's payoffs are those of G_1' or G_2

26/02/2013

Bayesian Games

Condition 2 (common prior):

- The probability distribution over the games in *G* is common knowledge (i.e., known to all the agents)
- So a Bayesian game defines
 - the uncertainties of agents about the game being played,
 - what each agent believes the other agents believe about the game being played
- The beliefs of the different agents are posterior probabilities
 - Combine the common prior distribution with individual "private signals" (what's "revealed" to the individual players)
- The common-prior assumption rules out whole families of games
 - But it greatly simplifies the theory, so most work in game theory uses it

The Bayesian Game Model

A Bayesian game consists of

- a set of games that differ only in their payoffs
- a common (known to all players) prior distribution over them
- for each agent, a partition structure (set of information sets) over the games

Bayesian Game: Information Sets Defn.

A Bayesian game is a 4-tuple (N,G,P,I)

- N is a set of agents
- **G** is a set of N-agent games
- For every agent *i*, every game in *G* has the same strategy space
- P is a common prior over G
 - *common:* common knowledge (known to all the agents)
 - *prior:* probability before learning any additional information
- $I = (I_1, ..., I_N)$ is a tuple of partitions of **G**, one for each agent (information sets)

G = {Matching Pennies (MP), Prisoner's Dilemma (PD), Coordination (Crd), Battle of the Sexes (BoS)}

Example

- Suppose the randomly chosen game is MP
- Agent 1's information set is $I_{1,1}$
 - 1 knows it's MP or PD
 - 1 can infer posterior
 probabilities for each

$$\Pr[MP|I_{1,1}] = \frac{\Pr[MP]}{\Pr[MP] + \Pr[PD]} = \frac{0.3}{0.3 + 0.1} = \frac{3}{4}$$
$$\Pr[PD|I_{1,1}] = \frac{\Pr[PD]}{\Pr[MP] + \Pr[PD]} = \frac{0.1}{0.3 + 0.1} = \frac{1}{4}$$

• Agent 2's information set is $I_{2,1}$

$$\Pr[MP|I_{2,1}] = \frac{\Pr[MP]}{\Pr[MP] + \Pr[CrD]} = \frac{0.3}{0.3 + 0.2} = \frac{3}{5}$$
$$\Pr[Crd|I_{2,1}] = \frac{\Pr[Crd]}{\Pr[MP] + \Pr[CrD]} = \frac{0.2}{0.3 + 0.2} = \frac{2}{5}$$

Another Interpretation: Extensive Form

 $(2,0)\ (0,2)\ (0,2)\ (2,0)\ (2,2)\ (0,3)\ (3,0)\ (1,1)\ (2,2)\ (0,0)\ (0,0)\ (1,1)\ (2,1)\ (0,0)\ (0,0)\ (1,2)$

Epistemic Types

- We can assume the only thing players are uncertain about is the game's utility function
- Thus we can define uncertainty directly over a game's utility function

Definition : a **Bayesian game** is a tuple (N, A, Θ, p, u) where:

N is a set of agents;

 $A = A_1 \times \ldots \times A_n$, where A_i is the set of actions available to player *i*;

 $\Theta = \Theta_1 \times \ldots \times \Theta_n$, where Θ_i is the type space of player *i*;

 $p: \Theta \rightarrow [0, 1]$ is a common prior over types; and

 $u = (u_1, \ldots, u_n)$, where $u_i : A \times \Theta \rightarrow \Re$ is the utility function for player *i*

• All this is common knowledge; each agent knows its own type

Types

An agent's **type** consists of all the information it has that isn't common knowledge, e.g.,

- The agent's actual payoff function
- The agent's beliefs about other agents' payoffs,
- The agent's beliefs about *their* beliefs about his own payoff
- Any other higher-order beliefs

Strategies

Similar to what we had in imperfect-information games:

- A pure strategy for player *i* maps each of *i*'s types to an action
 what *i* would play if *i* had that type
- A mixed strategy s_i is a probability distribution over pure strategies $s_i(a_i|\theta_i) = Pr[i \text{ plays action } a_i \mid i \text{ 's type is } \theta_i]$
- Many kinds of expected utility: *ex post, ex interim, and ex ante* Depend on what we know about the players' types

Expected Utility

If we know every agent's type (i.e., the type profile θ)

agent i's ex post expected utility:

$$EU_i(\mathbf{s}, \mathbf{\theta}) = \sum_{\mathbf{a}} \Pr[\mathbf{a} | \mathbf{s}, \mathbf{\theta}] \ u_i(\mathbf{a}, \mathbf{\theta}) = \sum_{\mathbf{a}} \left(\prod_{j \in N} s_j(a_j | \theta_j) \right) u_i(\mathbf{a}, \mathbf{\theta})$$

If we only know the common prior

agent *i*'s *ex ante* expected utility: $EU_i(\mathbf{s}) = \sum_{\alpha} \Pr[\theta] EU_i(\mathbf{s}, \theta) = \sum_{\alpha} \Pr[\theta_i] EU_i(\mathbf{s}, \theta_i)$

If we know the type θ_i of one agent *i*, but not the other agents' types

i's *ex interim*
expected utility:
$$EU_i(\mathbf{s}, \theta_i) = \sum_{\boldsymbol{\theta}_{-i}} \Pr[\boldsymbol{\theta}_{-i} | \theta_i] EU_i(\mathbf{s}, (\theta_i, \boldsymbol{\theta}_{-i}))$$

Bayes-Nash Equilibrium

Given a strategy profile \mathbf{s}_{-i} , a **best response** for agent *i* is a strategy s_i such that

$$s_i \in \arg \max(EU_i(s'_i, \mathbf{s}_{-i}))$$

 s'_i

Above, the set notation is because more than one strategy may produce the same expected utility

A **Bayes-Nash** equilibrium is a strategy profile s such that for every s_i in s, s_i is a best response to \mathbf{s}_{-i}

Just like the definition of a Nash equilibrium, except that we're using Bayesian-game strategies

Computing Bayes-Nash Equilibria

 The idea is to construct a payoff matrix for the entire Bayesian game, and find equilibria on that matrix

Write each of the pure strategies as a list of actions, one for each type:

Agent 1's pure strategies:

- > UU: U if type $\theta_{1,1}$, U if type $\theta_{1,2}$ > UD: U if type $\theta_{1,1}$, D if type $\theta_{1,2}$
- > DU: D if type $\theta_{1,1}$, U if type $\theta_{1,2}$

> DD: D if type $\theta_{1,1}$, D if type $\theta_{1,2}$

Agent 2's pure strategies:

- > LL: L if type $\theta_{2,1}$, L if type $\theta_{2,2}$
- > LR: L if type $\theta_{2,1}$, R if type $\theta_{2,2}$
- > RL: R if type $\theta_{2,1}$, L if type $\theta_{2,2}$
- > RR: R if type θ_2 , R if type $\theta_{2,2}$

Computing Bayes-Nash Equilibria

Compute *ex ante* expected utility for each pure-strategy profile:

Computing Bayes-Nash Equilibria

• Put all of the *ex ante* expected utilities into a payoff matrix

e.g., $EU_2(UU,LL) = 1$

 Now we can compute best responses and Nash equilibria

LL LR RL RR

UU	2,1	1, 0.7	1, 1.2	0, 0.9
UD	0.8, 0.2	1, 1.1	0.4, 1	0.6, 1.9
DU	1.5, 1.4	0.5, 1.1	1.7, 0.4	0.7, 0.1
DD	0.3, 0.6	0.5, 1.5	1.1, 0.2	1.3, 1.1

Computing Bayes Nash Equilibria

Suppose we learn agent 1's type is $\theta_{1,1}$ Recompute the payoff matrix using the posterior probabilities $\Pr[MP|\theta_{1,1}] = \frac{3}{4}, \quad \Pr[PD|\theta_{1,1}] = \frac{1}{4}$ • $u_2(UU,LL|\theta_{1,1}) = \frac{3}{4}(0) + \frac{1}{4}(2) = 0.5$ $\theta_{2,2}$ $\theta_{2,1}$ MP (p = 0.3)PD (p = 0.1)R R $\theta_{1,1}$ 2.0 0, 2 U U 2 2 0, 3 0,2 D 2.0 D 3, 0 1, 1

- *Ex interim* payoff matrix when agent 1's type is $\theta_{1,1}$
- Can't use this to compute equilibria, because $\theta_{1,1}$ isn't common knowledge

	LL	LR	RL	RR
UU	2, 0.5	1.5, 0.75	0.5, 2	0, 2.25
UD	2, 0.5	1.5, 0.75	0.5, 2	0, 2.25
DU	0.75, 1.5	0.25, 1.75	2.25, 0	1.75, 0.25
DD	0.75, 1.5	0.25, 1.75	2.25, 0	1.75, 0.25

and so on...

Acknowledgements

Slides are adapted from:

- Tutorial at IJCAI 2003 by Prof Peter Stone, University of Texas
- Game Theory lectures by Prof. Dana Nau, University of Maryland