Decision Making in Robots and Autonamaus Agents

Repeated, Stochastic and Bayesian Games

Subramanian Ramamoorthy
School of Informatics

26 February, 2013

Repeated Game

- You can't learn if you only play a game once.
- Repeatedly playing a game raises new questions.
- How many times? Is this common knowledge?

Finite Horizon Infinite Horizon

- Trading off present and future reward?

$$
\begin{array}{lc}
\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} r_{t} & \sum_{t=1}^{\infty} \gamma^{t} r_{t} \\
\text { Average Reward } & \text { Discounted Reward }
\end{array}
$$

Repeated Game - Strategies

- What can players do?
- Strategies can depend on the history of play.

$$
\sigma_{i}: \mathcal{H} \rightarrow P D\left(\mathcal{A}_{i}\right) \quad \text { where } \quad \mathcal{H}=\bigcup_{n=0}^{\infty} \mathcal{A}^{n}
$$

- Markov strategies a.k.a. stationary strategies

$$
\forall a^{1 \ldots n} \in \mathcal{A} \quad \sigma_{i}\left(a^{1}, \ldots, a^{n}\right)=\sigma\left(a^{n}\right)
$$

- k-Markov strategies

$$
\forall a_{1 \ldots n} \in \mathcal{A} \quad \sigma_{i}\left(a_{1}, \ldots, a_{n}\right)=\sigma\left(a_{n-k}, \ldots, a_{n}\right)
$$

Repeated Game - Examples

- Iterated Prisoner's Dilemma

$$
\left.R_{1}=\begin{array}{cc}
\mathrm{C} & \mathrm{D} \\
\mathrm{D} \\
\hline & 0 \\
4 & 1
\end{array}\right) \quad R_{2}=\begin{array}{cc}
\mathrm{C} \\
\mathrm{C} \\
\mathrm{D}
\end{array}\binom{\text { (}}{3}
$$

- The single most examined repeated game!
- Repeated play can justify behavior that is not rational in the one-shot game.
- Tit-for-Tat (TFT)
* Play opponent's last action (C on round 1).
* A 1-Markov strategy.

Well Known IPD Strategies

- AllC/D: always cooperate/defect
- Grim: cooperate until the other agent defects, then defect forever
- Tit-for-Tat (TFT): on $1^{\text {st }}$ move, cooperate. On $n^{\text {th }}$ move, repeat
- the other agent's $(\mathrm{n}-1)^{\text {th }}$ move
- Tit-for-Two-Tats (TFTT): like TFT, but only only retaliates if the other agent defects twice
- Tester: defect on round 1. If the other agent retaliates, play TFT. Otherwise, alternately C/D
- Pavlov: on 1st round, cooperate. Thereafter, win => use same action next; lose => switch

AllC,	AllC,	TFT	Tester		
Grim,	Grim,	Pavlov	AllD		
TFT, or	TFT, or	C	D		
Pavlov	Pavlov	D	C	C	D
C	C	C	C	D	D
C	C	C	C	C	D
C	C	C	C	D	D
C	C	C	C	C	D
C	C	C	C	D	D
\vdots	\vdots	\vdots	\vdots	C	D
				\vdots	\vdots

Nash Equilibria - Repeated Game

- Obviously, Markov strategy equilibria exist.
- Consider iterated prisoner's dilemma and TFT.

$$
\left.\left.R_{1}=\begin{array}{cc}
\mathrm{C} & \mathrm{D} \\
\mathrm{D} \\
\hline & 0 \\
4 & 1
\end{array}\right) \quad R_{2}=\begin{array}{cc}
\mathrm{C} & \mathrm{D} \\
\mathrm{C} \\
\mathrm{D} & 4 \\
3 & 1
\end{array}\right)
$$

- With average reward, what's a best response?
* Always D has a value of 1 .
* D then C has a value of 2.5
* Always C and TFT have a value of 3 .
- Hence, both players following TFT is Nash.

Nash Equilibria - Repeated Game

- The TFT equilibria is strictly preferred to all Markov strategy equilibria.
- The TFT strategy plays a dominated action.
- TFT uses a threat to enforce compliance.
- TFT is not a special case.

Nash Equilibria - Repeated Game

Folk Theorem. For any repeated game with average reward, every feasible and enforceable vector of payoffs for the players can be achieved by some Nash equilibrium strategy. (Osborne \& Rubinstein, 1994)

- A payoff vector is feasible if it is a linear combination of individual action payoffs.
- A payoff vector is enforceable if all players get at least their minimax value.

Nash Equilibria - Repeated Game

Folk Theorem. For any repeated game with average reward, every feasible and enforceable vector of payoffs for the players can be achieved by some Nash equilibrium strategy. (Osborne \& Rubinstein, 1994)

- Players' follow a deterministic sequence of play that achieves the payoff vector.
- Any deviation is punished.
- The threat keeps players from deviating as in TFT.

Equilibria by 'Learning’ - Universally Consistent

- A.k.a. Hannan consistent, regret minimizing.
- For a history $h=a^{1}, a^{2}, \ldots, a^{n} \in \mathcal{A}$, define regret for player i,

$$
\operatorname{Regret}_{i}(h)=\left(\max _{a_{i} \in \mathcal{A}_{i}} \sum_{t=1}^{n} R\left(\left\langle a_{i}, a_{-i}^{t}\right\rangle\right)\right)-\sum_{t=1}^{n} R_{i}\left(a^{t}\right)
$$

i.e., the difference between the reward that could have been received by a stationary strategy and the actual reward received.

Minimax by Regret Minimization

- A strategy σ_{i} is universally consistent if for any $\epsilon>0$ there exists a T such that for all σ_{-i} and $t>T$,

$$
\operatorname{Pr}\left[\left.\frac{\operatorname{Regret}_{i}\left(a^{1}, \ldots, a^{t}\right)}{t}>\epsilon \right\rvert\,\left\langle\sigma_{i}, \sigma_{-i}\right\rangle\right]<\epsilon
$$

i.e., with high probability the average regret is low for all strategies of the other players.

- If regret is zero, then must be getting at least the minimax value.

Stochastic Games

Stochastic Game - Setup

A stochastic game is a tuple $\left(n, \mathcal{S}, \mathcal{A}_{1 \ldots n}, T, R_{1 \ldots n}\right)$,

- n is the number of agents,
- \mathcal{S} is the set of states,
- \mathcal{A}_{i} is the set of actions available to agent i,
- \mathcal{A} is the joint action space $\mathcal{A}_{1} \times \ldots \times \mathcal{A}_{n}$,
- T is the transition function $\mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow[0,1]$,
- R_{i} is the reward function for the i th agent $\mathcal{S} \times \mathcal{A} \rightarrow \Re$.

Stochastic Game - Policies

- What can players do?
- Policies depend on history and the current state.

$$
\pi_{i}: \mathcal{H} \times \mathcal{S} \rightarrow P D\left(\mathcal{A}_{i}\right) \quad \text { where } \quad \mathcal{H}=\bigcup_{n=0}^{\infty}(\mathcal{S} \times \mathcal{A})^{n}
$$

- Markov polices a.k.a. stationary policies

$$
\forall h, h^{\prime} \in \mathcal{H} \forall s \in \mathcal{S} \quad \pi_{i}(h, s)=\pi\left(h^{\prime}, s\right)
$$

- Focus on learning Markov policies, but the learning itself is a non-Markovian policy.

Stochastic Game - Example

(Littman, 1994)

- Players: Two.
- States: Player positions and ball possession (780).
- Actions: N, S, E, W, Hold (5).
- Transitions:
- Simultaneous action selection, random execution.
- Collision could change ball possession.
- Rewards: Ball enters a goal.

Stochastic Game - Remarks

- If $n=1$, it is an MDP.
- If $|S|=1$, it is a repeated game.
- If the other players play a stationary policy, it is an MDP to the remaining player.

$$
\hat{T}\left(s, a_{i}, s^{\prime}\right)=\sum_{a_{-i} \in \mathcal{A}_{-i}} \pi_{-i}(s, a) T\left(s,\left\langle a_{i}, a_{-i}\right\rangle, s^{\prime}\right)
$$

- The interesting case, then, is when the other agents are not stationary, i.e., are learning.

Nash Equilibria - Stochastic Game

- Consider Markov policies.
- A best response set is the set of all Markov policies that are optimal given the other players' policies.

$$
\operatorname{BR}_{i}\left(\pi_{-i}\right)=\left\{\begin{array}{ll}
\pi_{i} \mid & \forall \pi_{i}^{\prime} \forall s \in \mathcal{S} \\
& V_{i}^{\left\langle\pi_{i}, \pi_{-i}\right\rangle}(s) \geq V_{i}^{\left\langle\pi_{i}^{\prime}, \pi_{-i}\right\rangle}(s)
\end{array}\right\}
$$

- A Nash equilibrium is a joint policy, where all players are playing best responses to each other.

$$
\forall i \in\{1 \ldots n\} \quad \pi_{i} \in \mathrm{BR}_{i}\left(\pi_{-i}\right)
$$

Nash Equilibria - Stochastic Game

- All discounted reward and zero-sum average reward stochastic games have at least one Nash equilibrium. (Shapley, 1953; Fink, 1964)

Incomplete Information

- So far, we assumed that everything relevant about the game being played is common knowledge to all the players:
- the number of players
- the actions available to each
- the payoff vector associated with each action vector
- True even for imperfect-information games
- The actual moves aren't common knowledge, but the game is
- We'll now consider games of incomplete (not imperfect) information
- Players are uncertain about the game being played

Incomplete Information

- Consider the payoff matrix shown here
$-\varepsilon$ is a small positive constant; Agent 1 knows its value
- Agent 1 doesn't know the values of a, b, c, d
- Thus the matrix represents a set of games

	$100, a$
	$1-\epsilon, b$
	$2, c$

- Agent 1 doesn't know which of these games is the one being played
- Agent 1 seeks strategy that works despite lack of knowledge
- If Agent 1 thinks Agent 2 is malicious, then Agent 1 might want to play a maxmin, or "safety level," strategy
- minimum payoff of T is $1-\varepsilon$
- minimum payoff of B is 1
- So agent 1's maxmin strategy is B

Regret

- Suppose Agent 1 doesn't think Agent 2 is malicious
- Agent 1 might reason as follows:
- If Agent 2 plays R, then 1's strategy changes 1's payoff by only a small amount
- Payoff is 1 or $1-\varepsilon$;

T	$100, a$	$1-\epsilon, b$
B	$2, c$	$1, d$

- Agent 1 's difference is only ε
- If Agent 2 plays L, then 1's strategy changes 1's payoff by a much bigger amount
- Either 100 or 2, difference is 98
- If Agent 1 chooses T, this will minimize 1's worst-case regret
- Maximum difference between the payoff of the chosen action and the payoff of the other action

Minimax Regret

- Suppose i plays action a_{i} and the other agents play action profile a_{-i}
- i 's regret: amount i lost by playing a_{i} instead of i 's best response to a_{-i}

$$
\operatorname{regret}\left(a_{i}, \mathbf{a}_{-i}\right)=\left[\max _{a_{i} \in A_{i}} u_{i}\left(a_{i}^{\prime}, \mathbf{a}_{-i}\right)\right]-u_{i}\left(a_{i}, \mathbf{a}_{-i}\right)
$$

- i doesn't know what a_{-i} will be, but can consider worst case:
- maximum regret for a_{i}, maximized over every possible a_{-i}

$$
\max _{\mathbf{a}_{-i} \in \mathbf{A}_{-i}} \operatorname{regret}\left(a_{i}, \mathbf{a}_{-i}\right)=\max _{\mathbf{a}_{-i} \in \mathbf{A}_{-i}}\left(\left[\max _{a_{i}^{\prime} \in A_{i}} u_{i}\left(a_{i}^{\prime}, \mathbf{a}_{-i}\right)\right]-u_{i}\left(a_{i}, \mathbf{a}_{-i}\right)\right)
$$

Minimax Regret

- Minimax regret action: an action with the smallest maximum regret

$$
\underset{a_{i} \in A_{i}}{\operatorname{argmin}} \max _{\mathbf{a}_{-i} \in \mathbf{A}_{-i}} \operatorname{regret}\left(a_{i}\right)=\underset{a_{i} \in A_{i}}{\operatorname{argmin}} \max _{\mathbf{a}_{-i} \in \mathbf{A}_{-i}}\left(\left[\max _{a_{i} \in A_{i}} u_{i}\left(a_{i}^{\prime}, \mathbf{a}_{-i}\right)\right]-u_{i}\left(a_{i}, \mathbf{a}_{-i}\right)\right)
$$

- Can extend to a solution concept
- All agents play minimax regret actions
- This is one way to deal with the incompleteness, but often we can do more with the representation

Bayesian Games

- In the previous example, we knew the set \boldsymbol{G} of all possible games, but didn't know anything about which game in \boldsymbol{G}
- Enough information to put a probability distribution over games
- A Bayesian Game is a class of games \boldsymbol{G} that satisfies two fundamental conditions
- Condition 1:
- The games in \boldsymbol{G} have the same number of agents, and the same strategy space (set of possible strategies) for each agent. The only difference is in the payoffs of the strategies.
- This condition isn't very restrictive
- Other types of uncertainty can be reduced to the above, by reformulating the problem

An Example

- Suppose we don't know whether player 2 only has strategies L and R, or also an additional strategy C :

- If player 2 doesn't have strategy C, this is equivalent to having a strategy C that's strictly dominated by other strategies:
- Nash equilibria for $\mathrm{G}_{1}{ }^{\prime}$ are the same as for G_{1}

- Problem is reduced to whether C's payoffs are those of $\mathrm{G}_{1}{ }^{\prime}$ or G_{2}

Bayesian Games

Condition 2 (common prior):

- The probability distribution over the games in \boldsymbol{G} is common knowledge (i.e., known to all the agents)
- So a Bayesian game defines
- the uncertainties of agents about the game being played,
- what each agent believes the other agents believe about the game being played
- The beliefs of the different agents are posterior probabilities
- Combine the common prior distribution with individual "private signals" (what's "revealed" to the individual players)
- The common-prior assumption rules out whole families of games
- But it greatly simplifies the theory, so most work in game theory uses it

The Bayesian Game Model

A Bayesian game consists of

- a set of games that differ only in their payoffs
- a common (known to all players) prior distribution over them
- for each agent, a partition structure (set of information sets) over the games

Bayesian Game: Information Sets Defn.

A Bayesian game is a 4-tuple ($\mathrm{N}, \mathrm{G}, \mathrm{P}, \mathrm{I}$)

- $\quad N$ is a set of agents
- G is a set of N-agent games
- For every agent i, every game in \boldsymbol{G} has the same strategy space
- $\quad P$ is a common prior over \boldsymbol{G}
- common: common knowledge (known to all the agents)
- prior: probability before learning any additional information
- $I=\left(I_{1}, \ldots, I_{N}\right)$ is a tuple of partitions of \mathbf{G}, one for each agent (information sets)
$G=\{$ Matching Pennies (MP), Prisoner's Dilemma (PD), Coordination (Crd), Battle of the Sexes (BoS) \}

Example

- Suppose the randomly chosen game is MP
- Agent 1's information set is
$I_{1,1}$
- 1 knows it's MP or PD
- 1 can infer posterior probabilities for each
- Agent 2's information set is $I_{2,1}$
$\operatorname{Pr}\left[\mathrm{MP} \mid I_{1,1}\right]=\frac{\operatorname{Pr}[\mathrm{MP}]}{\operatorname{Pr}[\mathrm{MP}]+\operatorname{Pr}[\mathrm{PD}]}=\frac{0.3}{0.3+0.1}=\frac{3}{4}$
$\operatorname{Pr}\left[\operatorname{PD} \mid I_{1,1}\right]=\frac{\operatorname{Pr}[\mathrm{PD}]}{\operatorname{Pr}[\mathrm{MP}]+\operatorname{Pr}[\mathrm{PD}]}=\frac{0.1}{0.3+0.1}=\frac{1}{4}$

Another Interpretation: Extensive Form

Epistemic Types

- We can assume the only thing players are uncertain about is the game's utility function
- Thus we can define uncertainty directly over a game's utility function

Definition : a Bayesian game is a tuple (N, A, Θ, p, u) where:
N is a set of agents;
$A=A_{1} \times \ldots \times A_{n}$, where A_{i} is the set of actions available to player $i ;$
$\Theta=\Theta_{1} \times \ldots \times \Theta_{n}$, where Θ_{i} is the type space of player i;
$p: \Theta \rightarrow[0,1]$ is a common prior over types; and
$u=\left(u_{1}, \ldots, u_{n}\right)$, where $u_{i}: A \times \Theta \rightarrow \mathfrak{R}$ is the utility function for player i

- All this is common knowledge; each agent knows its own type

Types

An agent's type consists of all the information it has that isn't common knowledge, e.g.,

- The agent's actual payoff function
- The agent's beliefs about other agents' payoffs,
- The agent's beliefs about their beliefs about his own payoff
- Any other higher-order beliefs

Strategies

Similar to what we had in imperfect-information games:

- A pure strategy for player i maps each of i 's types to an action
- what i would play if i had that type
- A mixed strategy s_{i} is a probability distribution over pure strategies

$$
\mathrm{s}_{i}\left(\mathrm{a}_{i} \mid \theta_{\mathrm{j}}\right)=\operatorname{Pr}\left[i \text { plays action } \mathrm{a}_{j} \mid i \text { 's type is } \theta_{j}\right]
$$

- Many kinds of expected utility: ex post, ex interim, and ex ante
- Depend on what we know about the players' types

Expected Utility

If we know every agent's type (i.e., the type profile θ) agent i 's ex post expected utility:

$$
E U_{i}(\mathbf{s}, \theta)=\sum_{\mathbf{a}} \operatorname{Pr}[\mathbf{a} \mid \mathbf{s}, \theta] u_{i}(\mathbf{a}, \theta)=\sum_{\mathbf{a}}\left(\prod_{j \in N} s_{j}\left(a_{j} \mid \theta_{j}\right)\right) u_{i}(\mathbf{a}, \theta)
$$

If we only know the commonprion agent i 's ex ante expected utility: $\quad E U_{i}(\mathbf{s})=\sum_{\theta} \operatorname{Pr}[\theta] E U_{i}(\mathbf{s}, \theta)=\sum_{\theta_{i}} \operatorname{Pr}\left[\theta_{i}\right] E U_{i}\left(\mathbf{s}, \theta_{i}\right)$
If we know the type θ_{i} of one agent i, but not the other agents' types
i 's ex interim
expected utility: $\left.E U_{i}\left(\mathbf{s}, \theta_{i}\right)=\sum_{\theta_{-i}} \operatorname{Pr}\left[\theta_{-i} \mid \theta_{i}\right] E U_{i}\left(\mathbf{s},\left(\theta_{i}, \theta_{-i}\right)\right)\right]$

Bayes-Nash Equilibrium

Given a strategy profile \mathbf{s}_{-i}, a best response for agent i is a strategy s_{i} such that

$$
s_{i} \in \underset{s_{i}^{\prime}}{\arg \max _{i}\left(E U_{i}\left(s_{i}^{\prime}, \mathbf{s}_{-i}\right)\right)}
$$

Above, the set notation is because more than one strategy may produce the same expected utility

A Bayes-Nash equilibrium is a strategy profile \mathbf{s} such that for every s_{i} in \mathbf{s}, s_{i} is a best response to \mathbf{s}_{-i}

Just like the definition of a Nash equilibrium, except that we're using Bayesian-game strategies

Computing Bayes-Nash Equilibria

- The idea is to construct a payoff matrix for the entire Bayesian game, and find equilibria on that matrix

Write each of the pure strategies as a list of actions, one for each type:

Agent 1's pure strategies:

Agent 2's pure strategies:
$>$ LL: Lif type $\theta_{2,1}$ L if type $\theta_{2,2}$
$>$ LR: L if type $\theta_{2,1}, \mathrm{R}$ if type $\theta_{2,2}$
$>\mathrm{RL}: \mathrm{R}$ if type $\theta_{2,1}$, L if type $\theta_{2,2}$
$>\mathrm{RR}: \mathrm{R}$ if type $\theta_{2},, \mathrm{R}$ if type $\theta_{2,2}$

Computing Bayes-Nash Equilibria

Compute ex ante expected utility for each pure-strategy profile:

Computing Bayes-Nash Equilibria

- Put all of the ex ante expected utilities into a payoff matrix

$$
\text { e.g., } E U_{2}(U U, L L)=1
$$

- Now we can compute best responses and Nash equilibria

$U U$	2,1)	1, 0.7	1, 1.2	0, 0.9
$U D$	0.8, 0.2	1, 1.1	0.4, 1	0.6, 1.9
$D U$	$1.5,1.4$	0.5, 1.1	1.7, 0.4	0.7, 0.1
DD	0.3, 0.6	$0.5,1.5$	1.1, 0.2	1.3, 1.1

Computing Bayes Nash Equilibria

- Suppose we learn agent 1 's type is $\theta_{1,1}$ Recompute the payoff matrix using the posterior probabilities
$\operatorname{Pr}\left[\operatorname{MP} \mid \theta_{1,1}\right]=3 / 4, \quad \operatorname{Pr}\left[\operatorname{PD} \mid \theta_{1,1}\right]=1 / 4$
- $u_{2}\left(U U, L L \mid \theta_{1,1}\right)=3 / 4(0)+1 / 4(2)=0.5$

- Ex interim payoff matrix when agent 1's type is $\theta_{1,1}$
- Can't use this to compute equilibria, because $\theta_{1,1}$ isn't common knowledge

	LL	LR	$R L$	$R R$
$U U$	2, 0.5	$1.5,0.75$	0.5, 2	0, 2.25
$U D$	2, 0.5	$1.5,0.75$	0.5, 2	0, 2.25
$D U$	$0.75,1.5$	$0.25,1.75$	$2.25,0$	$1.75,0.25$
$D D$	$0.75,1.5$	$0.25,1.75$	$2.25,0$	$1.75,0.25$

and so on...

Acknowledgements

Slides are adapted from:

- Tutorial at IJCAI 2003 by Prof Peter Stone, University of Texas
- Game Theory lectures by Prof. Dana Nau, University of Maryland

