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Repeated Game

e YOU can’t learn if you only play a game once.
e Repeatedly playing a game raises new questions.
- How many times? Is this common knowledge?

Finite Horizon INnfinite Horizon

- Trading off present and future reward?

. 1 T oo ¢
By 7Y iy T D =17t

Average Reward Discounted Reward
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Repeated Game - Strategies

e What can players do?

- Strategies can depend on the history of play.

oi:H— PD(A;)  where H=|[]A"

n=0

- Markov strategies a.k.a. stationary strategies
Vat " e A oi(at,...,a") =o(a™)
- k-Markov straftegies

Va; , € A ogi(at,....ap) = 0(Ap_ty...,ap)
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Repeated Game - Examples

e |[ferated Prisoner’s Dilemma
C D C D

C (30 C (3 4
Rl_D(4 1) RQ‘D(O 1)

- The single most examined repeafed game!

- Repeated play can justify behavior that is noft
rafional in the one-shot game.

- Tit-for-Tat (TFT)

x Play opponent’s last action (C on round 1).
+ A 1-Markov strategy.
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Well Known IPD Strategies

* AlIC/D: always cooperate/defect éiﬁ éiii IFT Tester Paviov AlID

* Grim: cooperate until the other TFT or TFT or C D
agent defects, then defect forever Paviov  Paviov D C C D

e Tit-for-Tat (TFT): on 1t move, C C C C D D
cooperate. On nt" move, repeat C C C C C D

* the other agent’s (n—1)"" move C C C C D D

o Tit-for-Two-Tats (TFTT): like TFT, but C C C C C D
ot deiectatoie ERNCl fCcy B

* Tester: defect on round 1. If the
other agent retaliates, play TFT.
Otherwise, alternately C/D

* Pavlov: on 1st round, cooperate.
Thereafter, win => use same action
next; lose => switch
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Nash Equilibria — Repeated Game

e Obviously, Markov strategy equilibria exist.

e Consider iterated prisoner’s dilemma and TFT.
C D C D

C (30 C (3 4
Rl_D(4 1) RZ’_D(O 1)

- With average reward, what's a best response”?

x Always D has a value of 1.
x D then C has a value of 2.5
+ Always C and TFT have a value of 3.

- Hence, both players following TFT is Nash.
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Nash Equilibria — Repeated Game

e [he TFT equilibria is strictly preferred to all Markov
strategy equilibria.

e The TFT strategy plays a dominated action.
e [FT uses a threat to enforce compliance.

e [FT is NnOt a special case.
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Nash Equilibria — Repeated Game

Folk Theorem. For any repeated game with average
reward, every feasible and enforceable vector of
payoffs for the players can be achieved by some Nash
equilibrium strategy. (Osborne & Rubinstein, 1994)

o A payoff vector is feasible if it is a linear combination
of individual action payoffs.

e A payoff vector is enforceable if all players get at
least their minimax value.
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Nash Equilibria — Repeated Game

Folk Theorem. For any repeated game with average
reward, every feasible and enforceable vector of
payoffs for the players can be achieved by some Nash
equlilibrium strategy. (Osborne & Rubinstein, 1994)

e Players’ follow a defterministic sequence of play that
achieves the payoff vector.

e ANy deviation is punished.

e The threat keeps players from deviating as in TFT.
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Equilibria by ‘Learning’
— Universally Consistent

e A.k.Q. HONnNan consistent, regret minimizing.

e For a history h = at,a?,...,a" € A, define regret for
player i,

Regret.(h) = (max R((@i,&ti>)) - ZR‘i(@t)

a; EA; :

l.e., the difference between the reward that could
have been received by a stationary sfrategy and
the actual reward received.
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Minimax by Regret Minimization

e A strafegy o; is universally consistent if for any € > 0
there exists a 7" such that forall o_; and ¢ > T,

(0i,o0_3)| <e

.e., with high probability the average regret is low for
all strategies of the other players.

e If regref is zero, then must be getting at least the
minimax value.

26/02/2013 11



Stochastic Games

MDPs
- Single Agent
- Multiple State

Stochastic Games
- Multiple Agent
- Multiple State

26/02/2013
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Stochastic Game - Setup

A stochastic gameis atuple (n,S, Ay .,T, Ry, ).

e 1 is The number of agents,

e A, is the set of actions available fo agent i,
- Ais the joint action space A; x ... x A,,

e T'is the fransition function & x A x S — [0, 1],

e R;is the reward function for the ith agent S x A — R.

aq
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Stochastic Game - Policies

e What can players do?

- Policies depend on history and the current state.
T H xS — PD(A;) where H = U (& x A)"
n=>0

- Markov polices a.k.a. stationary policies

Vh,h' € HVs € S mi(h,s) = 7w(h',s)

- Focus on learning Markov policies, but fthe
learning ifself is a non-Markovian policy.
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Stochastic Game - Example

(Littman, 1994)

e Players: Two.

e Actions: N, S, E, W, Hold (5).
e [ransifions:

- Simultaneous action selection, random execution.
- Collision could change ball possession.

e Rewards: Ball enters a godl.

26/02/2013
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Stochastic Game - Remarks

o Ifn=1,Iitisan MDP
o If |S| =1,ITis arepeated game.

e If the ofher players play a stationary policy, if is an
MDP to the remaining player.

(s, a;, Z T_ s, (a;,a_ z>a5f)

a_;€A_;

- The Iinferesfing case, then, is when the other
agents are not stationary, i.e., are learning.

26/02/2013
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Nash Equilibria — Stochastic Game
e Consider Markov policies.

e A best response set is the set of all Markov policies
that are optimal given the other players’ policies.

BR,(r_) | VaiVseS
i\TM—i) = T3 T T _j
pAmmd ) syl

7

e A Nash equilibrium is a joint policy, where all players
dre playing best responses fo each other.

Vi € {1 . Tl} ™ € BRZ(S’T_Z)
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Nash Equilibria — Stochastic Game

e All discounted reward and zero-sum average
reward sfochastic games have at least one Nash
equilibrium. (Shapley, 1953; Fink, 1964)

26/02/2013
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Incomplete Information

* So far, we assumed that everything relevant about the game
being played is common knowledge to all the players:
— the number of players
— the actions available to each
— the payoff vector associated with each action vector
* True even for imperfect-information games

— The actual moves aren’t common knowledge, but the game is

 WEe'll now consider games of incomplete (not imperfect)
information

— Players are uncertain about the game being played
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Incomplete Information

* Consider the payoff matrix shown here
— ¢€is a small positive constant; Agent 1 knows its value

 Agent 1 doesn’t know the valuesofa, b, ¢, d

— Thus the matrix represents a set of games

— Agent 1 doesn’t know which of these games is the one being played

* Agent 1 seeks strategy that works despite lack of knowledge

T

B

100, a

1 —e€b

b2
~

* If Agent 1 thinks Agent 2 is malicious, then Agent 1 might

want to play a maxmin, or “safety level,” strategy
— minimum payoff of T is 1—€
— minimum payoff of Bis 1

* Soagent 1’s maxmin strategy is B

26/02/2013
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Regret

 Suppose Agent 1 doesn’t think Agent 2 is malicious L R

* Agent 1 might reason as follows:

— If Agent 2 plays R, then 1’s strategy changes 1’s [ 100, e 1=eb

payoff by only a small amount
B

bo

1. d

e Payoffis 1 or 1-¢;

* Agent 1’s difference is only €

— If Agent 2 plays L, then 1’s strategy changes 1’s payoff by a much
bigger amount

e Either 100 or 2, difference is 98
— If Agent 1 chooses T, this will minimize 1’s worst-case regret

* Maximum difference between the payoff of the chosen
action and the payoff of the other action



Minimax Regret

* Suppose i plays action a; and the other agents play action
profile a_,

* J’sregret: amount i lost by playing a. instead of i’s best
response to a_;

—ui(af,a_i)

- - r
regret(a,,a_) = [I}lEElAX u;(al,a_;)

* idoesn’t know what a_; will be, but can consider worst case:

— maximum regret for a, , maximized over every possible a_;

max regret(q,,a_.) = max ([max u, (a;,a!.)] —u, (.fzf.,af.))

26/02/2013

22



Minimax Regret
Minimax regret action: an action with the smallest maximum
regret

argmin max regret(¢;) = argmin max | | maxu, (a,,a ;) |{-u,(a.a ;)
a;EA; a_cA; a,EA, a_;=A_; aEA

Can extend to a solution concept
— All agents play minimax regret actions

— This is one way to deal with the incompleteness, but often
we can do more with the representation
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Bayesian Games

In the previous example, we knew the set G of all possible games,
but didn’t know anything about which game in G

— Enough information to put a probability distribution over games

A Bayesian Game is a class of games G that satisfies two
fundamental conditions

Condition 1:

— The games in G have the same number of agents, and the same
strategy space (set of possible strategies) for each agent. The
only difference is in the payoffs of the strategies.

This condition isn’t very restrictive

— Other types of uncertainty can be reduced to the above, by
reformulating the problem



An Example

e Suppose we don’t know whether player 2 only has strategies L and
R, or also an additional strategy C:

L R L C R
Game G, v | 1.1 1.3 vl 1.1 0,2 1.3 | Game G,
D | 05 | 113 D | 05 2,8 | 1,13

* If player 2 doesn’t have strategy C, this is equivalent to having a
strategy C that’s strictly dominated by other strategies:

— Nash equilibria for G;' are the same as for G,

L C R

Game G|' 1.1 |0,-100| 1.3

D 0,5 2,-100| 1,13

— Problem is reduced to whether C’s payoffs are those of G,' or G,
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Bayesian Games

Condition 2 (common prior):

— The probability distribution over the games in G is common
knowledge (i.e., known to all the agents)

* So a Bayesian game defines
— the uncertainties of agents about the game being played,

— what each agent believes the other agents believe about the game
being played

* The beliefs of the different agents are posterior probabilities

— Combine the common prior distribution with individual “private
signals” (what’s “revealed” to the individual players)

* The common-prior assumption rules out whole families of games

— But it greatly simplifies the theory, so most work in game theory uses it

26/02/2013
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The Bayesian Game Model

A Bayesian game consists of
* aset of games that differ only in their payoffs
 acommon (known to all players) prior distribution over them

» for each agent, a partition structure (set of information sets)
over the games

26/02/2013
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Bayesian Game: Information Sets Defn.

A Bayesian game is a 4-tuple (N,G,P,1) G = {Matching Pennies (MP),
! Prisoner’s Dilemma (PD),
N is a set of agents Coordination (Crd),
 Gisasetof N-agent games Battle of the Sexes (BoS)}
* Foreveryagenti every gamein G
has the same strategy space I, L,
* Pisacommon prior over G MP (p - 0.3) PD (p—0.1)
— common: common knowledge L R L R
(known to all the agents) Lyl ul70l02 ul22103
— prior: probability before learning any D|o0.2]20 D|3.0]1.1
additional information
« I=(, ...,1,)isatuple of Stz BoS (p=0.4)
partitions of G, one for each - L R LR
. . 21 Uul2,2(0,0 U|(2,1]0,0
agent (information sets)
D|0,0]|1,1 D|[0,0]1,2
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Example

e Suppose the randomly  Agent 2’s information set is
chosen game is MP I,
* Agent 1’s information set is Pr[MP] 03 3
b Pr{MP|I,,]- -
11 Pr{MP]+Pr[CiD] 03+02 5

PrfCrd] 02 2
Pi{MP]+Pr[CiD] 03+02 5

— 1 knows it’s MP or PD

— 1 can infer posterior
probabilities for each

Pr[Crd|l,,]1=

Pr{MP 0.3 3

Pr[MP|I,,]- [MP] = ==
Pr{MP]+Pr{PD] 03+0.1 4

Pr[PD] 0.1 1

Pr[PD|I,,]- = ==
Pr[MP]+Pr[PD] 03+0.1 4

26/02/2013 29



Another Interpretation: Extensive Form

Nature
MP (p=0.3) BoS (p=0.4)
PD Crd 1
R p=0.1 p=0.2 |

(2,0) (0,2) (0,2) (2,0) (2,2) (0,3) (3,0) (1,1) (2,2) (0,0) (0,0) (1,1) (2,1)(0,0) (0,0) (1,2)
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Epistemic Types

 We can assume the only thing players are uncertain about is
the game’s utility function
* Thus we can define uncertainty directly over a game’s utility
function
Definition : a Bayesian game 1s a tuple (V, 4, ©, p, ) where:
N 1s a set of agents;
A=A, % ... x A, ,where A4, 1s the set of actions available to player i :
©=0, x ... x0,, where 0O, 1s the type space of player i ;
p:©® — [0, 1]1s a common prior over types; and

u=(uy, ...,u,), where u, : A x @ — N is the utility function for player i

* All this is common knowledge; each agent knows its own type

26/02/2013 31



Types

An agent’s type consists of all the information it has that isn’t
common knowledge, e.g.,

The agent’s actual payoff function

The agent’s beliefs about other agents’ payoffs,

The agent’s beliefs about their beliefs about his own payoff
Any other higher-order beliefs



Strategies

Similar to what we had in imperfect-information games:
* A pure strategy for player i maps each of i’s types to an action
— what i would play if i had that type
* A mixed strategy s. is a probability distribution over pure strategies

s,(a0;) = Prli plays action a, | i’s type is 6}]

* Many kinds of expected utility: ex post, ex interim, and ex ante
— Depend on what we know about the players’ types



Expected Utility

If we know every agent’s type (1.e., the type profile 0)

agent i’s ex post expected utility:

EU, (s, }Epr[alse]u(a 0)- E(Hs )) 4 (a.0)

a JEN

If we only know the commo

agent i’s ex ante
expected utility:  EU, (g) =

[EU,(s.0)]= Y Pr{6,] EU,(s.6,)

If we know the type 6. of one agent i, but not the~ather agents’ types

i’s ex interim

expected utility: EU EF'I‘[e |9][EU( (9 B_i,.))J
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Bayes-Nash Equilibrium

Given a strategy profile s_; , a best response for agent 7 1s a strategy s, such
that

s; € arg max(EU. (s'.,s)))

S

Above, the set notation 1s because more than one strategy may produce the
same expected utility

A Bayes-Nash equilibrium 1s a strategy profile s such that for every s. m s,
s;1s a best response to s __

Just like the definition of a Nash equilibrium, except that we’re using
Bayesian-game strategies
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Computing Bayes-Nash Equilibria

e Theidea is to construct a

payoff matrix for the entire

Bayesian game, and find
equilibria on that matrix

éZZJ 6932
MP (p-03) PD (p-0.1)
L R L R
O11] ul20]0.2 Ul22]0.3
D[0.2]20 D[3.0|1.1
Crd (p=0.2) BoS (p = 0.4)
L R L R
75 ul220.0 Ul2.1]00
D[0.0]1.1 D[0.0]|12

26/02/2013

Write each of the pure
strategies as a list of actions,
one for each type:

Agent 1’s pure strategies:

» UU:
» UD:
» DU:
» DD:

U if type 6, ; (U if type 6'13
U if type 6, |,|D if type 6, ,
D if type 6, ,|,|U if type 6, ,

@ if type 6'9,{) if type 0, 2

Agent 2’s pure strategies:

» LL:
» LR:
» RL:

L if type 0, )
L iftype 0, ,
R if type 0, ,

> RR:

(Liftyped,,)
,Rif type 6,,
,Liftype 6,,

R if type 0,

AR if type 0, ,/
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Computing Bayes-Nash Equilibria

Compute ex ante expected utility for each pure-strategy profile:

EU,(UU,LL)= Y Pr[8] u,(U,L.)
8

= P1(6,,.6,,1u,(U,L.6,,.6,,)

92,1 0., + Pr[gl.l > 92,2 Ju,(U,L.6,,, 92,2 )
L P00, ,U,L.0,.0,,)

MP (p=03)“ PD (p=0.1)“1]
- L R L R +PI‘[91,2=92‘2 ]uz(U=L=91,2?92,2)
11| u | 2(0)0.2] U|22) 027 —0.3(0)+0.1(2) +0.2(2) +0.4(1)

D|0,2]|2,0 } ,011,1 1

Crd (p=0.2)“" BoS (p = 0.4)

L R L R
9121 v [22] 0, 0] U [2(1) 0,0
D o011 D o012
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Computing Bayes-Nash Equilibria

e Put all of the ex ante expected
utilities into a payoff matrix

e.g., EU,(UULL) =1 LL LR RL RR
e Now we can compute bestrespok

a.nd Nash equilibria {'(' N) 1.0.7 1. 1.2 0.09
92,1 62,2
MP (p = 0.3) PD (p=0.1) UD |08 02 1.1.1] 04.1]06,1.9
L R L R
611
1l ul2(0}o0,2 U |2(2)o0,3 .
| @ DU |[1.5.1.4]0.5, 1.1]1.7. 0.4]0.7, 0.1
D|0,2|2,0 D|3.0(1,1
Crd (p=0.2) BoS (p =0.4) DD 0.3.06l05. 15/1.1.02]1.3. 1.1
L R L R
613 U2 0,0 | U 2(?) 0,0
D[0,0]1,1 D[(0,01,2
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® Suppose we learn agent 1’s type is 6,

Computing Bayes Nash Equilibria

Recompute the payoff matrix using

the posterior probabilities

Pr[MP|6, ] = %, Pr[PD|f,,]= Y
® w(UULLG,)=% (0)+ % (2)=05

62,1 62.2
MP (p=0.3) PD (p=0.1)
L R L R
61,1 U [2(0)0,2] U@OJ
D|[0,2(2,0 D|[30][11

26/02/2013

® Ex interim payoff matrix when agent

1’s type 1s 0, ,

® Can’t use this to compute equilibria,
because 6, | isn’t common knowledge

uu

UD

DU

DD

LL LR RL RR
2,05 |15,0.75 | 05,2 | 0,225
2,05 |15,0.75 | 052 | 0,225
0.75, 1.5 |0.25, 1.75| 2.25,0 [1.75, 0.25
0.75, 1.5 |0.25, 1.75| 2.25,0 [1.75, 0.25

and so on...
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