Decision Making in Robots and Autonomous Agents

Auctions for Multi-robot Coordination and Task Allocation

Subramanian Ramamoorthy
School of Informatics

15 March, 2013
Motion Problems with Many Agents

What kind of knowledge does any one agent have?
How does the local knowledge get utilized in a global control strategy?
Market Based Approaches

Overview article:

The following slides are adapted from a tutorial presentation (at ICRA/AAMAS 2006) based on the same.
Motivating Example: Robots Exploring on Mars

Multi-robot routing:
A team of robots has to visit given targets spread over some known or unknown terrain. Each target must be visited by one robot.
Multi-Robot Routing: Assumptions

• The robots are identical.
• The robots know their own location.
• The robots know the target locations.
• The robots might not know where obstacles are.
• The robots observe obstacles in their vicinity.
• The robots can navigate without errors.
• The path costs satisfy the triangle inequality.
• The robots can communicate with each other.
Multi-Robot Routing
Multi-robot Routing

(a possible solution, not necessarily the optimal one)
Routing: Minimum Sum Team Objective

10 + 10 + 2 + 4 + 15 = 41
History of Coordination Problem

Multi-robot routing is related to ...

... Vehicle/Location Routing Problems
... Traveling Salesman Problems (TSPs)
... Traveling Repairman Problems

except that the robots ...

... do not necessarily start at the same location
... are not required to return to their start location
... do not have capacity constraints
Auctions for Multi-Robot Coordination

<table>
<thead>
<tr>
<th>Agent coordination</th>
<th>Auctions</th>
</tr>
</thead>
<tbody>
<tr>
<td>agents</td>
<td>bidders</td>
</tr>
<tr>
<td>tasks</td>
<td>items</td>
</tr>
<tr>
<td>cost</td>
<td>currency</td>
</tr>
</tbody>
</table>
Auctions for Agent Coordination: Known Terrain
Auctions for Agent Coordination: Unknown Terrain
Plan 1
Auctions for Agent Coordination: Unknown Terrain
Plan 2
Auctions for Agent Coordination

• Auctions are an effective and practical approach to agent-coordination.

• Auctions have a small runtime.
 – Auctions are communication efficient:
 • information is compressed into bids
 – Auctions are computation efficient:
 • bids are calculated in parallel

• Auctions result in a small team cost.

• Auctions can be used if the terrain or the knowledge of the robots about the terrain changes.
Auctions for Agent Coordination
What is an Auction?

Definition [McAfee & McMillan, JEL 1987]:

a market institution with an explicit set of rules determining resource allocation and prices on the basis of bids from the market participants.

Popular examples:

- eBay
- NASDAQ
- Sothebys
Key Feature: Pricing Mechanism

- Posted prices
 - Static
 - Dynamic
 - Change dynamically over time
 - Customized pricing

- Price discovery mechanisms
 - Auctions
 - Negotiations
Why Auctions?

• For object(s) of unknown value
• Mechanized
 – reduces the complexity of negotiations
 – ideal for computer implementation
• Creates a sense of “fairness” in allocation when demand exceeds supply

Can you think of robotics scenarios with the above characteristics?
Auction Formats

Auction

Reverse Auction

Double Auction Exchange
In the next lecture:
We will survey the theory in its general form, asking how the above computations ought to be handled.
Auctions for Robot Coordination

• Auctioneer is selling a single task
• First-price auction
 – Protocol: Each bidder submits a bid containing a single number representing its cost for the task. The bidder with the lowest bid wins and is awarded the task, agreeing to perform it for the price of its bid.
• Vickrey (second-price) auction
 – Protocol: Same as above, but bidder with the lowest bid agrees to perform task for the price of the second-lowest bidder’s bid.
 – Incentive compatible.
• Which mechanism?
 – Doesn’t matter if robots bid truthfully. Why (we’ll discuss next week)
Multi-Item Auctions

• Protocol: Auctioneer offers a set of \(t \) tasks. Each bidder may submit bids on some/all of the tasks. The auctioneer awards one or more tasks to bidders, with \textit{at most one task awarded to} each bidder.
 – No multiple awards: bids do not consider cost dependencies.

• Protocol may specify a fixed number of awards, \textit{e.g.}:
 1. \(m \) tasks awarded, \(1 \leq m \leq \#\text{bidders} \)
 2. Every bidder awarded one task \((m = \#\text{bidders})\)
 3. The one best award \((m = 1)\)

• For (2) assignment can be done optimally [Gerkey and Mataric 04]
 – Greedy algorithm common: Award the lowest bidder with the associated task, eliminate that bidder and task from contention, and repeat until you run out of tasks or bidders.
How exactly does this process work?

Let us look at some scenarios:

– Parallel auctions
 • Each robot bids on each target in independent and simultaneous auctions.
 • The robot that bids lowest on a target wins it.
 • Each robot determines a cost-minimal path to visit all targets it has won and follows it...

– Sequential auctions

– Combinatorial auctions
Parallel Auctions

Each robot bids on a target the minimal path cost it needs from its current location to visit the target.
Parallel Auctions

Each robot bids on a target the minimal path cost it needs from its current location to visit the target.
Parallel Auctions

Bid on A: 86
Bid on B: 91
Bid on C: 23
Bid on D: 37

Bid on A: 90
Bid on B: 85
Bid on C: 41
Bid on D: 27
Parallel Auctions
Generated Plan
Limitations of Parallel Auctions

- Minimal team cost (above) is not achieved.
- The team cost resulting from parallel auctions is large because they cannot take synergies between targets into account.
Parallel Auctions: Good and Bad

Smallest path cost to visit A: 5
Smallest path cost to visit B: 4
Smallest path cost to visit A and B: 5

(smallest path cost to visit A and B < smallest path cost to visit A + smallest path cost to visit B)
(example: a cake is worth more than the sum of its ingredients)

Smallest path cost to visit B: 4
Smallest path cost to visit C: 4
Smallest path cost to visit B and C: 12

(smallest path cost to visit B and C > smallest path cost to visit B + smallest path cost to visit C)
(example: two cars are worth less than the sum of the individual cars)
Combinatorial Auctions

• Each robot bids on all bundles (= subsets) of targets.

• Each robot wins at most one bundle, so that the number of targets won by all robots is maximal and, with second priority, the sum of the bids of the bundles won by robots is as small as possible.

• Each robot determines a cost-minimal path to visit all targets it has won and follows it.
Each robot bids on a bundle the minimal path cost it needs from its current location to visit all targets that the bundle contains.
Multi-robot Combinatorial Auction

Bid on \{A\}: 86
Bid on \{B\}: 91
Bid on \{C\}: 23
Bid on \{D\}: 37
Bid on \{A,B\}: 107
Bid on \{A,C\}: 130
Bid on \{A,D\}: 146
Bid on \{B,C\}: 132
Bid on \{B,D\}: 144
Bid on \{C,D\}: 44
Bid on \{A,B,C\}: 151
Bid on \{A,B,D\}: 164
Bid on \{A,C,D\}: 153
Bid on \{B,C,D\}: 151
Bid on \{A,B,C,D\}: 172

Bid on \{A\}: 90
Bid on \{B\}: 85
Bid on \{C\}: 41
Bid on \{D\}: 27
Bid on \{A,B\}: 106
Bid on \{A,C\}: 148
Bid on \{A,D\}: 13
Bid on \{B,C\}: 150
Bid on \{B,D\}: 134
Bid on \{C,D\}: 48
Bid on \{A,B,C\}: 169
Bid on \{A,B,D\}: 155
Bid on \{A,C,D\}: 156
Bid on \{B,C,D\}: 157
Bid on \{A,B,C,D\}: 176

A

B

C

D
The team cost resulting from ideal combinatorial auctions is minimal since they take all synergies between targets into account, which solves an NP-hard problem. The number of bids is exponential in the number of targets. Bid generation, bid communication and winner determination are expensive.
Bidding Strategies in Combinatorial Auctions

• Which bundles to bid on is mostly unexplored in economics because good bundle-generation strategies are domain dependent. For example, one wants to exploit the spatial relationship of targets for multi-robot routing tasks.

• Good bundle-generation strategies
 – generate a small number of bundles
 – generate bundles that cover the solution space
 – generate profitable bundles
 – generate bundles efficiently
Combinatorial Auctions: Domain-independent Bundle Generation

- Dumb bundle generation bids on all bundles (sort-of).

- THREE-COMBINATION
 - Bid on all bundles with 3 targets or less

Note: It might be impossible to allocate all targets.
Domain Dependent Bundle Generation

- Smart bundle generation bids on clusters of targets.
- GRAPH-CUT
 - Start with a bundle that contains all targets.
 - Bid on the new bundle.
 - Build a complete graph whose vertices are the targets in the bundle and whose edge costs correspond to the path costs between the vertices.
 - Split the graph into two sub graphs along (an approximation of) the maximal cut.
 - Recursively repeat the procedure twice, namely for the targets in each one of the two sub graphs.
Domain Dependent Bundle Generation

Cut = two sets that partition the vertices of a graph

Maximal cut = maxcut = cut that maximizes the sum of the costs of the edges that connect the two sets of vertices

Finding a maximal cut is NP-hard and needs to get approximated.
Domain Dependent Bundle Generation
Submit bids for the following bundles

- \{A\}, \{B\}, \{C\}, \{D\}
- \{A,B\}, \{C,D\}
- \{A,B,C\}, \{D\}
- \{A,B,C,D\}
Performance

<table>
<thead>
<tr>
<th></th>
<th>number of bids</th>
<th>SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel single-item auctions</td>
<td>635.1</td>
<td>426.5</td>
</tr>
<tr>
<td>combinatorial auctions with THREE-COMBINATION</td>
<td>20506.5</td>
<td>247.9</td>
</tr>
<tr>
<td>combinatorial auctions with GRAPH-CUT</td>
<td>1112.1</td>
<td>184.1</td>
</tr>
<tr>
<td>optimal (MIP) = ideal combinatorial auctions</td>
<td>N/A</td>
<td>184.4</td>
</tr>
</tbody>
</table>

3 robots in known terrain with 5 clusters of 4 targets each (door are closed with 25 percent probability)
Combinatorial Auctions Summary

- Ease of implementation: difficult
- Ease of decentralization: unclear (form robot groups)
- Bid generation: expensive
 - Bundle generation: expensive (can be NP-hard)
 - Bid generation per bundle: ok (NP-hard)
- Bid communication: expensive
- Auction clearing: expensive (NP-hard)
- Team performance: very good (optimal)
 - many (all) synergies taken into account
- Use a smart bundle generation method.
- Approximate the various NP-hard problems.
Parallel vs. Combinatorial Auctions

<table>
<thead>
<tr>
<th>Parallel Auctions</th>
<th>Combinatorial Auctions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of implementation: simple</td>
<td>Ease of implementation: difficult</td>
</tr>
<tr>
<td>Ease of decentralization: simple</td>
<td>East of decentralization: unclear</td>
</tr>
<tr>
<td>Bid generation: cheap</td>
<td>Bid generation: expensive</td>
</tr>
<tr>
<td>Bid communication: cheap</td>
<td>Bid communication: expensive</td>
</tr>
<tr>
<td>Auction clearing: cheap</td>
<td>Auction clearing: expensive</td>
</tr>
<tr>
<td>Team performance: poor</td>
<td>Team performance: “optimal”</td>
</tr>
</tbody>
</table>

Sequential auctions provide a good trade-off between parallel auctions and combinatorial auctions.
Sequential Auction Procedure

• There are several bidding rounds until all targets have been won by robots. Only one target is won in each round.

• During each round, each robot bids on all targets not yet won by any robot. The minimum bid over all robots and targets wins. (The corresponding robot wins the corresponding target.)

• Each robot determines a cost-minimal path to visit all targets it has won and follows it.
Sequential Auctions: Synergy

Each robot bids on a target the increase in minimal path cost it needs from its current location to visit all of the targets it has won if it wins the target (BidSumPath).
Sequential Auctions: Synergy

Each robot bids on a target the increase in minimal path cost it needs from its current location to visit all of the targets it has won if it wins the target (BidSumPath).
Sequential Auctions with multiple robots

Bid on A: (86)
Bid on B: (91)
Bid on C: 23
Bid on D: (37)

Bid on A: (90)
Bid on B: (85)
Bid on C: (41)
Bid on D: 27
Sequential Auctions with Multiple Robots
Sequential Auctions with Multiple Robots
Sequential Auctions with Multiple Robots
Sequential Auctions Procedure

• Each robot needs to submit only one of its lowest bid.
• Each robot needs to submit a new bid only directly after the target it bid on was won by some robot (either by itself or some other robot).
• Thus, each robot submits at most one bid per round, and the number of rounds equals the number of targets. Consequently, the total number of bids is no larger than the one of parallel auctions, and bid communication is cheap.
• The bids that do not need to be submitted were shown in parentheses in the example.
The team cost resulting from sequential auctions is not guaranteed to be minimal since they take some but not all synergies between targets into account.
Sequential Auctions: Summary

• Ease of implementation: relatively simple
• Ease of decentralization: simple
• Bid generation: cheap
• Bid communication: cheap
• Auction clearing: cheap
• Team performance: very good
 – some synergies taken into account
Various Kinds of Path Bidding Rules

- **MiniSum**
 - Minimize the sum of the path costs over all robots
 - Minimization of total energy or distance
 - Application: planetary surface exploration

- **MiniMax**
 - Minimize the maximum path cost over all robots
 - Minimization of total completion time (makespan)
 - Application: facility surveillance, mine clearing

- **MiniAve**
 - Minimize the average arrival time over all targets
 - Minimization of average service time (flowtime)
 - Application: search and rescue
Small Example of Coordinated Motion

Setup: each robot must go to its goal target without losing contact with the radio tower. The cost of travel is relatively small compared to the high cost of LOS communication.
Small Example of Coordinated Motion

Robots independently generate paths to their goals while considering their teammates’ paths. The LOS between red and yellow will not break so they do not need to actively coordinate. But LOS will break between red and blue. Both red and blue will be penalized if they follow their current paths.
Small Example of Coordinated Motion

The blue robot proposes this joint plan to the red robot and requests a bid from the red robot for its participation. Red’s bid will be too expensive because the proposed plan causes LOS loss between red and yellow.
Small Example of Coordinated Motion

The red robot sends blue a counter offer of this joint plan to the blue robot and requests a bid from the blue robot. Although the path is long, blue’s bid will be less costly because it will have communication with the tower. This path will be adopted by the two robots.
Considerations when designing Coordination Mechanisms

• How dynamic is your environment?
• What are your requirements for robustness?
• How reliable is your information?
• How will you balance scalability vs. solution quality?
• What type of information will you have access to?
• What resources/capabilities does your team possess?
• What do you want to optimize?
• How often will your mission/tasks change?
• What guarantees do you require?
Why Auctions?

Dynamic Environments
Characteristics of Dynamic Environments

- Unreliable/incomplete information
- Changing/moving obstacles
- Changing task requirements
- Changing limited resources and capabilities
- Evolving ad-hoc teams
A Team is Robust if it can...

• Operate in dynamic environments

• Provide a basic level of capability without dependence on communication, but improve performance if communication is possible

• Respond to new tasks, modified tasks, or deleted tasks during execution

• Survive loss (or malfunction) of one or more team members and continue to operate efficiently
How do things go wrong?

• Communication Failure
 – Acknowledgements can help ensure task completion but delay task allocation
 – Tradeoff between repeated tasks & incomplete tasks
 – Message loss often results in loss in solution quality

• Partial Robot Malfunction
 – Identifying malfunction may be done as an individual or as team
 – Key advantage is that malfunctioning teammate can re-auction tasks it cannot complete
 – Possible new tasks can be generated to enable recovery from malfunction
How do things go wrong?

Dealing with robot death

• Detecting the death must be done by the team
• Can detect potential deaths by keeping track of communication links
• Need to seek confirmation of suspected deaths
• Need to query other robots about tasks assigned to dead robot(s) and repair subcontract links
• If no new contract can be made, the owner of the task must complete it
Why Auctions?

Uncertainty
In Uncertain and Changing Environments

- Robots discover that a task can’t be executed for the bid cost.
- Robots auction the task to another robot, default, or execute at a loss (learning to estimate better in the future).

![Diagram showing a robot selling a task to another robot.]

Robot A encounters an obstacle, making Task 1 more costly than expected.

Robot A sells Task 1 to Robot B.
Task Allocation Problem

• **Given**

 – a set of tasks, T
 – a set of agents, A
 – a cost function $c_i: 2^T \rightarrow \mathbb{R} \cup \{\infty\}$ *(states the cost agent i incurs by handling a subset of tasks)*
 – an initial allocation of tasks among agents $<T_1^{\text{init}}, ..., T_{|A|}^{\text{init}}>$, where $\bigcup T_i^{\text{init}} = T$ and $T_i^{\text{init}} \cap T_j^{\text{init}} = \emptyset$ for all $i \neq j$

• **Find**

 the allocation $<T_1, ..., T_{|A|}>$ *that minimizes* $\sum c_i(T_i)$
Task Allocation Problem:
Another Formulation

Given
- a set of tasks, \(T \)
- a set of robots, \(R \)
- \(\mathcal{R} = 2^R \) is the set of all possible robot subteams
- a cost function \(c_r:2^T \rightarrow R^+ \cup \{\infty\} \) (states the cost subteam \(r \) incurs by handling a subset of tasks)
 - Then an allocation is a function \(A:T \rightarrow \mathcal{R} \) mapping each task to a subset of robots
 - Equivalently, \(\mathcal{R}^T \) is the set of all possible allocations

Find
- the allocation \(A^* \in \mathcal{R}^T \) that minimizes a global objective function \(C: \mathcal{R}^T \rightarrow R^+ \cup \{\infty\} \)
More Complex Tasks
e.g., Area Reconnaissance
The Complex Task Allocation Problem

How can we know how to decompose the complex task(s) efficiently before we know which robots are going to be assigned the resulting simple tasks?
How can we know how to best allocate the complex tasks if we don’t yet know how they will be decomposed?
An Approach: AND/OR Task Tree
Task Tree Auctions

- *Task trees are traded on the market*
- Bids are placed for tasks at any level of a task tree
- Bid on a leaf: an agreement to execute a task for a given price
- Bid on an interior node: agreement to complete a complex task
 - original tree decomposition
 - replanning
- Avoids premature commitment on allocation/decomposition decisions
- Mechanism enables:
 - Tasks can be reallocated or redecomposed
 - Robots can develop their own plans for complex tasks
 - Subtasks of a complex task can be shared by multiple robots
Summary

• Auction mechanism as a way to take local information and – in combination with protocols – achieve global decisions

• Many kinds of problems:
 – Coordination
 – Allocation

• Auctions and mechanism design is a vibrant research area – trick is to pose robotics problems in a way that allows us to take advantage of all these ideas