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Markov’s Inequality

Often, for a random variable X that we are interested in, we
want to know

“What is the probability that the value of the r.v., X , is
‘far’ from its expectation?”

A generic answer to this, which holds for any non-negative
random variable, is given by Markov’s inequality:

Markov’s Inequality
Theorem: For a nonnegative random variable, X : Ω→ R,
where X (s) ≥ 0 for all s ∈ Ω, for any positive real number a > 0:

P(X ≥ a) ≤ E(X )

a
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Proof of Markov’s Inequality:
Let the event A ⊆ Ω be defined by: A = {s ∈ Ω | X (s) ≥ a}.
We want to prove that P(A) ≤ E(X)

a . But:

E(X ) =
∑
s∈Ω

P(s)X (s)

=
∑
s∈A

P(s)X (s) +
∑
s 6∈A

P(s)X (s)

≥
∑
s∈A

P(s)X (s) (because X (s) ≥ 0 for all s ∈ Ω)

≥
∑
s∈A

P(s)a (because X (s) ≥ a for all s ∈ A)

= a
∑
s∈A

P(s) = a · P(A)

Thus, E(X ) ≥ a · P(A). In other words, E(X)
a ≥ P(A), which is

what we wanted to prove.
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Example
Question: A biased coin, which lands heads with probability
1/10 each time it is flipped, is flipped 200 times consecutively.
Give an upper bound on the probability that it lands heads at
least 120 times.

Answer: The number of heads is a binomially distributed r.v., X ,
with parameters p = 1/10 and n = 200.
Thus, the expected number of heads is
E(X ) = np = 200 · (1/10) = 20.

By Markov Inequality, the probability of at least 120 heads is

P(X ≥ 120) ≤ E(X )

120
=

20
120

= 1/6.

Later we will see that one can give MUCH MUCH BETTER
bounds in this specific case.
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Chebyshev’s Inequality

Another answer to the question of “what is the probability that
the value of X is far from its expectation” is given by
Chebyshev’s Inequality, which works for any random variable
(not necessarily a non-negative one).

Chebyshev’s Inequality
Theorem: Let X : Ω→ R be any random variable, and let r > 0
be any positive real number. Then:

P(|X − E(X )| ≥ r) ≤ V (X )

r 2
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First proof of Chebyshev’s Inequality:
Let A ⊆ Ω be defined by: A = {s ∈ Ω | |X (s)− E(X )| ≥ r}.
We want to prove that P(A) ≤ V (X)

r2 . But:

V (X ) =
∑
s∈Ω

P(s)(X (s)− E(X ))2

=
∑
s∈A

P(s)(X (s)− E(X ))2 +
∑
s 6∈A

P(s)(X (s)− E(X ))2

≥
∑
s∈A

P(s)(X (s)− E(X ))2 (since ∀s, (X (s)− E(X ))2 ≥ 0)

≥
∑
s∈A

P(s)r 2 (because |X (s)− E(X )| ≥ r for all s ∈ A)

= r 2
∑
s∈A

P(s) = r 2 · P(A)

Thus, V (X ) ≥ r 2 · P(A). In other words, V (X)
r2 ≥ P(A), which is

what we wanted to prove.
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Our first proof of Chebyshev’s inequality looked suspiciously like
our proof of Markov’s Inequality. That is no co-incidence.
Chebyshev’s inequality can be derived as a special case of
Markov’s inequality.

Second proof of Chebyshev’s Inequality:
Note that
A = {s ∈ Ω | |X (s)−E(X )| ≥ r} = {s ∈ Ω | (X (s)−E(X ))2 ≥ r 2}.
Now, consider the random variable, Y , where
Y (s) = (X (s)− E(X ))2.
Note that Y is a non-negative random variable.
Thus, we can apply Markov’s inequality to it, to get:

P(A) = P(Y ≥ r 2) ≤ E(Y )

r 2 =
E((X − E(X ))2)

r 2 =
V (X )

r 2 .
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Brief look at a more advanced topic: Chernoff bounds
For specific random variables, particularly those that arise as
sums of many independent random variables, we can get much
better bounds on the probability of deviation from expectation.

Some special cases of Chernoff Bounds:
Theorem: Suppose we conduct a sequence of n mutually
independent Bernoulli trials, Xi ∈ {0,1}, with probability p of
“success” (i.e., getting a 1, i.e., heads) in each trial. Let
X =

∑n
i=1 Xi be the binomially distributed r.v. that counts the

total number of successes (recall that E(X ) = pn). Then:
1 For all ε > 0 , P(|X − E(X )| ≥ εn) ≤ 2e−2nε2.
2 For all C ≥ 6E(X ), P(X ≥ C) ≤ 2−C.

We will not prove this theorem, and we will not assume you
know it (it is not in the book).
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An application of Chernoff bounds
Question: A biased coin is flipped 200 times consecutively, and
comes up heads with probability 1/10 each time it is flipped.
Give an upper bound the probability that it will come up heads at
least 120 times.

Solution: Let X be the r.v. that counts the number of heads.
Recall: E(X ) = 200 ∗ (1/10) = 20. By Chernoff bounds,

P(X ≥ 120) = P(X ≥ 6E(X )) ≤ 2−6E(X) = 2−(6·20) = 2−120.

Note: By using Markov’s inequality, we were only able to
determine that P(X ≥ 120) ≤ (1/6).
But by using Chernoff bounds, which are specifically geared for
large deviation bounds for binomial and related distributions, we
get that P(X ≥ 120) ≤ 2−120.
That is a vastly better upper bound!
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The Birthday Problem
There are many illuminating and surprising examples in
probability theory. We will see some of them in the next couple
of lectures, in order to build our intuition about probability.
One well-known example is called the Birthday problem.

Birthday problem
There are 30 people in a room. I am willing to bet you that “at
least two people in the room have the same birthday”.

Should you take my bet? (I offer even odds.)

In order words, you have to calculate:
is there at least 1/2 probability that no two people will have the
same birthday in a room with 30 people?
(We are implicitly assuming that these people’s birthdays are
independent and uniformly distributed throughout the 365(+1)
days of the year, taking into account leap years.)
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Toward a solution to the Birthday problem:
Question: What is the probability, pm, that m people in a room
all have different birthdays?

We can equate the birthdays of m people to a list (b1, . . . ,bm),
with each bi ∈ {1, . . . ,366}.
We are assuming each list in B = {1, . . . ,366}m is equally likely.
Note that |B| = 366m. What is the size of

A = {(b1, . . . ,bm) ∈ B | bi 6= bj for all i 6= j , i , j ∈ {1, . . . ,m}} ?
This is simply the # of m-permutations from a set of size 366.
Thus |A| = 366 · (366− 1) . . . (366− (m − 1)).

Thus, pm = |A|
|B| =

∏m
i=1

366−i+1
366 =

∏m
i=1(1− i−1

366 ).

By brute-force calculation, p30 = 0.2947. Thus, the probability
that at least two people do have the same birthday in a room
with 30 people is 1− p30 = 0.7053.
So, you shouldn’t have taken my bet! Not even for 23 people in a
room, because 1− p23 = 0.5063. But 1− p22 = 0.4745.
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A general result underlying the birthday paradox

Theorem: Suppose that each of m ≥ 1 pigeons independently
and uniformly at random enter one of n ≥ 1 pigeon-holes. If

m ≥ (1.1775 ·
√

n) + 1

then the probability that two pigeons go into the same
pigeon-hole is greater than 1/2.
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Proof: Basic Fact: 1 + x ≤ ex , for all real numbers x .
The probability that m random pigeons all go in different
pigeonholes, when there are n pigeonholes, is:

m−1∏
i=1

(1 + (− i
n

)) ≤
m−1∏
i=1

e−(i/n) = e−
1
n
∑m−1

i=1 i = e−
m(m−1)

2n

So we want m to be big enough so that e−
m(m−1)

2n < 1/2.
Taking logs, and negating, this is equivalent to

m(m − 1)

2n
> ln 2 ⇐⇒ m(m − 1) > (2 · ln 2) · n

Thus, since m(m − 1) > (m − 1)2, it suffices if

(m − 1)2 ≥ (2 · ln 2) · n ⇐⇒ (m − 1) ≥
√

(2 · ln 2) ·
√

n

Thus, since
√

(2 ln 2) = 1.177410 . . . ≤ 1.1775, it suffices if:

m ≥ (1.1775 ·
√

n) + 1.

We will not assume you know this proof.
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